Chapter 1

The Anatomy of a Turing
Machine

E FOLLOW CHAITIN in adopting a slight variation on Turing’s original
machine.
Turing’s model of an ideal computer was remarkably concise, largely be-
cause he used a single tape for input, output and ‘scratch’ calculations.
However, Turing’s work showed—paradoxically perhaps—that almost any
model with unlimited memory would serve as well as his own; at least, so
long as computability was the only question at issue. Once one steps beyond
that—which we shall not do—into the realms of complexity or efficiency, the
equivalence of different models is by no means so clear.
For our purpose, Turing’s model is too concise, since we need to distin-
guish more clearly between input and output.
The Chaitin model that we shall follow shares the following essential
features of Turing’s machine:

1. The machine ‘moves’ in discrete steps 0,1,2,..., which we may call
moments.

2. The ‘working part’ of the machine is a doubly infinite tape, divided
into squares numbered by the integers: Each square contains one of
the bits 0,1. At any moment all but a finite number of the bits are 0.

Mathematically, the tape contents are defined by a map
t:Z—{0,1},

where
t(i) =0if |i| > N

for some N.

1-1

9 8 -7 6 5 4 3 -2 -1 0 1 2 3 4 5 6 7 8 9

Figure 1.1: Tape with numbered squares

3. At each moment the machine is in one of a finite number of states

qo0,415---54n-

State qp is both the initial and the final, or halting, state. The compu-
tation is complete if and when the machine re-enters this state.

We denote the set of states by

Q = {(JO>Q17---7Qn}~

4. Both the action that the machine takes at each moment, and the new
state that it moves into, depend entirely on 2 factors:
(a) the state ¢ of the machine;
(b) the bit ¢(0) on square 0 of the tape.

It follows that a machine T" can be described by a single map
T:0Qx{0,1} - AxQ,

where A denotes the set of possible actions.

To emphasize that at any moment the machine can only take account
of the content of square 0, we imagine a ‘scanner’ sitting on the tape,
through which we see this square.

Turning to the differences between the Chaitin and Turing models:

1. Turing assumes that the input « to the machine is written directly onto
the tape; and whatever is written on the tape if and when the machine
halts is the output 7T'(x).

In the Chaitin model, by contrast, the machine reads its input from an
input string, and writes its output to an output string.

1-3

2. Correspondingly, the possible actions differ in the 2 models. In the
Turing model there are just 4 actions:

A = {noop, swap, «—, —}.

Each of these corresponds to a map 7 — 7T from the set T of all
tapes (ie all maps Z — {0, 1}) to itself. Thus noop leaves the content
of square 0 unchanged (though of course the state may change at the
same moment), swap changes the value of ¢(0) from 0 to 1, or 1 to 0,
while <— and — correspond to the mutually inverse shifts

(«—t))=tli+1), (—t)i)=t@GE—-1),

Informally, we can think of «+— and — as causing the scanner to move
to the left or right along the tape.

In the Chaitin model we have to add 2 more possible actions:
A = {noop, swap, «—, —>,read, write}.

The action read takes the next bit b of the input string and sets t(0) =
b, while write appends ¢(0) to the output string. (Note that once the
bit b has been read, it cannot be re-read; the bit is removed from the
input string. Similarly, once write has appended a bit to the output
string, this cannot be deleted or modified. We might say that the input
string is a ‘read-only stack’, while the output string is a ‘write-only
stack’.)

To summarise, while the Turing model has in a sense no input/output, the
Chaitin model has input and output ‘ports’ through which it communicates
with the outside world.

Why do we need this added complication? We are interested in the Tur-
ing machine as a tool for converting an input string into an output string.
Unfortunately it is not clear how we translate the content of the tape into
a string, or vice versa. We could specify that the string begins in square 0,
but where does it end? How do we distiguish between 11 and 1107

We want to be able to measure the length of the input program or string
p, since we have defined the entropy of s to be the length of the shortest p for
which T'(p) = s. While we could indeed define the length of an input tape in
the Turing model to be (say) the distance between the first and last 1, this
seems somewhat artificial. It would also mean that the input and output
strings would have to end in 1’s; outputs 111 and 1110 would presumably be
indistinguishable.

1.1. FORMALITY 14

Having said all that, one must regret to some extent departing from the
standard; and it could be that the extra work involved in basing Algorithmic
Information Theory on the Turing model would be a small price to pay.

However that may be, for the future we shall use the Chaitin model
exclusively; and henceforth we shall always use the term “Turing machine”
to mean the Chaitin model of the Turing machine.

1.1 Formality

Definition 1.1. We set
B = {0,1}.

Thus B is the set of possible bits.
We may sometimes identify B with the 2-element field F5, but we leave
that for the future.

Definition 1.2. A Turing machine T is defined by giving a finite set @), and
a map
T:QxB—AxQ,

where
A = {noop, swap, «—, —>,read,write}.

1.2 The Turing machine as map

We denote the set of all finite strings by S.

Definition 1.3. Suppose T is a Turing machine. Then we write

T(p) = s,

where p, s € S, if the machine, when presented with the input string p, reads
it in completely and halts, having written out the string s. If for a given p
there is no s such that T(p) = s then we say that T(p) is undefined, and
write

T(p) =1L,

Remark. Note that T' must read to the end of the string p, and then halt.
Thus T(p) = L (ie T(p) is undefined) if the machine halts before reaching
the end of p, if it tries to read beyond the end of p, or if it never halts, eg
because it gets into a loop.

1.3. THE CHURCH-TURING THESIS 1-5

Ezample. As a very simple example, consider the 1-state machine 7' (we will
generally ignore the starting state gy when counting the number of states)
defined by the following rules:

(9,0) = (read,q)
(¢1,0) — (write,qo)
(q1,1) = (read, q)

This machine reads from the input string until it reads a 0, at which point
it outputs a 0 and halts. (Recall that g is both the initial and the final, or
halting, state; the machine halts if and when it re-enters state qo.)

Thus T'(p) is defined, with value 0, if and only if p is of the form

p=1"0.

Remark. By convention, if no rule is given for (g;, b) then we take the rule to
be (g;,b) — (noop,0) (so that the machine halts).

In the above example, no rule is given for (go, 1). However, this case can
never arise; for the tape is blank when the machine starts, and if it re-enters
state gy then it halts.

It is convenient to extend the set S of strings by setting
St=SuU{L}.

By convention we set
T(L)=1

for any Turing machine 7. As one might say, “garbage in, garbage out”.
With this convention, every Turing machine defines a map

T:St —St.

1.3 The Church-Turing Thesis

Turing asserted that any effective calculation can be implemented by a Turing
machine. (Actually, Turing spoke of the Logical Computing Machine, or
LCM, the term ‘Turing machine’ not yet having been introduced.)

About the same time — in 1936 — Church put forward a similar thesis,
couched in the rather esoteric language of the lambda calculus. The two ideas
were rapidly shown to be equivalent, and the term ‘Church-Turing thesis’ was

1.3. THE CHURCH-TURING THESIS 1-6

coined, although from our point of view it would be more accurate to call it
the Turing thesis.

The thesis is a philosophical, rather than a mathematical, proposition,
since the term ‘effective’ is not — perhaps cannot be — defined. Turing
explained on many occasions what he meant, generally taking humans as his
model, eg “A man provided with paper, pencil, and rubber, and subject to
strict discipline, is in effect a universal machine.” or “The idea behind digital
computers may be explained by saying that these machines are intended to
carry out any operations which could be done by a human computer.”

The relevance of the Church-Turing thesis to us is that it gives us confidence—
if we believe it—that any algorithmic procedure, eg the Euclidean algorithm
for computing ged(m, n), can be implemented by a Turing machine.

It also implies that a Turing machine cannot be ‘improved’ in any simple
way, eg by using 2 tapes or even 100 tapes. Any function 7" : St — S* that
can be implemented with such a machine could equally well be implemented
by a standard 1-tape Turing machine. What we shall later call the class of
computable or Turing functions appears to have a natural boundary that is
not easily breached.

	The Anatomy of a Turing Machine
	Formality
	The Turing machine as map
	The Church-Turing Thesis

