
Chapter 5

The Real Case

5.1 Extending the Field

Suppose E is an elliptic curve defined over k, given by the equation

F (X, Y, Z) = 0.

and suppose K is an extension field of k:

k ⊂ K.

Then the same equation defines an elliptic curve over K; and the group E(k)
of points defined over k (if non-empty) is a subgroup of E(K):

E(k) ⊂ E(K).

The study of E(K) often gives us valuable information on E(k).
We shall be particularly interested in curves over the rationals: k = Q.

In this case there are several candidates for K: the reals R; the complex
numbers C; the p-adic numbers Qp for each prime p (defined in Chapter 5);
and algebraic number fields such as the Gaussian field Q(i).

5.2 E(K) as a Topological Group

Each of the fields K = R, C, Qp carries a natural topology, defined by a
metric. This defines a topology on the corresponding projective space P2(K),
which in turn induces a topology on the group E(K).

In each of these cases, the space P2(K) is compact. To see that, note that
P2(K) can be considered as the quotient-set of the sphere S2(K) under the
equivalence E which identifies antipodal points:

P2(K) ∼= S2(K)/E.

It follows that the curve E(K), as a closed subset of P2(K), is also compact.
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We see therefore that in each of these 3 cases, E(K) is a compact abelian
group.

The structure of compact abelian groups is essentially known. Two theo-
rems — each of remarkable generality and beauty — describe this structure.

Firstly, every locally compact group G (not necessarily abelian) carries
an invariant measure µ, unique up to a scalar multiple, known as the Haar
measure.

In the case of a compact group G we can normalise the Haar measure by
specifying that the whole group is to have measure — or volume — 1. Each
continuous function f(g) on G then has a well-defined integral∫

G

f(g) dµ.

The measure is invariant in the sense that the functions f(x) and f(gx) have
the same integral over G:∫

G

f(gx) dµ(x) =

∫
G

f(x) dµ(x).

Secondly, Pontriagin’s Duality Theory for locally compact abelian groups
associates to each such group A a dual group A∗, whose elements are the
unitary characters of A, ie the continuous homomorphisms

χ : A→ T = {z ∈ C : |z| = 1}.

The group A∗ carries a natural topology, under which it is locally compact.
There is a natural homomorphism

A→ A∗∗.

One of the basic results of the theory is that this is an isomorphism.

A∗∗ = A.

Examples of Pontriagin duality are

R∗ = R, C∗ = C,
Z∗ = T = R/Z, T∗ = Z,

Q∗p = Qp, Z∗p = Qp/Zp.

Other results are:

A compact⇐⇒ A∗ discrete,

A connected⇐⇒ A∗ torsion-free,

A totally-disconnected⇐⇒ A∗ torsion-group

Pontriagin’s theory is in effect a generalisaion of Fourier analysis. Fourier
integrals correspond to the group R, and Fourier series to the group T.

We shall not assume either of these results. Our case is so trivial — the
group E(R) being 1-dimensional — that to appeal these general theorems
would be like taking a sledgehammer to crack a nut. However, they may
motivate our method.
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5.3 In the Neighbourhood of Infinity

We have seen that the flexes on an elliptic curve are determined by a polyno-
mial equation (in one variable) of degree 9. Since an equation of odd degree
always has a real root, an elliptic curve E over R always has a flex defined
over R. Thus we can take E in strict standard form

E(R) : y2 = x3 + bx+ c (b, c ∈ R),

with the flex [0, 1, 0] as neutral element.
A topological group G is homogeneous, that is, it looks the same at all

points. For if g ∈ G, and U is a neighbourhood of the neutral element
e then gU is a neighbourhood of g, and the map x 7→ gx establishes a
homeomorphism between U and gU .

For this reason, the structure of a topological group is largely determined
by its structure in the neighbourhood of the neutral element — in our case,
the point O = [0, 1, 0].

In studying such a neighbourhood, it is convenient to use the coordinates

(X,Z) = [X, 1, Z].

These are defined on the ‘affine patch’

AY = {[X, Y, Z] : Y 6= 0},

containing the point O. In effect, our curve is covered by 2 affine patches:
the ‘usual’ one

AZ = {[X, Y, Z] : Z 6= 0},
on which we can use the coordinates x = X/Z, y = Y/Z), and AY . (To
cover P2 we need a third patch, say

AX = {[X, Y, Z] : X 6= 0}.

But E ⊂ AY ∪ AZ .)
In (X,Z)-coordinates the curve takes the form (on setting Y = 1 in the

homogeneous equation)

Z = X3 + bXZ2 + cZ3.

If X and Z are sufficiently small (in other words, the point (X,Z) is
sufficiently close to O) then this equation allows us to express Z recursively
as a power series in X, taking X = Z3 as our first approximation, and
successively substituting in our equation:

Z = X3 + bX(X3 + · · · )2 + c(X3 + · · · )3

= X3 + bX7 + · · ·
= X3 + bX(X3 + bX7 + · · · )2 + c(X3 + bX7 + · · · )3

= X3 + bX7 + cX9 + 2b2X11 + · · ·
= X3 + bX7 + cX9 + 2b2X11 + 5bcX13 + · · ·
= . . .
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Rigorously, this follows from the Implicit Function Theorem, since

∂F

∂X
6= 0

at (X,Z) = (0, 0) (and therefore in a neighbourhood of (0, 0)), where

F (X,Z) ≡ Z −X3 − bXZ2 − cZ3.

The Theorem tells us that Z is expressible as a power-series in X in some
region |X|, |Z| < δ.

In particular, this implies that E is locally homeomorphic to the open
interval (−δ, δ) in a neighbourhood U 3 O. It follows, from the homogeneity
of the group E , that E is a 1-dimensional topological manifold, ie it is locally
homeomorphic to an open interval at each point P ∈ E .

5.4 The Invariant Differential

It is not difficult to see intuitively why there is an invariant measure on a
topological group. If we choose a ‘standard volume’, say a small box B, at
the neutral element e, then its transform gB can be taken as a standard
volume at g ∈ G. Thus we have a uniform measure of volume throughout G.

In the case of a manifold of dimension n we can implement this idea
by taking an infinitesimal volume dx1 · · · dxn as standard. If g ∈ G lies
within the (x1, . . . , xn) coordinate-system, say g = (X1, . . . , Xn), then the
transformation x 7→ gx will define a volume

φ(X1, . . . , Xn)dx1 · · · dxn

at g. The Haar integral of a function f is then given by∫
f(x1, . . . , xn)dµ =

∫
f(x1, . . . , xn)φ(x1, . . . , xn)dx1 · · · dxn.

That is a crude description of Haar measure, and is not intended to be
rigorous. In particular, we cannot in general cover the whole of G with a
single coordinate system x1, . . . , xn; we have to ‘stick together’ patches with
different coordinate-systems. This is no great problem, since we know that
a change of coordinates to say

X1(x1, . . . , xn), . . . , Xn(x1, . . . , xn)

requires multiplication by the Jacobian:

dx1 . . . dxn =
∂(x1, . . . , xn)

∂(X1, . . . , Xn)
dX1 . . . dXn.

Thus in the new coordinates our invariant measure becomes

Φ(X1, . . . , Xn)
∂(x1, . . . , xn)

∂(X1, . . . , Xn)
dX1 . . . dXn,
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where
Φ (X1(x1, . . . , xn), . . . , Xn(x1, . . . , xn)) = φ(x1, . . . , x1).

It is not difficult to make this rigorous in our 1-dimensional case. We
can take X as our single coordinate in the neighbourhood of O, with corre-
sponding differental dX. The coordinate Z as we have seen is expressible as
a power-series

Z = Z(X) = X3 + bX7 + · · ·

for X in some interval I = [−C,C]. Let

U = {[X,Z] ∈ E : X ∈ I}

be the corresponding neighbourhood of O. Each point P ∈ U is uniquely
determined by its X-coordinate, so we may write P = P (X).

If X1, X2 ∈ I are sufficiently small then P (X1) + P (X2) ∈ U , say

P (X1) + P (X2) = P (S(X1, X2)).

In other words,

P (X1) + P (X2) = (S(X1, X2), T (X1, X2)) ,

We can compute S(X1, X2) by our usual technique. Let the line joining
P (X1) and P (X2) be

Z = MX +D.

Then

M =
Z1 − Z2

X1 −X2

, D =
X1Z2 −X2Z1

X1 −X2

,

where Z1 = Z(X1), Z2 = Z(X2). Suppose this line meets the curve E again
at P3 = (X3, Z3). Then X1, X2, X3 are the roots of

MX +D = X3 + bX(MX +D)2 + c(MX +D)3.

It follows that

X1 +X2 +X3 = −coeff of x2

coeff of x3

= −2bMD + 3CM2D

1 + bM2 + cM3
.

Since −(X,Z) = (−X,−Z),

S(X1, X2) = −X3

= X1 +X2 +
2b+ 3CM

1 + aM + bM2 + cM3
DM.

Let us leave these formulae aside for the moment. According to our
argument above, if we integrate the invariant differential dθ we obtain an
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invariant or normal coordinate θ on I with the property that addition of
points is defined by addition of their θ-coordinates. In other words, the
function θ(X) satisfies the condition

θ(X1) + θ(X2) = θ(S(X1, X2)).

On differentiating this with respect to X2,

dθ

dX
(X2) =

dθ

dX
(S(X1, X2))

∂S

∂X2

(X1, X2).

In particular, at the point (X1, X2) = (X, 0),

dθ

dX
(0) =

dθ

dX
(S(X, 0))

∂S

∂X2

(X, 0).

But S(X, 0) = X since P (X) + P (0) = P (X) + 0 = P (X). Thus

dθ

dX
(0) =

dθ

dX
(X)

∂S

∂X2

(X, 0).

We may assume that dθ/dX(0) = 1, since dθ is only defined up to a
scalar multiple. (In theory we could normalise dθ by specifying that its
integral around the whole curve should be 1:∫

E
dθ = 1.

But in practice there is little merit in this.) Thus

dθ

dX
=

1

∂S/∂X2(X, 0)
.

The problem is reduced to computation of this partial derivative.
We see from our formula for S(X1, X2) that this involves M and D and

possibly their derivatives. We have

M(X, 0) =
Z − 0

X − 0
=
Z

X
, D(X, 0) =

X · 0− 0 · Z
X − 0

= 0.

It follows from this last result that

∂S

∂X2

(X, 0) = 1 +
2b+ 3CM

1 + aM + bM2 + cM3
M

∂D

∂X2

(X, 0).

But
∂D

∂X2

=
X1∂Z2/∂X2 − Z1

X1 −X2

+
X1Z2 −X2Z1

(X1 −X2)2
;

and so, since dZ/dX(0) = 0 (as Z = X3 + · · · ),

∂D

∂X2

(X, 0) = −Z
X
.
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Thus

∂S

∂X2

(X, 0) = 1− 2b+ 3c(Z/X)

1 + b(Z/X)2 + c(Z/X)3

(
−Z

2

X2

)
= 1− 2bX + 3cZ

X3 + bXZ2 + cZ3
Z2

= 1− 2bXZ − 3cZ2,

since
X3 + bXZ2 + cZ3 = Z.

If we set
F (X,Z) ≡ Z −X3 − bXZ2 − cZ3,

so that the curve has equation F (X,Z) = 0, then we can write this as

∂S

∂X2

(X, 0) =
∂F

∂Z
.

We conclude that the invariant differential is

dθ = Φ(X)dX =
dX

∂F/∂Z
.

On the curve E we have F (X,Z) = 0, and so

∂F

∂X
dX +

∂F

∂Z
dZ = 0.

Thus we have an alternative form for the differential:

dθ = Φ(X)dX =
dX

∂F/∂Z
= − dZ

∂F/∂X
;

or if preferred,
dθ

dX
=

1

∂F/∂Z
,
dθ

dZ
= − 1

∂F/∂X
.

The differential dθ is defined on the whole group, and so must be express-
ible in terms of dx and dy on the ‘finite’ (x, y)-patch AZ . Since

(x, y) = [x, y, 1] = [x/y, 1/y, 1] = (X,Z),

the coordinate transformation between the patches is given by

X =
x

y
, Z =

1

y
,

with the inverse transformation

x =
X

Z
, y =

1

Z
.
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Thus

dx =
dX

Z
− XdZ

Z2

=
1

Z2
(ZdX −XdZ)

=
1

Z2

(
Z
dX

dθ
−XdZ

dθ

)
dθ

=
1

Z2

(
Z
∂F

∂Z
+X

∂F

∂X

)
dθ

=
1

Z2

(
Z − 3X3 − 3bXZ2 − 3CZ3

)
dθ

= − 2

Z
dθ

= −2ydθ

= −∂f
∂y
dθ,

ie
dθ

dx
= − 1

∂f/∂y
,

where
f(x, y) ≡ y2 − x3 − bx− c = 0

is the equation of the curve in (x, y)-coordinates.
As before,

∂f

∂x
dx+

∂f

∂y
dy = 0,

Thus

dθ = − dx

∂f/∂y
=

dy

∂f/∂x
.

5.5 No Miracles in Maths

These formulae for the invariant differential dθ are remarkable both for their
simplicity and for the similarity between the formulae on the 2 patches. The
reason is as follows — where we emphasize that our argument is not intended
to be rigorous (and is more appropriate to the complex case, in any case).

An elliptic curve is a curve of genus 1. The genus g of a non-singular curve
can be defined in various ways; but one definition is that g is the dimension
of the space of holomorphic differentials on the curve, that is, differentials
which are everywhere expressible in terms of a local coordinate u in the form
Φ(u)du where Φ(u) can be written as a power-series in u.

Accordingly, there is just one such differential dθ on an elliptic curve E ,
up to a scalar multiple — which is, of course, the differential defining the
Haar measure.
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Suppose (u, v) are the coordinates in an affine patch. Let the equation of
the curve in these coordinates by f(u, v) = 0. At any point P we must have
either ∂f/∂u 6= 0 or ∂f/∂v 6= 0. (Otherwise P would be a singular point.)
Suppose ∂f/∂v 6= 0. Then by the Implicit Function Theorem, we can express
v as a function v(u) of u, and so we can take u as local coordinate. Thus the
differential

du

∂f/∂v

is holomorphic in the neighbourhood of this point. Similarly, if ∂f/∂u 6= 0
then the differential

− dv

∂f/∂u

is holomorphic near P . Since the two differentials are equal wherever they
are both defined, together they define a differential which is holomorphic
everywhere in the patch.

The simplest way to see that the differentials defined in this way on the
3 affine patches AX , AY , AZ ⊂ P2 ‘fit together’ is to pass to homogeneous
coordinates, with the whole curve defined by

H(X, Y, Z) = 0.

Let
π : R3 \ {0} → P2

be the natural surjection

(X, Y, Z) 7→ [X, Y, Z].

Each function u on an open subset of P2 defines a function π∗u on the corre-
sponding open subset of R3. For example, the functions x and y on AZ ⊂ P2

give the functions

π∗x =
X

Z
, π∗y =

Y

Z
.

Similarly each differential ω defined on P2 or on an open subset of P2 gives
a differential π∗ω on the corresponding open subset of R3. For example, the
differentials dx and dy on AZ give the differentials

π∗(dx) =
Z dX −X dZ

Z2
, π∗(dy) =

Z dY − Y dZ

Z2
.

on the subset z 6= 0 of R3.
The differentials

u(X, Y, Z)dX + v(X, Y, Z)dY + w(X, Y, Z)dZ

induced in this way all satisfy

Xu+ Y v + Zw = 0.
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(This arises from the fact that the functions we get on R3 are all homogeneous
of degree 0; and if u(X, Y, Z) is homogeneous of degree d then

X
∂u

∂X
+ Y

∂u

∂Y
+ Z

∂u

∂Z
= du,

as we noted earlier.)
The subspace of differentials on R3 \ {0} satisfying this condition is in

one-one correspondence with the differentials on P2, allowing us to identify
the two.

We are actually interested in differentials on E , not on P2. Two differen-
tials on AZ ⊂ P2 define the same differential on E if they differ by a multiple
of

∂f

∂X
dX +

∂f

∂Y
dY.

It follows that 2 differentials on R3 \ {0} define the same differential on E if
they differ by a multiple of

∂H

∂x
dx+

∂H

∂y
dy +

∂H

∂z
dz.

Now we can describe the invariant differential in global terms on R3. It
is given by

dΘ =
X dY − Y dX

∂H/∂Z
=
Y dZ − Z dY

∂H/∂X
=
Z dX −X dZ

∂H/∂Y
.

We see now why the formulae on the 3 patches AX , AY , AZ are so similar.

5.6 The Functional Equation for θ

It remains to verify that

θ(P1) + θ(P2) = θ(P1 + P2)

for P1, P2 sufficiently close to O, ie that

θ(X1) + θ(X2) = θ (S(X1, X2))

for X1, X2 sufficiently small.
If we regard this as an equation in X2 then it holds for X2 = 0. Hence

it is sufficient to show that the derivative of the equation with respect to X2

holds, ie
dθ

dX
(S(X1, X2))

∂S

∂X2

(X1, X2) =
dθ

dX
(X2).

From the definition of θ,

dθ

dX
(X)

∂S

∂X2

(X, 0) =
dθ

dX
(0) = 1.
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Thus we have to show that

∂S/∂X2(X1, X2)

∂S/∂X2(S(X1, X2), 0)
=

1

∂S/∂X2(X2, 0)
,

that is,
∂S

∂X2

(X1, X2)
∂S

∂X2

(X2, 0) =
∂S

∂X2

(S(X1, X2), 0) .

But by the associative law,

S (X1, S(X2, X3)) = S (S(X1, X2)X3) .

Differentiating this with respect to X3 and setting X3 = 0,

∂S

∂X2

(X1, X2)
∂S

∂X2

(X2, 0) =
∂S

∂X2

(S(X1, X2), 0) ,

which is just the result required. We conclude that

θ(X1) + θ(X2) = θ (S(X1, X2)) .

We note that this result must be an identity in X1 and X2, which will
therefore hold in every field F , for example in the p-adic field Qp.

5.7 The Components of E(R)
The connected component of the neutral element e in a topological group G
is a closed subgroup of G, which is generally denoted by G0.

Proposition 5.1 The group E(R) has either 1 or 2 connected components.

Proof I Suppose C is a component other than E(R)0. Then C does not meet
the line at infinity, since O is the only point of E on this line. Hence C is a
compact and therefore bounded set in the affine (x, y)-patch AZ .

Thus the function x must attain its upper and lower bounds on C. If the
curve has equation

y2 = x3 + bx+ c,

then

2y
dy

dx
= 3x2 + b.

Thus y = 0 where x attains its bounds, and so

f(x) = 0

at these points. There are at most 3 such points. Since each component
apart from E0 contributes 2 points, we conclude that there are at most 2
components. J
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Corollary 1 Either

E(R) = E(R)0 or E(R) = E(R)0 ⊕ Z/(2).

In the first case, E(R) has just one point of order 2. In the second case,
E(R) has three points of order 2, which together with O form a subgroup
∼= Z/(2)⊕ Z/(2).

Proof I Recall that the point P = (x, y) on the elliptic curve

E(R) : y2 = f(x)

is of order 2 if and only if y = 0.
Suppose E(R) has two components. Then the second component contains

at least two points of order 2, as we saw in the proof above. Let A = (α, 0)
be one of these points.

In general, if G0 is the connected component of the neutral element in a
topological group G then each coset G0g is a connected component of G.

Thus in our case E(R)0 + A must be the second component of E(R). It
follows that

E(R) = E(R)0 ∪ (E(R)0 + A)

= E(R)0 ⊕ {O,A}
∼= E(R)0 ⊕ Z/(2),

since {O,A} is a subgroup ∼= Z/(2). J

Corollary 2 If E(R) has one component then it has just one element of
order 2. If it has two components then it has three elements of order 2,
which together with O form a subgroup ∼= Z/(2)⊕ Z/(2).

Proof I Suppose E(R) has two components. Then f(x) has at least 2 real
roots, as we saw. But a polynomial of degree 3 over R has either 1 or 3 real
roots. Hence f(x) has 3 real roots α, β, gamma, giving 3 points of order 2,
namely

A = (α, 0), B = (β, 0), C = (γ, 0).

Evidently {O,A,B,C} is a subgroup, ∼= Z/(2)⊕ Z/(2).
Conversely, suppose f(x) has 3 real roots α, β, gamma, where α < β < γ.

Then
y2 ≥ 0 =⇒ α ≤ x ≤ β or γ ≤ x.

Let
M = max

α≤x≤β
f(x).

Then
α ≤ x ≤ β =⇒ (x, y) ∈ [α, β]× [−M1/2,M1/2].

Evidently the points of E(R) in this rectangle form a component or compo-
nents distinct from E(R)0; and in particular E(R) has more than one com-
ponent. J
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5.8 The connected component E(R)0
Proposition 5.2 The connected component of E(R) is isomorphic to the
torus:

E(R)0 ∼= T.

Proof I We have seen that θ defines a local isomorphism of R into E(R); that
is, θ is defined on an open interval I ⊂ R containing 0, and there satisfies

θ(x+ y) = θ(x) + θ(y) (x, y, x+ y ∈ I).

Lemma 1 A local homomorphism θ of R into a topological group G extends
uniquely to a homomorphism

θ : R→ G.

Proof of Lemma B Suppose x ∈ R. Then x/n ∈ I for some integer n. If θ

can be extended to the whole of R then

θ(x) = nθ(x/n).

But is this unique? Suppose x/m ∈ I. Then

x

m
,
x

n
,
x

mn
∈ I.

Hence, since θ is a local homomorphism,

θ(x/n) = mθ(x/mn), θ(x/m) = nθ(x/mn).

It follows that
nθ(x/n) = mθ(x/m) = mnθ(x/mn).

Thus θ(x) is well-defined by the relation

θ(x) = nθ(x/n);

the definition is independent of n.
It is straightforward to verify that θ is a homomorphism; and its conti-

nuity follows from its continuity at 0. C

Remark: The last Lemma is a particular case of the general result that a local
homomorphism of a simply-connected topological group G and a topological
group H always be extended to a true homomorphism. We are applying this
with R, G in place of G,H.

Lemma 2 The homomorphism

θ : R→ E(R)0

is surjective.
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Proof of Lemma B We know that im θ includes an open interval I around O.

It follows that im θ is open; for

P ∈ im θ =⇒ P + U ∈ im θ.

Thus im θ is an open subgroup, and is therefore also closed. (For each coset
is open; hence the subgroup, as the complement of the union of all the cosets
except itself, is closed.) Since E(R)0 is connected, it follows that

im θ = E(R)0.

C

Lemma 3 The subgroup ker θ is discrete.

Proof of Lemma B Since θ is a local isomorphism, it is a homeomorphism on

an open interval I 3 0. It follows that

ker θ ∩ I = {0}.

Hence ker θ is discrete. C

Lemma 4 A discrete subgroup S ⊂ R is necessarily of the form

S = Zx = {nx : n ∈ Z}

for some x ∈ R.

Proof of Lemma B If S 6= 0 then there are points s ∈ S, s > 0. Let x be

the lower bound of these numbers. Since S is discrete, x > 0; and since a
discrete subgroup is necessarily closed, x ∈ S.

Now suppose s ∈ S. If n = [s/x] then

s = nx+ r

where 0 ≤ r < x. Since
r = s− nx ∈ S

it follows that r = 0; for otherwise the minimality of x would be contradicted.
Thus

s = nx.

C

We conclude that

E(R)0 ∼= R/ ker θ ∼= R/Z = T.

J
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5.9 The Structure of E(R)
Theorem 5.1 For each elliptic curve, either

E(R) = T or T⊕ Z/(2).

Proof I This follows at once from the Corollary to Proposition 5.1 and
Proposition 5.2. J

Proposition 5.3 The elliptic curve

E(R) : y2 = x3 + ax2 + bx+ c

has one component or two according as

D(f) < 0 or D(f) > 0.

Proof I By Corollary 2 to Proposition 5.2, E(R) has one or two components
according as f(x) has 1 or 3 real roots.

Recall that the discriminant of a polynomial f(x) with roots αi is defined
to be

D(f) =
∏

(αi − αj)2.

Suppose f(x) has 3 real roots α, β, γ. Then

D(f) = [(α− β)(β − γ)(γ − α)]2 > 0.

On the other hand, suppose f(x) has 1 real root α, and complex conjugate
roots β ± iγ. Then

D(f) = [(α− β + iγ)(α− β − iγ)(2iγ)]2

= −4
[
(α− β)2 + γ2)γ

]2
< 0.

J

5.10 Postscript: an Elementary Approach

If we only want to determine the structure of E(R), and do not want an
explicit formula for θ = θ(X), we can argue as follows.

We know that each connected component of E(R) is closed, from which it
follows, as we have seen, that there are at most 2 components. So it sufficient
to show that the connected component E(R)0 of the zero element — which
is a subgroup of E(R) — is isomorphic to T.

We know, from its structure in the neighbourhood of O that E(R) is a 1-
dimensional topological manifold, by which we simply mean that it is locally
isomorphic to an interval.
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Proposition 5.4 A connected abelian topological group A which is a topo-
logical 1-manifold is necessarily isomorphic to T.

Proof I By hypothesis there is an open neighbourhood I of O isomorphic
to (−1, 1) (with the number 0 corresponding to the zero element O). By
continuity we can find an interval J ⊂ I such that

P,Q ∈ J =⇒ P +Q ∈ I, −P ∈ I.

There is a natural order on the interval I (this is a characteristic of
dimension 1), which we may denote by P ≺ Q. If P ≺ Q ≺ R we may say
that Q lies between P and R. This is reflected in the fact that there exists a
‘one-one path’ from P to R in I (ie an injective continuous map π : [0, 1]→ I
with π(0) = P, π(1) = R) passing through Q.

Lemma 1 Suppose P,Q,R ∈ J . Then

Q ≺ R =⇒ P +Q ≺ P +R.

Proof of Lemma B This holds for P = O. It follows by continuity that it

holds for all P ∈ J . C

Lemma 2 Suppose P,Q ∈ J . Then

P ≺ Q =⇒ −Q ≺ −P.

Proof of Lemma B By the previous Lemma,

P ≺ Q⇐⇒ 0 ≺ Q− P.

Thus it is sufficient to prove the result with P = O, ie to show that

O ≺ Q =⇒ −Q ≺ O.

Suppose not; then we can find a point P ∈ J such that

0 ≺ −P ≺ P.

But on adding P this implies that P ≺ O. C

Lemma 3 Suppose P ∈ J . Then there exists a unique point in J , which we
may denote by 1

2
P , such that

1

2
P +

1

2
P = P.

MA342P–2016 5–16



Proof of Lemma B Suppose 0 ≺ P . Then by the first Lemma, P ≺ P + P .

On the other hand, O + O ≺ P . Thus there is a point Q ∈ [0, P ] such that
Q+Q = P .

This point is unique. For suppose Q1, Q2 ∈ J and

2Q1 = 2Q2.

We may suppose that Q1 ≺ Q2. But then

O ≺ Q2 −Q1 =⇒ O ≺ 2(Q1 −Q2) = O.

If P ≺ O then O ≺ −P and

1

2
P = −1

2
(−P ).

C

By repeating this construction, we can define points

1

2n
P

for each n > 0.

Lemma 4 As n→∞,
1

2n
P → O.

Proof of Lemma B If not then (assuming O ≺ P ) we can find a point Q such

that O ≺ Q and
2nQ ≺ P

for all n. It follows that the sequence is convergent, say

2nQ→ R.

But then
2R = R,

which is impossible, since O ≺ R. C

Now we can define λP for

λ =
m

2n
(0 ≤ m ≤ 2n);

and it is a straightforward matter to verify that if O ≺ P then

λ < µ =⇒ λP ≺ µP.

But now we can define λP for λ ∈ [−1, 1], by continuity; and we have a
local isomorphism R→ A, ie a map

θ : [−1, 1]→ A

such that if λ, µ ∈ [−1, 1] then

θ(−λ) = −θ(λ), θ(λ+ µ) = −θ(λ) + θ(µ).
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Lemma 5 For any topological group G, every local homomorphism θ : R→
G extends to a true homomorphism

θ : R→ G.

Proof of Lemma B This is straightforward. Suppose the local homomorphism

is defined on the interval I around O. Given any real number λ we can find
an integer n > 0 such that

λ

n
∈ I.

We set

θ(λ) = nθ

(
λ

n

)
.

It is a straightforward matter to verify that this definition is independent of
the integer n chosen. C

We have shown therefore that we have a homomorphism

θ : R→ A.

Moreover since θ is a local isomorphism it follows that ker θ is discrete. But
it is easy to see that a discrete subgroup S ⊂ R is generated by the least
positive number µ in S (unless S = {0}):

S = {nµ : n ∈ Z} ∼= Z.

Finally, the homomorphism θ must be surjective. For im θ is an open
subgroup of A, since it contains an open neighbourhood of O. It is therefore
also closed (since all its cosets are open). Since A is by hypothesis connected,
this implies that im θ = A.

We conclude that

A ∼= R/ im θ ∼= R/Z = T.

J

Corollary E(R) = T or T⊕ Z/(2).
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