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Cauchy’s Theorem and its
consequences

Recall that the function f(z) is said to be holomorphic in an open set U ⊂ C
if it is differentiable at each point z ∈ U ; while it is said to be meromorphic
in U if it is either differentiable or has a pole of finite order at each point
z ∈ U . (f(z) is said to have a pole of order n at a if

f(z) =
g(z)

(z − a)n

where g(z) is holomorphic in some open set U 3 a with g(a) 6= 0.)
We recall some fundamental results from complex analysis:

Cauchy’s Theorem If the function f(z) is holomorphic in the open set
U ⊂ C, and C ⊂ U is a Jordan curve then∫

C

f(z)dz = 0.

This is the fundamental result of complex analysis.

A Jordan curve is a continuous loop in C which does not intersect itself.
In practice we will only use the simplest of curves, eg the perimeter of
a circle or polygon, and in particular the perimeter of a fundamental
parallelogram of an elliptic function.

By convention we always take the integral in the counter-clockwise
direction around C.

In the following results, we shall always make the same assumptions,
that f(z) is holomorphic in the open set U ⊂ C, and that C ⊂ U is a
Jordan curve.

Cauchy’s Integral Formula If a is inside C then

f(a) =
1

2πi

∫
C

f(z)

z − a
dz,
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Infinite differentiability With the same assumption,

f ′(a) =
1

2πi

∫
C

f(z)

(z − a)2
dz,

and more generally,

f (n)(a) =
n!

2πi

∫
C

f(z)

(z − a)n
dz,

These results are obtained by differentiating Cauchy’s Integral Formula
with respect to a under the integral sign.

It follows that if f(z) is differentiable in an open set U ⊂ C then it is
differentiable infinitely often in U .

The Residues Theorem Suppose f(z) has a pole of order n at z = b, so
that it has an expansion

f(z) =
c−n

(z − b)n
+ · · ·+ c−1

z − b
+ c0 + · · ·

in a neighbourhood of b. Then the residue of f(z) at b is defined to be
c1.

Suppose f(z) has poles at b1, b2, . . . , br inside C, with residues c1, c2, . . . , cr.
Then

1

2πi

∫
C

f(z)dz = c1 + c2 + · · ·+ cr.

Liouville’s Theorem If f(z) is holomorphic and bounded in the whole of
C then it is constant.

This follows on taking C to be a large circle of radius R, giving

|f ′(a)| ≤ 1

2π

2πR

R2
=

c

R

if |f(z)| ≤ c. Since R is arbitrary it follows that f ′(a) = 0 for all a,
and so f(z) is constant.

Counting poles and zeros Suppose f(z) has zeros at a1, a2, . . . , ar and
poles at b1, b2, . . . , bs inside C; and suppose f(z) has no poles or ze-
ros on C. Then

1

2πi

∫
C

f ′(z)

f(z)
dz = r − s.

Here it is understood that that poles and zeros are counted with ap-
propriate multiplicity, eg a double zero is counted twice.

The result follows from the fact that the function f ′(z)/f(z) has a
simple pole with residue d at a zero of order d, and a simple pole with
residue −d at a pole of order d.
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Addition Theorem

1

2πi

∫
C

z
f ′(z)

f(z)
dz = (a1 + · · ·+ ar)− (b1 + · · ·+ bs).

For if f(z) has a zero at a of order m then zf ′(z)/f(z) has a simple
pole at a with residue ma; while if f(z) has a pole at b of order n then
zf ′(z)/f(z) has a simple pole at b with residue −nb.

Uniform convergence If each of the functions un(z) is holomorphic in the
open set U ⊂ C and

∑
un(z) is uniformly convergent in U then

f(z) =
∑

un(z)

is holomorphic in U , with

f ′(z) =
∑

u′n(z).

Notice that this is much simpler to prove than the corresponding result
for real functions, using the fact that

f(a) =
1

2πi

∫
C

f(z)

z − a
dz,

With the same assumptions, if C is a contour inside U then∫
C

f(z)dz =
∑∫

C

un(z)dz.
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Exercises 7 Discriminant

In exercises 1–5 determine the poles of the given function and the residues
at the poles.

** 1. f(z) = z2−1
z2+1

** 2. f(z) = tan z

** 3. f(z) = cot z

** 4. f(z) = 1
z4−1

** 5. f(z) = z3

2z2−i
In exercises 6–10 Determine the integral of the given function around
the unit circle.

** 6. tan z

** 7. cot z

** 8. z cot z

** 9. f(z) = 4z
2z1−1

** 10. f(z) = e2z

2z−1

*** 11. Determine
∫
C

dz
(z−z1)(z−z2 if z1, z2 lie within C.

*** 12. Show that if the function f(z) is holomorphic in the circle |z| < R
then it has a power-series expansion valid in this region.

*** 13. If the polynomial

f(z) = zn + a1z
n−1 + · · ·+ an

satisfies the inequality |f(x)| ≤ M on the unit circle |z| = 1, show
that |ai| ≤M for i = 1, . . . , n.

*** 14. Given that f(z) = z2 on the unit circle, determine its value inside the
circle.

*** 15. Show that if f(z) is homomorphic in C, and satisfies |f(z)| ≤ |zn| at
each point, then f(z) is a polynomial.
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