
Resource B

Projective Geometry

B.1 Affine space

By the affine plane we mean the familiar plane from school geometry, where
each point is represented by coordinates (x, y) ∈ R2, with the understanding
that we “forget” the origin and coordinate axes. That is, if we choose a
different origin and coordinates (x′, y′) we regard it as the same affine plane,
with an affine transformation

x′ = ax+ by + e,

y′ = cx+ dy + f

taking one set of coordinates into the other. (Here ad−bc 6= 0, since otherwise
the transformation would not be bijective.)

We can represent this transformation by the 3× 3 matrixa b e
c d f
0 0 1

 ,

since it is readily verified that composition of transformations corresponds
to muliplication of matrices.

The affine transformations of the plane form the affine group.
We extend this definition to any field k, and any dimension n > 0. Thus

the affine space An(k) is the space where each point can be represnted by co-
ordinates (x1, . . . , xn) ∈ kn. We shall often refer to this, slightly innacurately,
as the affine space kn.

Note that we do not have any notion of distance or angle in affine geom-
etry. We use the term euclidean space if distance is defined.
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B.2 Projective space

Definition B.1 If V is a vector space over the field k then the corresponding
projective space PV is the set of 1-dimensional subspaces of V . In other
words,

PV = (V \ {0})/k×.
The n-dimensional vector space over k is

Pn(k) = P(kn+1).

Thus a point P ∈ Pn(k) is given by n+ 1 coordinates,

P = [x1, . . . , xn, xn+1],

with x1, . . . , xn+1 not all zero, where a scalar multiple defines the same point:

[λx1, . . . , λxn+1] = [x1, . . . , xn+1].

Each non-singular linear map

t : kn+1 → kn+1

defines a projective transformation

T : Pn(k)→ Pn(k).

The maps t, λt (where λ ∈ k×) define the same projective transformation
T . Thus the projective transformations form the projective group

PGL(n, k) = GL(n, k)/k×.

We can identify the affine plane A2(k) with a subset of the projective
plane P2(k) through the map

(x, y) 7→ (x, y, 1).

The points of the projective plane that are not in the affine plane, namely
those of the form (x, y, 0), form the line at infinity z = 0.

B.3 Curves

A curve Γ in the affine plane A2(k) is defined by an irreducible polynomial

f(x, y) ∈ k[x, y].

(By irreducible we mean irreducible over the algebraic closure k̄ of k.)
We associate to Γ the set of points (x, y) satisfying

f(x, y) = 0.
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Proposition B.1 An irreducible curve over k is completely determined by
the points on it over k̄.

Remark: A curve over k need not have any points over k on it, eg the curve

x2 + y2 + 1 = 0

over R does not contain any real points.

B.4 The Erlanger Program

Felix Klein — perhaps the leading German mathematician between Gauss
and Hilbert — suggested in a lecture in 1872 that geometry should be brought
under the aegis of group theory. To each geometry — as, for example, affine
geometry, projective geometry, spherical geometry, euclidean geometry, hy-
perbolic geometry — there corresponds a certain group of transformations.
Two configurtations are regarded as identical if there is a transformation
taking one into the other; and geometric problems reduce to problems about
invariants of the particular group in question.

In our case there are 2 groups of interest, the affine group and the projec-
tive group, although later we shall add the group of birational transformations
of a curve.

B.5 Geometry of the projective plane

In the projective plane, there is a duality between points and lines: any 2
lines define a point (where they meet), and any 2 points define a line.

As is readily verified, there is a unique projective transformation T tak-
ing any 4 non-collinear points A,B,C,D into any 4 non-collinear points
A′, B′, C ′, D′:

T (A) = A′, T (B) = B′, T (C) = C ′, T (D) = D′.

In particular, given 4 non-collinear points A,B,C,D, we can choose co-
ordinates so that

A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1], D = [1, 1, 1].

We cannot in general send 4 collinear points A,B,C,D into 4 collinear
points A′, B′, C ′, D′. This is possible only if the sets of points have the same
cross-ratio. (It is left to the student to find out what this means, and to
verify the result.)
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B.6 Tangents

Suppose
γ : f(x, y) = 0

is an irreducible curve in the affine plane. The tangent at a given point
P = (x0, y0) on γ is given by

y = mx+ c,

where

m =
dy

dx
=
∂f/∂x

∂f/∂y
,

and c is determined (once m is known) by

f(x,mx+ c) = 0.

This turns out to be much simpler in the projective case. The tangent at
P = [X0, Y0, Z0] on the curve

Γ : F (X, Y, Z) = 0

is given by
∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = 0,

where the partial derivatives are computed at P .
We say that the point P is singular if the tangent at P is undefined, ie if

∂F

∂X
= 0,

∂F

∂Y
= 0,

∂F

∂Z
= 0.

We say that the curve Γ is non-singular if it contains no singular points,
where as usual we must allow points defined over k̄.

In general we shall be interested in non-singular curves, but which we
understand that the curve is irreducible and non-singular.

One small point. The polynomial F (X, Y, Z) is homogeneous, ie if F is
of degree d then

F (tX, tY, tZ) = tdF (X, Y, Z).

On differentiating with respect to t and then setting t = 1,

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = dF (X, Y, Z).

This says, in effect, that the tangent at P passes through P .
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Exercises 2 Projective Geometry

** 1. Show that there is an affine transformation taking a triangle ABC in
the affine plane into any other triangle A′B′C ′.
Is this transformation unique?

*** 2. Show that you can represent an affine transformation by a matrixa b e
c d f
0 0 1

 ,

in the sense that the product of two affine transformations is repre-
sented by the product of the corresponding matrices.

** 3. Can you find an affine transformation taking 3 collinear (but dis-
tinct) points A,B,C into any other 3 collinear (but distinct) points
A′, B′, C ′.

*** 4. Give a construction in the affine plane to determine the mid-point of
two points.

* 5. Find the projective line through the points [1, 3, 3], [0, 1, 1].

* 6. Find the point in which the lines x+ y − z = 0, 2x− y = 0 meet

** 7. Find a projective transformation taking the points P = [1, 0, 0], Q =
[0, 1, 0], R = [0, 0, 1], S = [1, 1, 1] into the points S,R,Q, P , in that
order.

*** 8. Show that there is a projective transformation of the line P1(k) taking
any 3 points into any 3 points.
Is the transformation unique?
Find a transformation taking 0, 1,∞ into 1,∞, 0, in that order.

** 9. Define the cross-ratio (A,B;C,D) of 4 points on a line. [Look up the
definition.]
Show that the cross-ratio is preserved by projective transformations.

*** 10. Does there exist a projective transformation taking 2 lines l,m and 2
points P,Q not on either line into a similar configuration?
If so, is the transformation unique?

*** 11. Show that the projective place P1(Fp) contains p2 + p+ 1 points.
How many points are there on each line?

*** 12. How many points does the projective space Pn(Fp) contain?

*** 13. How many projective planes does the projective 3-space P3(Fp) con-
tain?

*** 14. What is the order of PGL(1,Fp), ie how many projective transforma-
tions of the line P1(Fp) are there?
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*** 15. What is the order of PGL(2,Fp), ie how many projective transforma-
tions of the projective plane P2(Fp) are there?

**** 16. An (abstract) finite projective plane Π is a finite set of points, together
with a set of subset of Π called lines, with the property that there is
just one line containing any 2 points, and just one point on any 2
lines.
Show that the number of points on each line is the same, that the
number of lines through each point is the same, and that these 2
numbers are equal.

**** 17. If there are q points on a line in the finite projective plane Π, how
many points are there in Π?

**** 18. Is the projective plane P2(F3) the only projective plane with 4 points
on each line?
Are any two such planes isomorphic? [Explain what you mean by an
isomorphism in this context.]

**** 19. Prove Pappus’ Theorem, that if the points {A,B,C} and {A′, B′, C ′}
are collinear, then so are the meets (AB′, BA′), (BC ′, CB′), (CA′, AC ′).

**** 20. Prove Desargue’s Theorem, that if ABC,A′B′C ′ are triangles in per-
spectivity (ie AA′, BB′, CC ′ are concurrent) then the 3 meets of cor-
responding sides AB,A′B′, etc, are collinear.
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