Chapter 6

Recursive sets

A set of string is recursive if it can be 'recognised' by a computer. Recursive sets offer an alternative approach to computability. The concept of recursive enumerablity is more subtle, and links up with the Halting Problem.

6.1 Recursive sets

Definition 6.1. A set of strings $S \subset \mathbb{S}$ is said to be recursive if there exists a Turing machine A such that

$$A(\langle s \rangle) = \begin{cases} 1 & \text{if } s \in S \\ 0 & \text{if } s \notin S. \end{cases}$$

We say that A is an *acceptor* for S, or that A recognises S.

Note that if A is an acceptor then $A(\langle s \rangle)$ must be defined for all s. Since the set $\{\langle s \rangle : s \in \mathbb{S}\}$ is a maximal prefix-free set, it follows that A(p) must be undefined for all input strings p not of the form $\langle s \rangle$,

Proposition 6.1. *1. The empty set* \emptyset *and* \mathbb{S} *are recursive.*

2. If $R, S \subset \mathbb{S}$ are recursive then so are $R \cup S$ and $R \cap S$.

3. If S is recursive then so is its complement $\overline{S} = \mathbb{S} \setminus S$.

Proof \triangleright . 1. This is trivial.

2. Suppose A, B are acceptors for S, T Then we construct a machine C which first emulates A, and then emulates B.

More precisely, given input $\langle s \rangle$, C first saves the input, and then emulates A, taking $\langle s \rangle$ as input.

We know that A will end by outputting 0 or 1.

If A ends by outputting 0, then C outputs nothing, but instead emulates B, again with input $\langle s \rangle$. If A ends by outputting 1, then C outputs 1 and halts.

Evidently C accepts the union $A \cup B$.

We construct a machine which accepts the intersection $A \cap B$ in exactly the same way, except that now it halts if A outputs 0, and emulates B if A outputs 1.

3. Suppose A accepts S. Let the machine C be identical to A, except that C outputs 1 when A outputs 0, and 0 when A outputs 1. Then C accepts the complementary set \bar{S}

6.1.1 Recursive codes

We say that a code

$$\gamma: X \to \mathbb{S}$$

for a set X is *recursive* if the image $\operatorname{im}(\gamma) \subset \mathbb{S}$ is recursive.

For example, the codes $\langle n \rangle$ and $\langle s \rangle$ that we have used for numbers and strings are both recursive and prefix-free (since we want to use them as input to Turing machines): and the same is true of our code $\langle T \rangle$ for Turing machines, and indeed all other codes we have used.

6.2 Recursively enumerable sets

Definition 6.2. The set $S \subset S$ is said to be recursively enumerable if there exists a Turing machine T such that

$$s \in S \iff s = T(\langle p \rangle)$$
 for some $p \in \mathbb{S}$.

We will say in such a case that the machine T outputs S.

Proposition 6.2. 1. A recursive set is recursively enumerable.

2. A set $S \subset S$ is recursive if and only if S and its complement $S \setminus S$ are both recursively enumerable.

- *Proof* ►. 1. Suppose S is recursive. Let A be an acceptor for S. Then a slight modification A' of A will output S. Thus given an input string $\langle s \rangle$, A' first saves $\langle s \rangle$ and then emulates A taking $\langle p \rangle$ as input. If A concludes by outputting 1 then A' outputs s; while if A concludes by outputting 0 then A' goes into an infinite loop.
 - 2. If S is recursive then so is its complement $\overline{S} = \mathbb{S} \setminus S$, by Proposition 6.1 So if S is recursive then both S and \overline{S} are recursively enumerable.

Conversely, suppose S and \overline{S} are recursively enumerable. Let C, D output S, \overline{S} , respectively (always with coded input $\langle p \rangle$). Then we construct an acceptor A for S as follows.

Given an input string $\langle p \rangle$, A starts by saving $\langle p \rangle$. Then A runs through a sequence of steps, which we will call Stage 1, Stage 2, At stage n, A runs through all strings p of length $\leq n$, carrying out n steps in the computation of $C(\langle p \rangle)$ and then n steps in the computation of $D(\langle p \rangle)$, saving the output string in coded form in either case. If one or both computations end then the output is compared with $\langle s \rangle$. If $C(\langle p \rangle) = \langle s \rangle$ then A outputs 1 and halts; if $D(\langle p \rangle) = \langle s \rangle$ then A outputs 0 and halts.

One or other event must happen sooner or later since C and D together output all strings $s \in S$.

This trick is reminiscent of the proof that $\mathbb{N} \times \mathbb{N}$ is enumerable, where we arrange the pairs (m, n) in a 2-dimensional array, and then run down the diagonals,

 $(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (2, 0), (0, 3), (1, 2), \dots$

So we will call it the 'diagonal trick'.

It should not be confused with Cantor's entirely different and much more subtle 'diagonal method', used to show that $\#(X) < \#(2^X)$ and in the proof of the Halting Theorem. Note that Cantor's method is used to prove that something is *not* possible, while the diagonal trick is a way of showing that some procedure *is* possible.

Proposition 6.3. *1.* \emptyset , \mathbb{S} are recursively enumerable.

2. If $R, S \subset S$ are recursively enumerable then so are $R \cup S$ and $R \cap S$.

Proof \triangleright . 1. This follows at once from the fact that \emptyset and \mathbb{S} are recursive.

2. Suppose C, D output R, S. In each case we use the diagonal trick; at stage n we input $\langle p \rangle$ for all p of length $\leq n$, and run C and D for n steps, and determine for which p (if any) C or D halts.

For $R \cup S$ we simply output $C(\langle p \rangle)$ or $D(\langle p \rangle)$ in each such case.

For $R \cap S$, we check to see if $C(\langle p \rangle) = D(\langle p' \rangle) = s$ for any inputs p, p', and if there are any such we output s.

6.3 The main theorem

Theorem 6.1. There exists a set $S \subset S$ which is recursively enumerable but not recursive.

Proof \blacktriangleright . Suppose U is a universal machine. By the Halting Theorem 5.1,

$$S = \{p : U(\langle p \rangle) \text{ defined}\}\$$

is not recursive.

For a halting machine in this case is precisely an acceptor for S; and we saw that such a machine cannot exist.

It is easy to see that S is recursively enumerable, using the diagonal trick. At stage n we run though strings p of length $\leq n$, and follow the computation of $U(\langle p \rangle)$ for n steps, If $U(\langle p \rangle)$ completes in this time we output p.

It is clear that we will output all $p \in S$ sooner or later.