
Resource A

The discriminant of a
polynomial

A.1 Algebraic closure

You will be familiar with the Fundamental Theorem of Algebra: a non-
constant polynomial f(z) ∈ C[z] has a root α ∈ C. It follows that f(z)
factorizes into linear factors:

f(z) = c(z − α1) · · · (z − αn),

where c, α1, . . . , αn ∈ C.
In particular, a non-constant polynomial f(x) ∈ R[x] has a root α ∈ C.

Conversely, any α ∈ C satisfies a polynomial f(x) ∈ R[x], namely f(x) =
(x− α)(x− ᾱ). We say that C is the algebraic closure of R, and write

C = R.

In fact, every field k has an algebraic closure k̄, ie a field with the prop-
erties

1. k̄ is an extension of k, ie k ⊂ k̄,

2. every non-constant polynomial f(x) ∈ k[x] has a root in k̄,

3. every α ∈ k̄ is the root of a polynomial f(x) ∈ k[x].

Moreover, k̄ is unique (up to isomorphism).
We shall assume this result without proof. (A short but difficult proof

can be found in Wikipedia under “Algebraic closure”.)
We are also going to assume a much simpler result, on symmetric poly-

nomials. A polynomial f(x1, . . . , xn) over a field k (or more generally over a
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commutative ring A) is said to be symmetric if it is left unchanged by any
permutation of the variables, eg x + y + z, xy + xz + yz, xyz are symmetric
functions of x, y, z.

We know that if the polynomial

f(x) = xn + a1x
n−1 + · · ·+ an

has roots α1, . . . , αn, so that

f(x) = (x− α1) · · · (x− αn)

then ∑
αi = −a1

∑
i<j

αiαj = a2,
∑
i<j<k

αiαjαk = −a3,

and so on.
The result asserts that every symmetric polynomial f(α1, . . . , αn) is ex-

pressible in terms of these so-called elementary symmetric polynomials. More
precisely,

f(α1, . . . , αn) = F (a1, . . . , an),

where F (x1, . . . , xn ∈ Z[x1, . . . , xn), ie F is a polynomial with integer coeffi-
cients. It follows in particular that

f(α1, . . . , αn) ∈ k.

For example, if n = 3 then

α2
1 + α2

2 + α2
3 = a21 − 2a2.

(This is one of Newton’s identities.)

A.2 The discriminant of a polynomial

Definition A.1 A polynomial is said to be separable if it has distinct roots.

Definition A.2 The discriminant of a polynomial f(x) ∈ k[x] with roots
α1, . . . , αn is

∆(f) =
∏
i<j

(αi − αj)
2.

An alternative way of writing this is

∆(f) = (−1)n
∏
i 6=j

(αi − αj).
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Proposition A.1 The polynomial f(x) is separable if and only if ∆(f) 6= 0.

Lemma 21 If f(x) ∈ k[x] then ∆(f) ∈ k.

This follows from the fact that ∆(f) is a symmetric polynomial in the
roots of f .

There is another approach to seperability.

Proposition A.2 The polynomial f(x) is separable if and only if gcd(f(x), f ′(x)) =
1.

Here f ′(x) denotes the derivative of f(x). Recall that the gcd (great-
est common divisor) of f(x) and f ′(x) can be computed by the euclidean
algorithm.

Proposition A.3 If f(x) ∈ k[x] is a monic polynomial then

∆(f) = (−1)n
∏

1≤i≤n

f ′(αi).

Proof I On differentiating f(x) =
∏

(x− αi) and setting x = αi,

f ′(αi) =
∏
j 6=i

(αi − αj).

Hence
∆(f) =

∏
i

f ′(αi).

J

A.3 A special case

Proposition A.4 Suppose f(x) = x3 + bx+ x. Then

∆(f) = −(4b3 + 27c2)

Proof I Let the roots of f(x) be α1, α2, α1. Since f ′(x) = 3x2 + b,

∆(f) = −
∏

1≤i≤3

(3α2
i + b).

Thus if we set Ai = 3α2
i + b then

∆(f) = −A1A2A3.
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To find the cubic equation satisfied by the Ai, set y = 3x2 + b. Then

3f(x) = x(y + 2b) + 3c.

Thus
f(x) = 0 =⇒ x(y + 2b) = −3c.

Squaring,
f(x) = 0 =⇒ x2(y + 2b)2 = 9c2.

Multiplying by 3 and substituting for 3x2,

f(x) = 0 =⇒ (y − b)(y + 2b)2 = 27c2.

So A1, A2, A3 are roots of the cubic

y3 + 3by2 − (4b3 + 27c).

(We only need the constant term.) Hence

A1A2A3 = 4b3 + 27c2,

and so
∆(f) = −(4b3 + 27c2).

J

A.4 The resultant of two polynomials

The resultant, which is closely related to the discriminant, is used to deter-
mine if two polynomials have a root in common.

Definition A.3 The resultant of two monic polynomials f(x), g(x) ∈ k[x]
with roots α1, . . . , αm and β1, . . . , βn is

R(f, g) =
∏
i,j

(αi − βj).

Proposition A.5 The polynomials f(x), g(x) have a root in common if and
only if R(f, g) = 0.

Proposition A.6 If f(x), g(x) ∈ k[x] then R(f, g) ∈ k.

This follows from the fact that

R(f, g) =
∏
i

(∏
j

(αi − βj)

)
=
∏
i

g(αi).
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Proposition A.7 ∆(f) = R(f, f ′).

We saw that
∆(f) =

∏
i

f ′(αi).

Proposition A.8 The resultant of the polynomials

f(x) = xm + a1x
m−1 + · · ·+ am, g(x) = xn + b1x

n−1 + · · ·+ bn

is given by

R(f, g) = det


1 a1 a2 · · · am 0 · · · 0
0 1 a1 a2 · · · am · · · 0
. . .
1 b1 b2 · · · bn 0 · · · 0
0 1 b1 b2 · · · bn · · · 0
. . .


This is known as the Sylvester matrix of f and g. It is an (m+n)×(m+n)

matrix, with n rows filled with the coefficients of f(x), successively shifted
one column to the right, followed by m rows filled with the coefficients of
g(x), shifted similarly.

Suppose γ is a simultaneous root of f and g. If we multiply the columns of
the matrix by γm+n−1, γm+n−2, . . . , 1 and add, we see that all the sums vanish,
and so the determinant vanishes. To complete the proof that determinant is
in fact the resultant, see the Wikipedia entry for “Sylvester matrix”.
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Exercises 1 Discriminant

In exercises 1–6 determine the discriminant of the given polynomial.

* 1. x2 + bx+ c

* 2. x3 + 1

** 3. x3 + x2 + x

** 4. x3 + x2 + 1

*** 5. x3 + ax2 + bx+ c

** 6. x4 − 2

*** 7. x5 + x3 + 1

In exercises 8–10 determine for what values of c the given polynomial
is separable.

* 8. x2 + x+ c

** 9. x3 + x2 + c

** 10. xn − c

** 11. Show that if a cubic polynomial f(x) ∈ k[x] is not separable then all
its roots are in k.

* 12. Show that a quadratic polynomial f(x) ∈ R[x] has 2 distinct real roots
if and only if ∆(f) > 0.
How many real roots does it have if ∆(f) < 0

*** 13. Show that a cubic polynomial f(x) ∈ R[x] has 3 distinct real roots if
and only if ∆(f) > 0.
How many real roots does it have if ∆(f) < 0

*** 14. Determine the number of real roots of f(x) = x4 + x+ c for different
values of c.

**** 15. Express the roots of a cubic polynomial f(x) in terms of ∆(f).

*** 16. Show that R(f, g) is given by the Sylvester matrix.
Hence suggest a formula for ∆(f) when f is not necessarily monic.

In exercises 17–20 determine the resultant of the two given polynomi-
als.

* 17. x2 + 1, 2x− 1.

** 18. x3 + x2 + 1, x2 − 2.

* 19. x2 + 1, 2x− 1.

** 20. x4 + x+ 1, x2 + x+ 1.
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