
Resource D

Finitely-Generated Abelian
Groups

Mordell’s Theorem tells us that the rational points on an elliptic curve E(Q)
form a finitely-generated abelian group; while at a simpler level, the points
on an elliptic curve E(Fp) over a prime field form a finite abelian group.

For these reasons it is important to know the structure of abelian groups,
and more generally of finitely-generated abelian groups.

D.1 Finite Abelian Groups

Proposition D.1 Z/(m)⊕ Z/(n) = Z/(mn) if and only if gcd(m,n) = 1.

Proof I This is a re-statement of the Chinese Remainder Theorem. If m,n
are coprime, then a remainder r mod m and a remainder s mod n determin
a unique remainder mod mn.

Conversely, if m,n have a common factor d > 1 then it is readily verified
that there is no element in the sum with order mn; every element has order
dividing mn/d. J

Cyclic groups are sometimes encountered in multiplicative form Cn, and
sometimes in additive form Z/(n). We assume that results in one form can
be translated into the other. For example the Proposition above can equally
well be stated in the form

Cm × Cn = Cmn ⇐⇒ gcd(m,n) = 1.

Thus by the Proposition,

C3 × C4 = C12,
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but
C2 × C6 6= C12.

Proposition D.2 Suppose A is an abelian group. For each prime p, the
elements of order pn in A for some n ∈ N form a subgroup

Ap = {a ∈ A : pna = 0 for some n ∈ N}.

Proof I Suppose a, b ∈ Ap. Then

pma = 0, pnb = 0,

for some m,n. Hence
pm+n(a+ b) = 0,

and so a+ b ∈ Ap. J

Definition D.1 We call Ap the p-component of A.

By Lagrange’s Theorem Ap vanishes unless p is a factor of |A|.

Proposition D.3 A finite abelian group A is the direct sum of its compo-
nents Ap:

A = ⊕p divides |A|Ap.

Proof I If a ∈ A then na = 0 for some positive integer n. Let

n = pe11 · · · perr ;

and set
mi = n/epii .

Then gcd(m1, . . . ,mr) = 1, and so we can find n1, . . . , nr such that

m1n1 + · · ·+mrnr = 1.

Thus
a = a1 + · · ·+ ar,

where
ai = minia.

But
peii ai = (peii mi)nia = nnia = 0

(since na = 0). Hence
ai ∈ Api .
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Thus A is the sum of the subgroups Ap.
To see that this sum is direct, suppose

a1 + · · ·+ ar = 0,

where ai ∈ Api , with distinct primes p1, . . . , pr. Suppose

peii ai = 0.

Let
mi = pe11 · · · p

ei−1

i−1 p
ei+1

i+1 · · · perr .

Then
miaj = 0 if i 6= j.

Thus (multiplying the given relation by mi),

miai = 0.

But gcd(mi, p
ei
i ) = 1. Hence we can find m,n such that

mmi + npeii = 1.

But then
ai = m(miai) + n(peii ai) = 0.

We conclude that A is the direct sum of its p-components Ap. J

Theorem D.1 Suppose A is a finite abelian p-group (ie each element is of
order pe for some e). Then A can be expressed as a direct sum of cyclic
p-groups:

A = Z/(pe1)⊕ · · · ⊕ Z/(per).

Moreover the powers pe1 , . . . , per are uniquely determined by A.

Proof I We argue by induction on ‖A‖ = pn. We may assume therefore that
the result holds for the subgroup

pA = {pa : a ∈ A}.

For pA is stricty smaller than A, since

pA = A =⇒ pnA = A,

while we know from Lagrange’s Theorem that pnA = 0.
Suppose

pA = 〈pa1〉 ⊕ · · · ⊕ 〈par〉.
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Then the sum
〈a1〉+ · · ·+ 〈ar〉 = B,

say, is direct. For suppose

n1a1 + · · ·+ nrar = 0.

If p | n1, . . . , nr, say ni = pmi, then we can write the relation in the form

m1(pa1) + · · ·+mr(par) = 0,

whence mipai = niai = 0 for all i.
On the other hand, if p does not divide all the ni then

n1(pa1) + · · ·+ nr(par) = 0,

and so pniai = 0 for all i. But if p - ni this implies that pai = 0. (For the
order of ai is a power of p, say pe; while pe | nip implies that e ≤ 1.) But
this contradicts our choice of pai as a generator of a direct summand of pA.
Thus the subgroup B ⊂ A is expressed as a direct sum

B = 〈a1〉 ⊕ · · · ⊕ 〈ar〉.

Let
K = {a ∈ A : pa = 0}.

Then
A = B +K.

For suppose a ∈ A. Then pa ∈ pA, and so

pa = n1(pa1) + · · ·+ nr(par)

for some n1, . . . , nr ∈ Z. Thus

p(a− n1a1 − · · · − nrar) = 0,

and so
a− n1a1 − · · · − nrar = k ∈ K.

Hence
a = (n1a1 + · · ·+ nrar) + k ∈ B +K.

If B = A then all is done. If not, then K 6⊂ B, and so we can find
k1 ∈ K, k1 /∈ B. Now the sum

B1 = B + 〈k1〉
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is direct. For 〈k1〉 is a cyclic group of order p, and so has no proper subgroups.
Thus

B ∩ 〈k1〉 = {0},
and so

B1 = B ⊕ 〈k1〉
If now B1 = A we are done. If not we can repeat the construction, by

choosing k2 ∈ K, k2 /∈ B1. As before, this gives us a direct sum

B2 = B1 ⊕ 〈k2〉 = B ⊕ 〈k1〉 ⊕ 〈k2〉.

Continuing in this way, the construction must end after a finite number
of steps (since A is finite):

A = Bs = B ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉
= 〈a1〉 ⊕ · · · ⊕ 〈ar〉 ⊕ 〈k1〉 ⊕ · · · ⊕ 〈ks〉.

It remains to show that the powers pe1 , . . . , per are uniquely determined
by A. This follows easily by induction. For if A has the form given in the
theorem then

pA = Z/(pe1−1)⊕ · · · ⊕ Z/(per−1).
Thus if e > 1 then Z/(pe) occurs as often in A as Z/(pe−1) does in pA. It
only remains to deal with the factors Z/(p). But the number of these is now
determined by the order ‖A‖ of the group. J

Remark: It is important to note that if we think of A as a direct sum of cyclic
subgroups, then the orders of these subgroups are uniquely determined, by
the theorem; but the actual subgroups themselves are not in general uniquely
determined. In fact the only case in which they are uniquely determined (for
a finite p-group A) is if A is itself cyclic,

A = Z/(pe),

in which case of course there is just one summand.
To see this, it is sufficient to consider the case of 2 summands:

A = Z/(pe)⊕ Z/(pf ).

We may suppose that e ≥ f . Let a1, a2 be the generators of the 2 summands.
Then it is easy to see that we could equally well take a′1 = a1 + a2 in place
of a1:

A = 〈a1 + a2〉 ⊕ 〈a2〉.
For certainly these elements a1+a2, a2 generate the group; and the sum must
be direct, since otherwise there would not be enough terms m1a

′
1 + m2a2 to

give all the pe+f elements in A.
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D.2 Finitely-generated abelian groups

Definition D.2 The abelian group A is said to be finitely-generated if there
exist elements a1, . . . , an such that each a ∈ A is expressible in the form

a = n1a1 + · · ·+ nrar,

with ni ∈ Z.

We write A = 〈a1, . . . , an〉.

Proposition D.4 The elements of finite order in an abelian group A form
a subgroup T .

Definition D.3 We call this subgroup the torsion subgroup T of A; and we
call t ∈ T a torsion element.

Proposition D.5 The torsion subgroup T of a finitely-generated abelian
group A is finite.

Proof I We argue by induction on the minimal number n of generators of
A. Suppose A = 〈a1, . . . , an〉.

Each element t ∈ T can be written in the form

t = n1a1 + · · ·+ nrar.

If every t ∈ T has n1 = 0 then T ⊂ 〈a2, . . . , an〉, and the result follows by
induction.

Otherwise choose t1 ∈ T with smallest n1 > 0, say m1 Then the coefficient
n1 of each t ∈ T is a multiple of m1, say n1 = rm1. It follows that

t = rt1 + u,

Where u ∈ 〈a2, . . . , an〉, and again the result follows by induction. J

We say that an abelian group A is torsion-free if T = 0, ie A has no
elements of finite order except 0.

Proposition D.6 If A is an abelian group with torsion subgroup T then
A/T is torsion-free.

Proposition D.7 A torsion-free finitely-generated abelian group A is iso-
morphic to the direct sum of a number of copies of Z;

A = Zr = Z⊕ · · · ⊕ Z.
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Proof I To each abelian group A we can associate a vector space V over Q
as follows. The elements of V are the expressions λa, where λ ∈ Q, a ∈ A.
We set λa = µb in V if (dλ)a = (dµ)b in A for some non-zero integer d for
which dλ, dµ ∈ Z. (In other words, V is the tensor product A⊗Q.)

There is a natural abelian group homomorphism φ : A→ V under which
a 7→ 1 · a. It is easy to see that kerφ = T . In particular, if A is torsion-free
then we can identify A with an abelian subgroup of V :

A ⊂ V.

If now A = 〈a1, . . . , an〉 then these elements span V . Hence we can
choose a basis for V from among them. After re-ordering we may suppose
the a1, . . . , ar form a basis for V .

We derive a Z-basis b1, . . . , br for A as follows. Choose b1 to be the
smallest positive multiple of a1 in A:

b1 = λ1a1 ∈ A.

(It is easy to see that λ1 = 1/d for some d ∈ N.)
Now choose b2 to be an element of A in the vector subspace 〈a1, a2〉 with

smallest positive second coefficient

b2 = µ1a1 + λ2a2 ∈ A.

(Again, it is easy to see that λ2 = 1/m2 for some m ∈ N.)
Continuing in this way, choose bi to be an element of A in the vector

subspace 〈a1, . . . , ai〉 with smallest positive ith coefficient

bi = µ1a1 + · · ·+ µi−1ai−1 + λiai ∈ A.

(Once again, it is easy to see that λi = 1/mi for some m ∈ N.)
Finally, we choose br to be an element of A with smallest positive last

coefficient
br = µ1a1 + · · ·+ µr−1ai−1 + λrai ∈ A.

We assert that b1, . . . , br forms a Z-basis for A. For suppose a ∈ A. Let

a = ρr,1a1 + · · ·+ ρr,rar,

where ρ1, . . . , ρr ∈ Q. The last coefficient ρr,r must be an integral multiple
of λr,

ρr,r = nrλr.

For otherwise we could find a combination ma + nbr with last coefficient
positive but smaller than λr.
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But now
a− nrbr ∈ 〈a1, . . . , ar−1〉,

say
a− nrbr = ρr−1,1a1 + · · ·+ ρr−1,r−1ar−1.

By the same argument, the last coefficient ρr−1,r−1 is an integral multiple of
λr−1.

ρr−1,r−1 = nr−1λr−1,

and so
a− nrbr − nr−1br−1 ∈ 〈a1, . . . , ar−2〉.

Continuing in this fashion, we find finally that

a = nrbr + nr−1br−1 + n1b1,

with nr, . . . , n1 ∈ Z. Thus b1, . . . , br forms a Z-basis for A, and

A = Zb1 ⊕ · · · ⊕ Zbr ≡ Zr.

J

Theorem D.2 Every finitely-generated abelian group A is expessible as a
direct sum

A = T ⊕ Zr.

Proof I We know that A/T = Zn = 〈e1, . . . , en〉. For each ei choose an
element ai ∈ A which maps onto ei.

Suppose a ∈ A. Let its image in Zn be c1e1 + · · · cnen. Then

c1a1 + · · · cnan 7→ c1e1 + · · · cnen.

It follows that

a− (c1a1 + · · · cnan) 7→ 0,

ie

t = a− (c1a1 + · · · cnan) ∈ T,

and so

a = t+ c1a1 + · · · cnan,

as required. J
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Theorem D.3 Every finitely-generated abelian group A is expressible as a
direct sum of cyclic groups (including Z):

A = Z/(pe1)⊕ · · · ⊕ Z/(pes)⊕ Z⊕ · · · ⊕ Z.

Moreover the prime-powers pe11 , . . . , p
es
s and the number of copies of Z are

uniquely determined by A.

Proof I We have seen that the expression for the torsion subgroup is unique,
while r = dimV , where V is the associated vector space over Q. J

Definition D.4 The rank of the abelian group A is the number of copies of
Z.
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Exercises 3 Finitely-Generated Abelian Groups

In exercises 1–6 determine the number of abelian groups of the given
order.

* 1. 5

** 2. 6

** 3. 16

** 4. 96

** 5. 175

In exercises 6–10 determine the number of elements of the given order
in the given abelian group

** 6. order 4 in Z/(12)

** 7. order 2 in C2 × C4

** 8. order 3 in (Z/21)×

** 9. order 4 in Z/(6)⊕ Z/(8)

** 10. order 3 in (Z/21)×

** 11. Show that a finite abelian group A is cyclic if and only if each com-
ponent Ap is cyclic.

** 12. Show that every subgroup of a cyclic group is cyclic.

** 13. Show that Cn has just one subgroup of each order m | n.

** 14. Is Q finitely-generated as an abelian group?

** 15. Show that the Vier-Gruppe D2 = {1, a, b, c} can be expressed as a
product C2 × C2 in 3 ways.

In exercises 16–20 determine the abelian group on the given elliptic
curve:

*** 16. E(F3) y
2 = x3 + x+ 1

*** 17. E(F3) y
2 = x3 + x

*** 18. E(F5) y
2 = x3 + 1

*** 19. E(F5) y
2 = x3 − 1

*** 20. E(F5) y
2 = x3 + x+ 1
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