
Chapter 6

Recursive sets

A set of string is recursive if it can be ‘recognised’ by a com-
puter. Recursive sets offer an alternative approach to com-
putability. The concept of recursive enumerablity is more
subtle, and links up with the Halting Problem.

6.1 Recursive sets

Definition 6.1. A set of strings S ⊂ S is said to be recursive if there exists
a Turing machine A such that

A(〈s〉) =

{
1 if s ∈ S
0 if s /∈ S.

We say that A is an acceptor for S, or that A recognises S.
Note that if A is an acceptor then A(〈s〉) must be defined for all s. Since

the set {〈s〉 : s ∈ S} is a maximal prefix-free set, it follows that A(p) must
be undefined for all input strings p not of the form 〈s〉,

Proposition 6.1. 1. The empty set ∅ and S are recursive.

2. If R, S ⊂ S are recursive then so are R ∪ S and R ∩ S.

3. If S is recursive then so is its complement S̄ = S \ S.

Proof I. 1. This is trivial.

2. Suppose A,B are acceptors for S, T Then we construct a machine C
which first emulates A, and then emulates B.

6–1

6.2. RECURSIVELY ENUMERABLE SETS 6–2

More precisely, given input 〈s〉, C first saves the input, and then emu-
lates A, taking 〈s〉 as input.

We know that A will end by outputting 0 or 1.

IfA ends by outputting 0, then C outputs nothing, but instead emulates
B, again with input 〈s〉. If A ends by outputting 1, then C outputs 1
and halts.

Evidently C accepts the union A ∪B.

We construct a machine which accepts the intersection A∩B in exactly
the same way, except that now it halts if A outputs 0, and emulates B
if A outputs 1.

3. Suppose A accepts S. Let the machine C be identical to A, except
that C outputs 1 when A outputs 0, and 0 when A outputs 1. Then C
accepts the complementary set S̄

6.1.1 Recursive codes

We say that a code
γ : X → S

for a set X is recursive if the image im(γ) ⊂ S is recursive.
For example, the codes 〈n〉 and 〈s〉 that we have used for numbers and

strings are both recursive and prefix-free (since we want to use them as
input to Turing machines): and the same is true of our code 〈T 〉 for Turing
machines, and indeed all other codes we have used.

6.2 Recursively enumerable sets

Definition 6.2. The set S ⊂ S is said to be recursively enumerable if there
exists a Turing machine T such that

s ∈ S ⇐⇒ s = T (〈p〉) for some p ∈ S.

We will say in such a case that the machine T outputs S.

Proposition 6.2. 1. A recursive set is recursively enumerable.

2. A set S ⊂ S is recursive if and only if S and its complement S \ S are
both recursively enumerable.

6.2. RECURSIVELY ENUMERABLE SETS 6–3

Proof I. 1. Suppose S is recursive. Let A be an acceptor for S. Then a
slight modification A′ of A will output S. Thus given an input string
〈s〉, A′ first saves 〈s〉 and then emulates A taking 〈p〉 as input. If A
concludes by outputting 1 then A′ outputs s; while if A concludes by
outputting 0 then A′ goes into an infinite loop.

2. If S is recursive then so is its complement S̄ = S\S, by Proposition 6.1
So if S is recursive then both S and S̄ are recursively enumerable.

Conversely, suppose S and S̄ are recursively enumerable. Let C,D out-
put S, S̄, respectively (always with coded input 〈p〉). Then we construct
an acceptor A for S as follows.

Given an input string 〈p〉, A starts by saving 〈p〉. Then A runs through
a sequence of steps, which we will call Stage 1, Stage 2, At stage
n, A runs through all strings p of length ≤ n, carrying out n steps
in the computation of C(〈p〉) and then n steps in the computation of
D(〈p〉), saving the output string in coded form in either case. If one
or both computations end then the output is compared with 〈s〉. If
C(〈p〉) = 〈s〉 then A outputs 1 and halts; if D(〈p〉) = 〈s〉 then A
outputs 0 and halts.

One or other event must happen sooner or later since C and D together
output all strings s ∈ S.

This trick is reminiscent of the proof that N × N is enumerable, where
we arrange the pairs (m,n) in a 2-dimensional array, and then run down the
diagonals,

(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2),

So we will call it the ‘diagonal trick’.
It should not be confused with Cantor’s entirely different and much more

subtle ‘diagonal method’, used to show that #(X) < #(2X) and in the proof
of the Halting Theorem. Note that Cantor’s method is used to prove that
something is not possible, while the diagonal trick is a way of showing that
some procedure is possible.

Proposition 6.3. 1. ∅,S are recursively enumerable.

2. If R, S ⊂ S are recursively enumerable then so are R ∪ S and R ∩ S.

Proof I. 1. This follows at once from the fact that ∅ and S are recursive.

6.3. THE MAIN THEOREM 6–4

2. Suppose C,D output R, S. In each case we use the diagonal trick; at
stage n we input 〈p〉 for all p of length ≤ n, and run C and D for n
steps, and determine for which p (if any) C or D halts.

For R ∪ S we simply output C(〈p〉) or D(〈p〉) in each such case.

For R ∩ S, we check to see if C(〈p〉) = D(〈p′〉) = s for any inputs p, p′,
and if there are any such we output s.

6.3 The main theorem

Theorem 6.1. There exists a set S ⊂ S which is recursively enumerable but
not recursive.

Proof I. Suppose U is a universal machine. By the Halting Theorem 5.1,

S = {p : U(〈p〉) defined}

is not recursive.
For a halting machine in this case is precisely an acceptor for S; and we

saw that such a machine cannot exist.
It is easy to see that S is recursively enumerable, using the diagonal trick.

At stage n we run though strings p of length ≤ n, and follow the computation
of U(< p >) for n steps, If U(< p >) completes in this time we output p.

It is clear that we will output all p ∈ S sooner or later.

	Recursive sets
	Recursive sets
	Recursive codes

	Recursively enumerable sets
	The main theorem

