Resource H

The Modular Group

Recall that

$$SL(2,\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad - bc = 1 \}.$$

By analogy we set

$$SL(2,\mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}$$

Note that $\pm I \in SL(2, \mathbb{Z})$.

Definition H.1 The modular group Γ is the quotient-group

$$\Gamma = \mathrm{SL}(2, R) / \{\pm I\}.$$

Thus each element $g \in \Gamma$ corresponds to two matrices $\pm X$. The modular group Γ acts on the complex plane through the transforms

$$gz = \frac{az+b}{cz+d}.$$

(Note that the matrices $g(z) = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ define the same transform.)

Proposition H.1 If $g(z) = \frac{az+b}{cz+d}$ then

$$\Im(z) > 0 \Longrightarrow \Im(gz) > 0.$$

Proof \blacktriangleright If z = x + iy then

$$\Im(z) = y = \frac{z - \bar{z}}{2i}$$

MA342P-2016 H-1

Thus

$$\begin{split} \Im(gz) &= \frac{1}{2i} \left(\frac{az+b}{cz+d} - \frac{a\bar{z}+b}{c\bar{z}+d} \right) \\ &= \frac{1}{2i} \left(\frac{(az+b)(c\bar{z}+d) - (a\bar{z}+b)(cz+d)}{(cz+d)(c\bar{z}+d)} \right) \\ &= \frac{1}{2i} \left(\frac{(ab-cd)(z-\bar{z})}{|cz+d|^2} \right) \\ &= \frac{1}{|cz+d|^2} \, \Im(gz). \end{split}$$

It follows that Γ acts on the upper half-plane

$$\mathcal{H} = \{ z : \Im(z) > 0 \};$$

and this is how the modular group is usually seen, as the group of transforms

$$z \mapsto gz = \frac{az+b}{cz+d} : \mathcal{H} \to \mathcal{H}$$

Definition H.2 We define $s, t \in \Gamma$ as the elements corresponding to the matrices

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

In terms of transforms $\mathcal{H} \to \mathcal{H}$,

$$sz = -1/z, tz = z + 1.$$

Proposition H.2 $s^2 = 1, (st)^3 = 1.$

Proof ▶ In the first place,

$$S^2 = -I \Longrightarrow s^2 = 1.$$

Secondly,

$$ST = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$$

has characteristic equation

$$\det(\lambda I - ST) = \lambda(\lambda - 1) + 1 = \lambda^2 - \lambda + 1.$$

It follows (from the Cayley-Hamilton theorem) that ST satisfies

$$\lambda^2 - \lambda + 1 = 0 \Longrightarrow \lambda^3 = -1.$$

(Of course one can show directly that $(ST)^3 = -I$.)

Proposition H.3 Γ is generated by s, t:

$$\Gamma = \langle s, t \rangle.$$

 $Proof \triangleright$ Suppose

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Our strategy is to act on X with S, T and T^{-1} on either side so as to steadily reduce |a|, |b| and |c| until b = c = 0 and $X = \pm I$. We implement this through the following algorithm.

Step 1 If |d| < |a| then we pass to

$$SXS^{-1} = -SXS = \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}.$$

Thus we may assume that $|a| \leq |d|$.

Step 2 If a = 0 then $|bc| = 1 \Longrightarrow |b| = |c| = 1$. In this case we pass to

$$SX = \begin{pmatrix} -c & -d \\ a & b \end{pmatrix} = \pm \begin{pmatrix} 1 & -d \\ 0 & 1 \end{pmatrix} = \pm T^{-d},$$

and we are done. Otherwise we may assume that $0 < |a| \le |d|$.

Step 3 Since

$$XT^r = \begin{pmatrix} a & b + ra \\ c & d + rc \end{pmatrix}.$$

we can replace X by XT^r so that

$$|b+ra| \le |a|/2.$$

Note that this step does not affect a or c.

If now |d| < |a| we return to step 1. Otherwise we may assume that $|b| \le |a|/2, |a| \le |d|$.

Step 4 Note that, by the formula in Step 1,

$$ST^r S^{-1} = ST^r S = \begin{pmatrix} 1 & 0 \\ -r & 1 \end{pmatrix}.$$

Thus

$$ST^rSX = \begin{pmatrix} a & b \\ c - ra & d - rb \end{pmatrix},$$

and we can replace X by ST^rSX so that

$$|c - ra| \le |a|/2,$$

without affecting a or b,

If now |d| < |a| we return to step 1. Otherwise we may assume that $|b| \le |a|/2, |c| \le |a|/2.$

Step 5 Finally,

$$1 = |ad - bc| \ge |ad| - |a^2|/4 \ge |ad| - |ad|/4 \ge \frac{3}{4}|ad| \Longrightarrow |ad| \le \frac{4}{3} \Longrightarrow |ad| = 1.$$

Thus

$$|a| = |d| = 1 \Longrightarrow b = c = 0 \Longrightarrow X = \pm I.$$

◄

Exercises 8 Modular Group

In exercises 1–3 express the given transform gz as the shortest possible word in s, t and t^{-1} .

** 1. f(z) = z - 2. ** 2. $gz = \frac{1}{3-z}$. *** 3. $gz = \frac{2z-3}{5z-7}$.

*** 4. Show that each $g \in \Gamma$ is uniquely expressible in the standard form

$$g = r^{i_0} s \dots s r^{i_{n-1}} s r^{i_n},$$

where $i_j \in \{\pm 1\}$ if $1 \le j < n, i_1, i_n \in \{0, \pm 1\}$.

In exercises 5–7 express the given transform in the above standard form.

** 5. gz = z + 2.

** 6.
$$gz = \frac{1}{1-z}$$
.

** 7
$$a_{7} = \frac{3z+5}{2}$$

- ** 7. $gz = \frac{3z+5}{4z+7}$.
- *** 8. Show that there are just two transforms $g \in \Gamma$ such that g(i) = i.
- *** 9. Show that there are just three transforms $g \in \Gamma$ such that $g(\omega) = \omega$. Let $F = \{z \in \mathcal{H} : \Re z \leq 1/2, |z| \geq 1\}$, and let B be the part of the boundary of F with $\Re z > 0$.
- **** 10. Show that every $z \in \mathcal{H}$ has a transform $gz \in F$.
- **** 11. Show that every $z \in \mathcal{H}$ has a unique transform $gz \in F \setminus B$.
- *** 12. Show that there are just 3 points $z \in F$ with non-trivial stability subgroup $\{g \in \Gamma : gz = z\}$.
- *** 13. Show that $z \in \mathcal{H}$ has non-trivial stability group if and only if z is a transform of i or ω .
 - ** 14. Show that the centre of $SL(2,\mathbb{Z})$ is $\{\pm I\}$.