
Resource H

The Modular Group

Recall that

SL(2,R) = {
(
a b
c d

)
: a, b, c, d ∈ R, ad− bc = 1}.

By analogy we set

SL(2,Z) = {
(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1}.

Note that ±I ∈ SL(2,Z).

Definition H.1 The modular group Γ is the quotient-group

Γ = SL(2, R)/{±I}.

Thus each element g ∈ Γ corresponds to two matrices ±X.
The modular group Γ acts on the complex plane through the transforms

gz =
az + b

cz + d
.

(Note that the matrices g(z) = ±
(
a b
c d

)
define the same transform.)

Proposition H.1 If g(z) = az+b
cz+d

then

=(z) > 0 =⇒ =(gz) > 0.

Proof I If z = x+ iy then

=(z) = y =
z − z̄

2i
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Thus

=(gz) =
1

2i

(
az + b

cz + d
− az̄ + b

cz̄ + d

)
=

1

2i

(
(az + b)(cz̄ + d)− (az̄ + b)(cz + d)

(cz + d)(cz̄ + d)

)
=

1

2i

(
(ab− cd)(z − z̄)

|cz + d|2

)
=

1

|cz + d|2
=(gz).

J

It follows that Γ acts on the upper half-plane

H = {z : =(z) > 0};

and this is how the modular group is usually seen, as the group of transforms

z 7→ gz =
az + b

cz + d
: H → H.

Definition H.2 We define s, t ∈ Γ as the elements corresponding to the
matrices

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

In terms of transforms H → H,

sz = −1/z, tz = z + 1.

Proposition H.2 s2 = 1, (st)3 = 1.

Proof I In the first place,

S2 = −I =⇒ s2 = 1.

Secondly,

ST =

(
0 −1
1 1

)
has characteristic equation

det(λI − ST ) = λ(λ− 1) + 1 = λ2 − λ+ 1.

It follows (from the Cayley-Hamilton theorem) that ST satisfies

λ2 − λ+ 1 = 0 =⇒ λ3 = −1.

(Of course one can show directly that (ST )3 = −I.) J
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Proposition H.3 Γ is generated by s, t:

Γ = 〈s, t〉.

Proof I Suppose

X =

(
a b
c d

)
.

Our strategy is to act on X with S, T and T−1 on either side so as to
steadily reduce |a|, |b| and |c| until b = c = 0 and X = ±I. We implement
this through the following algorithm.

Step 1 If |d| < |a| then we pass to

SXS−1 = −SXS =

(
d −c
−b a

)
.

Thus we may assume that |a| ≤ |d|.

Step 2 If a = 0 then |bc| = 1 =⇒ |b| = |c| = 1. In this case we pass to

SX =

(
−c −d
a b

)
= ±

(
1 −d
0 1

)
= ±T−d,

and we are done. Otherwise we may assume that 0 < |a| ≤ |d|.

Step 3 Since

XT r =

(
a b+ ra
c d+ rc

)
.

we can replace X by XT r so that

|b+ ra| ≤ |a|/2.

Note that this step does not affect a or c.

If now |d| < |a| we return to step 1. Otherwise we may assume that
|b| ≤ |a|/2, |a| ≤ |d|.

Step 4 Note that, by the formula in Step 1,

ST rS−1 = ST rS =

(
1 0
−r 1

)
.

Thus

ST rSX =

(
a b

c− ra d− rb

)
,
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and we can replace X by ST rSX so that

|c− ra| ≤ |a|/2,

without affecting a or b,

If now |d| < |a| we return to step 1. Otherwise we may assume that
|b| ≤ |a|/2, |c| ≤ |a|/2.

Step 5 Finally,

1 = |ad−bc| ≥ |ad|−|a2|/4 ≥ |ad|−|ad|/4 ≥ 3

4
|ad| =⇒ |ad| ≤ 4

3
=⇒ |ad| = 1.

Thus
|a| = |d| = 1 =⇒ b = c = 0 =⇒ X = ±I.

J
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Exercises 8 Modular Group

In exercises 1–3 express the given transform gz as the shortest possible
word in s, t and t−1.

** 1. f(z) = z − 2.

** 2. gz = 1
3−z

.

*** 3. gz = 2z−3
5z−7

.

*** 4. Show that each g ∈ Γ is uniquely expressible in the standard form

g = ri0s . . . srin−1srin ,

where ij ∈ {±1} if 1 ≤ j < n, i1, in ∈ {0,±1}.
In exercises 5–7 express the given transform in the above standard
form.

** 5. gz = z + 2.

** 6. gz = 1
1−z

.

** 7. gz = 3z+5
4z+7

.

*** 8. Show that there are just two transforms g ∈ Γ such that g(i) = i.

*** 9. Show that there are just three transforms g ∈ Γ such that g(ω) = ω.

Let F = {z ∈ H : <z ≤ 1/2, |z| ≥ 1}, and let B be the part of the
boundary of F with <z > 0.

**** 10. Show that every z ∈ H has a transform gz ∈ F .

**** 11. Show that every z ∈ H has a unique transform gz ∈ F \B.

*** 12. Show that there are just 3 points z ∈ F with non-trivial stability
subgroup {g ∈ Γ : gz = z}.

*** 13. Show that z ∈ H has non-trivial stability group if and only if z is a
transform of i or ω.

** 14. Show that the centre of SL(2,Z) is {±I}.
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