
Chapter 2

Prefix-free codes

2.1 Domain of definition

Definition 2.1. The domain of definition of the Turing machine T is the
set

Ω(T ) = {p ∈ S : T (p) 6= ⊥}.

In other words, Ω(T ) is the set of strings p for which T (p) is defined.

Recall that T (p) may be undefined in three different ways:

Incompletion The computation may never end;

Under-run The machine may halt before reading the entire input string p;

Over-run There may be an attempt to read beyond the end of p.

We do not distinguish between these 3 modes of failure, writing

T (p) = ⊥.

in all three cases.
As we shall see, this means that T (p) can only be defined for a restricted

range of input strings p. At first sight, this seems a serious disadvantage;
one might suspect that Chaitin’s modification of the Turing machine had
affected its functionality. However, as we shall see, we can avoid the problem
entirely by encoding the input; and this even turns out to have incidental
advantages, for example extending the theory to objects other than strings.

2–1



2.2. PREFIX-FREE SETS 2–2

2.2 Prefix-free sets

Definition 2.2. Suppose s, s′ ∈ S. We say that s is a prefix of s′, and we
write s ≺ s′, if s is an initial segment of s′, ie if

s′ = b0b1 . . . bn

then
s = b0b1 . . . br

for some r ≤ n.

Evidently
s ≺ s′ =⇒ |s| ≤ |s′| .

Definition 2.3. A subset S ⊂ S is said to be prefix-free if

s ≺ s′ =⇒ s = s′

for all s, s′ ∈ S.

In other words, S is prefix-free if no string in S is a prefix of another
string in S.

Theorem 2.1. The domain of definition of a Turing machine T ,

Ω(T ) = {s ∈ S : T (s) 6= ⊥},

is prefix-free.

Proof I. Suppose s′ ≺ s, s′ 6= s. Then if T (s′) is defined, the machine must
halt after reading in s, and so it cannot read in the whole of s. Hence T (s)
is undefined.

Proposition 2.1. If S ⊂ S is prefix-free then so is every subset T ⊂ S.

Proposition 2.2. A prefix-free subset S ⊂ S is maximal (among prefix-free
subsets of S) if and only if each t ∈ S is either a prefix of some s ∈ S or else
some s ∈ S is a prefix of t.

Remark. For those of a logical turn of mind, we may observe that being
prefix-free is a property of finite character, that is, a set S is prefix-free if
and only if that is true of every finite subset F ⊂ S. It follows by Zorn’s
Lemma that each prefix-free set S is contained in a maximal prefix-free set.
However, we shall make no use of this fact.



2.3. PREFIX-FREE CODES 2–3

2.3 Prefix-free codes

Definition 2.4. A coding of a set X is an injective map

γ : X → S.

The coding γ is said to be prefix-free if its image

im γ ⊂ S

is prefix-free.

By encoding X, we can in effect take the elements x ∈ X as input for
the computation T (γx); and by choosing a prefix-free encoding we allow the
possibility that the computation may complete for all x ∈ X.

2.4 Standard encodings

It is convenient to adopt standard prefix-free encodings for some of the sets
we encounter most often, for example the set N of natural numbers, or the
set of Turing machines. In general, whenever we use the notation 〈x〉 without
further explanation it refers to the standard encoding for the set in question.

2.4.1 Strings

Definition 2.5. We encode the string

s = b1b2 · · · bn ∈ S.

as
〈s〉 = 1b11b21 · · · 1bn0.

Thus a 1 in odd position signals that there is a string-bit to follow, while
a 0 in odd position signals the end of the string.

Example. If s = 01011 then

〈s〉 = 10111011110.

If s = � (the empty string) then

〈s〉 = 0.



2.4. STANDARD ENCODINGS 2–4

Definition 2.6. We denote the length of the string s ∈ S, ie the number of
bits in s, by |s|.

Evidently
|s| = n =⇒ |〈s〉| = 2n+ 1.

Proposition 2.3. The map

s 7→ 〈s〉 : S→ S
defines a maximal prefix-free code for S.

Proof I. A string is of the form 〈s〉 if and only if

1. it is of odd length,

2. the last bit is 0, and

3. this is the only 0 in an odd position.

The fact that 〈s〉 contains just one 0 in odd position, and that at the end,
shows that the encoding is prefix-free.

To see that it is maximal, suppose x ∈ S is not of the form 〈s〉 for any
s ∈ S. We need only look at the odd bits of x. If there is no 0 in odd position
then appending 0 or 00 to x (according as x is of even or odd length) will
give a string of form 〈s〉. If there is a 0 in odd position, consider the first
such. If it occurs at the end of x then x is of form 〈s〉, while if it does not
occur at the end of x then the prefix up to this 0 is of the form 〈s〉 for some
s.

It follows that if x is not already of the form 〈s〉 then it cannot be ap-
pended to the set {〈s〉 : s ∈ S} without destroying the prefix-free property
of this set.

2.4.2 Natural numbers

Definition 2.7. Suppose n ∈ N. Then we define 〈n〉 to be the string

〈n〉 =

n 1’s︷ ︸︸ ︷
1 · · · 1 0.

Example.

〈3〉 = 1110

〈0〉 = 0.

Proposition 2.4. The map

n 7→ 〈n〉 : N→ S
defines a maximal prefix-free code for N.



2.4. STANDARD ENCODINGS 2–5

2.4.3 Turing machines

Recall that a Turing machine T is defined by a set of rules

R : (q, b) 7→ (a, q′).

We encode this rule in the string

〈R〉 = 〈q〉b〈a〉〈q′〉,

where the 6 actions are coded by 3 bits as follows:

noop 7→ 000
swap 7→ 001
←− 7→ 010
−→ 7→ 011
read 7→ 100
write 7→ 101

So for example, the rule (1, 1) 7→ (←−, 2) is coded as

1011010110.

Definition 2.8. Suppose the Turing machine T is specified by the rules
R1, . . . , Rn. Then we set

〈T 〉 = 〈n〉〈R1〉 · · · 〈Rn〉.

We do not insist that all the rules are given, adopting the convention that
if no rule is given for (q, b) then the ‘default rule’

(q, b) 7→ (noop, 0)

applies.
Also, we do not specify the order of the rules; so different codes may

define the same machine.

2.4.4 Product sets

Proposition 2.5. If S and S ′ are both prefix-free subsets of S then so is

SS ′ = {ss′ : s ∈ S, s′ ∈ S ′},

where ss′ denotes the concatenation of s and s′.



2.4. STANDARD ENCODINGS 2–6

Proof I. If s1s
′
1 ≺ s2s

′
2 then either (a) s1 ≺ s′1, or (b) s′1 ≺ s1, or (c) s1 = s′1

and either s2 ≺ s′2 or s′2 ≺ s2.

This gives a simple way of extending prefix-free codes to product-sets.
For example, the set S2 = S× S of pairs of strings can be coded by

(s1, s2) 7→ 〈s1〉〈s2〉.

Or again—an instance we shall apply later—the set S× N can be coded by

(s, n) 7→ 〈s〉〈n〉.

2.4.5 A second code for N
Definition 2.9. Suppose n ∈ N. Then we set

[n] = 〈B(n)〉,

where B(n) denotes the binary code for n.

Example. Take n = 6. Then

B(n) = 110,

and so

[6] = 1111100.

Proposition 2.6. The coding [n] is a maximal prefix-free code for N.

The conversion from one code for N to the other is clearly ‘algorithmic’.
So according to the Church-Turing thesis, there should exist Turing machines
S, T that will convert each code into the other:

S([n]) = 〈n〉, T (〈n〉) = [n].

We construct such a machine T in Appendix B. (We leave the construction
of S to the reader . . . .) As we shall see, it may be obvious but it is not simple!

Summary
We have adopted Chaitin’s model of a Turing machine. The
set Ω(T ) of input strings, or programs, for which such a ma-
chine T is defined constitutes a prefix-free subset of the set S
of all strings.


	Algorithmic Entropy
	The entropy of a string
	Entropy of a number
	Equivalent codes
	The binary code for numbers

	Joint entropy
	Conditional entropy


