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1. Explain carefully what you mean by a Turing machine, and show how
such a machine defines a function

f : S→ S ∪ {⊥},

where S is the set of finite strings of 0’s and 1’s, and ⊥ denotes an
undefined result.

Construct two Turing machines implementing the two functions

[m][n] 7→ [m+ n] and [m][n] 7→ [mn],

where
[m] = 1 . . . 1︸ ︷︷ ︸

m 1’s

0.

Answer: A Turing machine M (following Chaitin’s model) is defined
by giving

• A finite set Q = {q0, . . . , qn−1} of states;

• Two maps

action : B×Q→ A, transition : B×Q→ Q,

where B = {0, 1} and

A = {”Noop”, ”Swap”, ”Left”, ”Right”, ”Read”, ”Write”}

is the set of ‘actions’.



The machine progresses in discrete steps, which we may label with t =
0, 1, . . . . At each step the machine is in a state q(t) ∈ Q.

Associated to the machine is a doubly-infinite tape T , whose configura-
tion at any moment t is defined by a map

Tt : Z→ B,

where Tt(n) = 0 for all but a finite number of n.

The machine reads from an input string

s = s0s1 . . . sm−1

and writes to an output string

s′ = s′0s
′
1 . . . s

′
n−1

At each moment the configuration of the machine M is determined by
its state q(t) the configuration Tt of its tape, the portion of the input
string s0s1 . . . si−1 which it has read in, and the output s′0s

′
1 . . . s

′
j−1

which it has written out.

The action a = a(t) taken by the machine at time t is completely de-
termined by its state q = q(t) at time t and the bit b = Tt(0) (which we
think of as the bit ‘under the scanner’ at time t), according to the map

action : (q, b) 7→ a

The action a determines the configuration Tt+1 of the tape at step t+ 1
as follows:

a = ”Noop” : Tt+1 = Tt (ie no change)

a = ”Swap” : Tt+1(0) = 1− Tt(0)

a = ”Left” : Tt+1(n) = Tt(n− 1)

a = ”Right” : Tt+1(n) = Tt(n+ 1)

a = ”Read” : Tt+1(0) = si (read input bit)

a = ”Write” : s′j = Tt(0) (write output bit)

Similarly, the state q′ = q(t + 1) of the machine at time t + 1 is com-
pletely determined by its state q = q(t) at time t and the bit b = Tt(0),
according to the map

transition : (q, b) 7→ q′



Initially, at step 0, the machine is in state q0, and the tape is blank (ie
T (n) = 0 for all n). The machine halts if and when it enters state q0
again.

If the machine reads in (completely) the input string s, writes out the
output string s′ and halts after a finite number of steps then we set

M(s) = s′.

Otherwise we set
M(s) = ⊥.

First machine. The following rules define a machine implementing the
function [m][n] 7→ [m+ n].

First we read [m], and output m 1’s.

(0, 0) 7→ (”Noop”, 1)

(0, 1) 7→ (”Read”, 2)

(1, 1) 7→ (”Read”, 2)

(0, 2) 7→ (”Noop”, 3)

(1, 2) 7→ (”Write”, 1)

Now we read [n] and output n 1’s followed by a 0.

(0, 3) 7→ (”Read”, 4)

(0, 4) 7→ (”Write”, 0)

(1, 4) 7→ (3, ”Write”)

Second machine. The following rules define a machine implementing
the function [m][n] 7→ [mn].

First we read [m], and store it on the tape.

(0, 0) 7→ (”Noop”, 1)

(0, 1) 7→ (”Read”, 2)

(1, 1) 7→ (”Read”, 2)

(0, 2) 7→ (”Left”, 3)

(1, 2) 7→ (”Right”, 1)

Now we read a bit, and if it is 0 we output 0 and halt.

(0, 3) 7→ (”Read”, 4)

(0, 4) 7→ (”Write”, 0)



If it is 1 we output m 1’s.

(1, 4) 7→ (”Noop”, 5)

(0, 5) 7→ (”Noop”, 7)

(1, 5) 7→ (”Write”, 6)

(1, 6) 7→ (”Left”, 5)

Now we return to the right-hand end of the tape

(1, 7) 7→ (”Right”, 7)

. . . and read another bit

(0, 7) 7→ (”Left”, 3)

2. Given sets X, Y , what is meant by saying that

(a) #X = #Y ,

(b) #X ≤ #Y ?

Show that

#X ≤ #Y and #Y ≤ #Y =⇒ #X = #Y.

Answer:

(i) (a) #X = #Y means ‘there exists a bijection f : X → Y ’.

(b) #X ≤ #Y means ‘there exists a injection f : X → Y ’.

(ii) By hypothesis there exist injections

f : X → Y, g : Y → X.

We have to construct a bijection

h : X → Y.

For simplicity, we assume that X and Y are disjoint (taking dis-
joint copies if necessary).

Given x0 ∈ X, we construct the sequence

y0 = f(x0) ∈ Y, x1 = g(y0) ∈ X, y1 = f(x1) ∈ Y, . . . .

There are two possibilities:



(i) The sequence continues indefinitely, giving a singly-infinite
chain in X:

x0, y0, x1, y1, x2, . . .

(ii) There is a repetition, say

xr = xs

for some r < s. Since f and g are injective, it follows that
the first repetition must be

x0 = xr,

so that we have a loop

x0, y0, x1, y1, . . . , xr, yr, x0.

In case (i), we may be able to extend the chain backwards, if x0 ∈
im(g). In that case we set

x0 = gy−1,

where y−1 is unique since g is injective.

Then we may be able to go further back:

y−1 = fx−1, x−2 = gy−1, . . . .

There are three possibilities:

(A) The process continues indefinitely, giving a doubly-infinite
chain

. . . , x−n, y−n, x−n+1, y−n+1, . . . , x0, y0, x1, . . . .

(B) The process ends at an element of X, giving a singly-infinite
chain

x−n, y−n, x−n+1, . . . .

(C) The process ends at an element of Y , giving a singly-infinite
chain

y−n, x−n+1, y−n+1, . . . .

It is easy to see that these chains and loops are disjoint, partition-
ing the union X + Y into disjoint sets. This allows us to define
the map h on each chain and loop separately. Thus in the case of



a doubly-infinite chain or a chain starting at an element x−n ∈ X,
or a loop, we set

hxr = yr;

while in the case of a chain starting at an element y−n ∈ Y we set

hxr = yr−1.

Putting these maps together gives a bijective map

h : X → Y.

3. Define the algorithmic entropy H(s) of a string s (of 0’s and 1’s).

Show that
H(s) ≤ |s|+H(|s|) +O(1).

Show conversely that there exists a constant C such that for each n ∈ N
there exists a string s of length n such that

H(s) ≥ n+H(n)− C.

Answer: Suppose T is a Turing machine. We set

HT (s) = min
p:T (p)=s

|s|;

and we set
H(s) = HU(s),

where U is a universal machine, chosen once and for all.

In other words, H(s) is the length of the shortest string p which when
input into U will output s.

Suppose we chose another universal machine V in place of U . By the
definition of a universal machine, there exist strings u, v such that

U(vs) = V (s), V (us) = U(s).

It follows that

HU(s) ≤ HV (s) + |v|, HV (s) ≤ HU(s) + |u|.

Thus
HV (s) = HU(s) +O(1).



Now suppose |s| = n. We have to show that

H(s) ≤ |s|+H(n) +O(1),

where H(n) = H(〈n〉), the binary encoding for n.

Let ν be a string of minimal length such that

U(ν) = B(n).

We construct a machine T which outputs s on input νs.

T starts by imitating U . Thus it reads in ν and computes B(n). How-
ever, instead of outputting B(n) it saves it; and instead of halting after
this computation it passes to the next stage, and which it reads in and
outputs n bits, ie the whole of s.

Thus
T (νs) = s

and so
U(〈T 〉νs) = s.

It follows that

H(s) ≤ |〈T 〉|+ |ν|+ |s|
≤ O(1) +H(n) + |s|,

as required.

To prove the converse, we use the result that

H(s, t) = H(s) +H(t|s) +O(1),

where H(s, t) is the joint entropy of s and t, and H(s|t) is the condi-
tional entropy of s given t.

We shall show that

(a) For all s ∈ S,
H(s, B(|s|)) = H(s) +O(1),

(b) For each t ∈ S we can find a string s of length n such that

H(s|t) ≥ n.



The result will follow on taking t = B(n) in (b). For then

H(s) = H(s, B(n)) +O(1)

= H(B(n), s) +O(1)

= H(n) +H(s|B(n)) +O(1)

≥ H(n) + n+O(1).

To prove (a) it is sufficient to observe that we can modify U to construct
a machine which outputs 〈s〉〈|s|〉 when U outputs s.

For (b) recall the definition of H(s|t). Let µ = µ(t) be the shortest
input for U to output t. Then

H(s|t) = min
T,p:T (µp)=s

|〈T 〉|+ |p|

= min
T,p:U(〈T 〉µp)=s

|〈T 〉|+ |p|

Consider t fixed. Then to each s ∈ S we can associate the string 〈T 〉p
of length H(s|t). It is a straightforward matter to verify that the map

s 7→ 〈T 〉p

is injective.

Now consider the 2n strings s of length n. Thus at least one s must
map to a string of length ≥ n, since there are only 2n − 1 strings of
length < n. It follows that at least one s must have

H(s|t) ≥ n,

as claimed.


