Chapter 6

Recursive sets

A set of string is recursive if it can be ‘recognised’ by a com-
puter. Recursive sets offer an alternative approach to com-
putability. The concept of recursive enumerablity is more
subtle, and links up with the Halting Problem.

6.1 Recursive sets

Definition 6.1. A set of strings S C S is said to be recursive if there exists
a Turing machine A such that

A=Y, ies

We say that A is an acceptor for S, or that A recognises S.

Note that if A is an acceptor then A((s)) must be defined for all s. Since
the set {(s) : s € S} is a mazimal prefix-free set, it follows that A(p) must
be undefined for all input strings p not of the form (s),

Proposition 6.1. 1. The empty set) and S are recursive.
2. If R, S C S are recursive then so are RUS and RN S.
3. If S is recursive then so is its complement S =S\ S.
Proof ». 1. This is trivial.

2. Suppose A, B are acceptors for S,T Then we construct a machine C'
which first emulates A, and then emulates B.

6-1

6.2. RECURSIVELY ENUMERABLE SETS 62

More precisely, given input (s), C first saves the input, and then emu-
lates A, taking (s) as input.

We know that A will end by outputting 0 or 1.

If A ends by outputting 0, then C' outputs nothing, but instead emulates
B, again with input (s). If A ends by outputting 1, then C' outputs 1
and halts.

Evidently C' accepts the union AU B.

We construct a machine which accepts the intersection AN B in exactly
the same way, except that now it halts if A outputs 0, and emulates B
if A outputs 1.

3. Suppose A accepts S. Let the machine C be identical to A, except
that C' outputs 1 when A outputs 0, and 0 when A outputs 1. Then C'
accepts the complementary set S

6.1.1 Recursive codes

We say that a code
vy: X =S

for a set X is recursive if the image im(vy) C S is recursive.

For example, the codes (n) and (s) that we have used for numbers and
strings are both recursive and prefix-free (since we want to use them as
input to Turing machines): and the same is true of our code (T') for Turing
machines, and indeed all other codes we have used.

6.2 Recursively enumerable sets

Definition 6.2. The set S C S is said to be recursively enumerable if there
exists a Turing machine T such that

s€S <= s=T((p)) for somep € S.

We will say in such a case that the machine T outputs S.
Proposition 6.2. 1. A recursive set is recursively enumerable.

2. A set S CS is recursive if and only if S and its complement S\ S are
both recursively enumerable.

6.2. RECURSIVELY ENUMERABLE SETS 6-3

Proof ». 1. Suppose S is recursive. Let A be an acceptor for S. Then a
slight modification A’ of A will output S. Thus given an input string
(s), A’ first saves (s) and then emulates A taking (p) as input. If A
concludes by outputting 1 then A’ outputs s; while if A concludes by
outputting 0 then A’ goes into an infinite loop.

2. If S is recursive then so is its complement S =S\ S, by Proposition
So if S is recursive then both S and S are recursively enumerable.

Conversely, suppose S and S are recursively enumerable. Let C, D out-
put S, S, respectively (always with coded input (p)). Then we construct
an acceptor A for S as follows.

Given an input string (p), A starts by saving (p). Then A runs through
a sequence of steps, which we will call Stage 1, Stage 2, At stage
n, A runs through all strings p of length < n, carrying out n steps
in the computation of C'({p)) and then n steps in the computation of
D({p)), saving the output string in coded form in either case. If one
or both computations end then the output is compared with (s). If
C((p)) = (s) then A outputs 1 and halts; if D((p)) = (s) then A
outputs 0 and halts.

One or other event must happen sooner or later since C' and D together
output all strings s € S.

This trick is reminiscent of the proof that N x N is enumerable, where
we arrange the pairs (m,n) in a 2-dimensional array, and then run down the
diagonals,

(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),....

So we will call it the ‘diagonal trick’.

It should not be confused with Cantor’s entirely different and much more
subtle ‘diagonal method’, used to show that #(X) < #(2%) and in the proof
of the Halting Theorem. Note that Cantor’s method is used to prove that
something is not possible, while the diagonal trick is a way of showing that
some procedure s possible.

Proposition 6.3. 1. 0,S are recursively enumerable.

2. If R, S C S are recursively enumerable then so are RUS and RN S.

Proof ». 1. This follows at once from the fact that () and S are recursive.

6.3. THE MAIN THEOREM 64

2. Suppose C, D output R,S. In each case we use the diagonal trick; at
stage n we input (p) for all p of length < n, and run C and D for n
steps, and determine for which p (if any) C' or D halts.

For RU S we simply output C((p)) or D((p)) in each such case.

For RN S, we check to see if C((p)) = D((p')) = s for any inputs p, p’,
and if there are any such we output s.

6.3 The main theorem

Theorem 6.1. There exists a set S C S which is recursively enumerable but
not recursive.

Proof ». Suppose U is a universal machine. By the Halting Theorem [5.1]
S ={p:U((p)) defined}

is not recursive.

For a halting machine in this case is precisely an acceptor for S; and we
saw that such a machine cannot exist.

It is easy to see that S is recursively enumerable, using the diagonal trick.
At stage n we run though strings p of length < n, and follow the computation
of U(< p >) for n steps, If U(< p >) completes in this time we output p.

It is clear that we will output all p € S sooner or later.

	Recursive sets
	Recursive sets
	Recursive codes

	Recursively enumerable sets
	The main theorem

