Resource E

Fermat's Last Theorem for

$$n=4$$

E.1 Pythagorean triples

The equation

$$x^2 + y^2 = z^2$$

certainly has solutions, eg (3,4,5) and (5,12,13). This does not contradict Fermat's Last Theorem, of course, since that only asserts there is no solution if n > 2.

Pythagoras already knew that this equation (with n=2) had an infinity of solutions; and Diophantus later found all the solutions, following the technique below.

In the first place, we may assume that

$$gcd(x, y, z) = 1.$$

We may also assume that x, y, z > 0. We shall use the term *Pythagorean* triple for a solution with these properties.

Note that modulo 4

$$x^2 \equiv \begin{cases} 0 \mod 4 & \text{if } x \text{ is even,} \\ 1 \mod 4 & \text{if } x \text{ is odd.} \end{cases}$$

It follows that x and y cannot both be odd; for then we would have $z^2 \equiv 2 \mod 4$, which is impossible. Thus just one of x and y is even; and so z must be odd. We can assume without loss of generality that x is even, say x = 2X. Our equation can then be written

$$4X^2 = z^2 - y^2 = (z+y)(z-y).$$

$$MA342P-03$$
 E-1

We know that $2 \mid z+y, \ 2 \mid z-y$, since y, z are both odd. On the other hand no other factor can divide z+y and z-y:

$$\gcd(z+y, z-y) = 2.$$

For

$$d \mid z + y, \ z - y \Longrightarrow d \mid 2y, \ 2z.$$

It follows that

$$z + y = 2u^2$$
, $z - y = 2v^2$, $x = 2uv$.

Thus

$$(x, y, z) = (2uv, u^2 - v^2, u^2 + v^2).$$

where gcd(u, v) = 1. Note that just one of u, v must be odd; for if both were odd, x, y, z would all be even.

Every Pythagorean triple arises in this way from a unique pair (u, v) with gcd(u, v) = 1, u > v > 0, and just one of u, v odd. The uniqueness follows from the fact that

$$(u+v)^2 = z + x$$
, $(u-v)^2 = z - x$.

For this shows that x, y, z determine u + v and u - v, and therefore u and v.

E.2 The Case n=4

The only case of his "Theorem" that Fermat actually proved, as far as we know, was the case n = 4:

$$x^4 + y^4 = z^4.$$

His proof was based on a technique which he invented: the Method of Infinite Descent. Basically, this consists in showing that from any solution of the equation in question one can construct a second, smaller, solution.

Actually, we are going to apply this to the Diophantine equation

$$x^4 + y^4 = z^2.$$

If we can show that this has no solution in non-zero integers, then the same will be true a fortiori of Fermat's equation with n = 4.

Suppose (x, y, z) is a solution of this equation. As before we may and shall suppose that gcd(x, y.z) = 1. Evidently (x^2, y^2, z) is then a Pythagorean triple, and so can be expressed in the form (swapping x, y if necessary)

$$x^2 = 2ab, \ y^2 = a^2 - b^2, \ z = a^2 + b^2,$$

$$MA342P-03$$
 E-2

where a, b are positive integers with gcd(a, b) = 1. Since x is even, $4 \mid x^2$, and therefore just one of a and b must be even.

If a were even and b were odd, then $a^2 - b^2 = 3 \mod 4$, so the second equation $y^2 = a^2 - b^2$ would be untenable. Thus b is even, and so from the first equation $x^2 = 2ab$ we can write

$$a = u^2, b = 2v^2,$$

where gcd(u, v) = 1, and u, v > 0.

The second equation now reads

$$y^2 = u^4 - 4v^4.$$

Thus

$$4v^4 + y^2 = u^4$$

and so $(2v^2, y, u^2)$ is a Pythagorean triple. It follows that we can write

$$2v^2 = 2st$$
, $y = s^2 - t^2$, $u^2 = s^2 + t^2$,

where gcd(s,t) = 1. From the first equation we can write

$$s = X^2$$
, $t = Y^2$,

where gcd(X,Y) = 1, and X,Y > 0; and so on writing Z for u the third equation reads

$$X^4 + Y^4 = Z^2,$$

which is just the equation we started from. So from any solution (x, y, z) of the equation

$$x^4 + y^4 = z^2$$

with gcd(x, y, z) = 1, x, y > 0 and x even, we obtain a second solution (X, Y, Z) with gcd(X, Y, Z) = 1, X, Y > 0 and X even, where

$$x = 2X^{2}Y, y = X^{4}(1 - 4Y^{4}), z = X^{4}(1 + 4Y^{4}).$$

The new solution is evidently smaller than the first in every sense. In particular,

$$X < x$$
;

so our infinite chain must lead to a contradiction, and Fermat's Last Theorem is proved for n=4.

Exercises 1 Discriminant

- ** 1. Show that the even number in a Pythagorea triple $\{x,y,z\}$ is divisible by 4.
- ** 2. Show that one entry in every Pythagorea triple is divisible by 3.
- ** 3. Does there exist a Pythagorea triple $\{x, y, z\}$ with hypotenuse z = 25?
- *** 4. Find all Pythagorea triples $\{x, y, z\}$ with hypotenuse z divisible by 7.
- **** 5. Show that the hypotenuse z of a Pythagorea triples $\{x, y, z\}$ is either a prime of the form 4k + 1 or a product of such primes
 - *** 6. Can you find consecutive odd numbers in two Pyhagorean triples?
 - ** 7. Which odd integers can appear as the smaller odd number in a Pythagorean triple?
 - ** 8. Find two Pythagorean triples with the same even entry.
- **** 9. Can you find positive integers a, b, c such that $a^2 + b^2$, $b^2 + c^2$, $c^2 + a^2$ are all perfect squares?
- ** 10. Can two consecutive even numbers appear in the same Pythagorean triple?
- **** 11. Show that the equation $x^4 y^4 = z^2$ has no solution in positive integers.