Chapter 7

Kraft's Inequality and its Converse

 $K^{\rm RAFT'S\ INEQUALITY\ constrains\ entropy\ to\ increase\ at\ a\ certain\ rate.\ Its\ converse—sometimes\ known\ as\ Chaitin's\ lemma—shows\ that\ we\ can\ construct\ machines\ approaching\ arbitrarily\ close\ to\ this\ constraint.$

7.1 Kraft's inequality

Recall that, for any Turing machine T, the set of strings

$$S = \{ p \in \mathbb{S} : T(p) \text{ defined} \}$$

is prefix-free.

Theorem 7.1. (Kraft's Inequality) If $S \subset \mathbb{S}$ is prefix-free then

$$\sum_{s \in S} 2^{-|s|} \le 1.$$

Proof \blacktriangleright . To each string $s = b_1 b_2 \dots b_n$ we associate the binary number

$$B(s) = 0 \cdot b_1 b_2 \dots b_n \in [0, 1),$$

and the half-open interval

$$I(s) = [B(s), B(s) + 2^{-|s|}) \subset [0, 1).$$

Lemma 1. The real numbers B(s), $s \in \mathbb{S}$ are dense in [0, 1).

 $Proof \triangleright$. If

$$x = 0.b_1b_2\dots \in [0,1)$$

then

$$B(b_1), \ B(b_1b_2), \ B(b_1b_2b_3) \to x.$$

Recall that we write $s \prec s'$ to mean that s is a prefix of s', eg

 $01101 \prec 0110110.$

Lemma 2. For any two strings $s, s' \in \mathbb{S}$,

- $1. \ B(s') \in I(s) \Longleftrightarrow s \prec s';$
- 2. $I(s') \subset I(s) \iff s \prec s';$
- 3. I(s), I(s') are disjoint unless $s \prec s'$ or $s' \prec s$

Proof \blacktriangleright . 1. Let

$$s=b_1\ldots b_n.$$

Suppose $s \prec s'$, say

$$s' = b_1 \dots b_n b_{n+1} \dots b_{n+r}.$$

Then

$$B(s) \le B(s') = B(s) + 2^{-n} 0.b_{n+1} \dots b_{n+r} < B(s) + 2^{-n} = B(s) + 2^{-|s|}.$$

Conversely, suppose $s \not\prec s'$. Then either $s' \prec s$ (but $s' \neq s$); or else s, s' differ at some point, say

$$s = b_1 \dots b_{r-1} b_r b_{r+1} \dots b_n, \ s' = b_1 \dots b_{r-1} c_r c_{r+1} \dots c_m,$$

where $b_r \neq c_r$.

If $s' \prec s$ or $b_r = 1$, $c_r = 0$ then B(s') < B(s). If $b_r = 0$, $c_r = 1$ then

$$B(s') \ge 0.b_1 \dots b_{r-1} 1 > B(s) = 0.b_1 \dots b_{r-1} 0 b_{r+1} \dots b_n / b_{r+1} \dots b_n / b_{r+1} \dots b_n / b_n$$

Thus

$$B(s) = \frac{a}{2^n}, \ B(s') = \frac{b}{2^n},$$

with a < b. Hence

$$B(s') \ge B(s) + \frac{1}{2^n}.$$

2. Suppose $s \prec s'$. Then

$$B(s'') \in I(s') \Longrightarrow s' \prec s'' \Longrightarrow s \prec s'' \Longrightarrow B(s'') \in I(s).$$

It follows that

$$I(s') \subset I(s).$$

Conversely,

$$I(s') \subset I(s) \Longrightarrow B(s') \in I(s) \Longrightarrow s \prec s'.$$

3. If I(s), I(s') are disjoint then we can find $s'' \in S$ such that

$$B(s'') \in I(s) \cap I(s'),$$

so that

$$s \prec s'', s' \prec s''$$

which implies that

$$s \prec s' \text{ or } s' \prec s.$$

Conversely,

$$s \prec s' \Longrightarrow I(s') \subset I(s), \ s' \prec s \Longrightarrow I(s) \subset I(s');$$

and in neither case are I(s), I(s') disjoint.

It follows from the last result that if the set of strings $S\subset \mathbb{S}$ is prefix-free then the half-intervals

$$\{I(s):s\in S\}$$

are disjoint; and so, since they are all contained in [0, 1),

$$\sum_{s \in S} |I(s)| = \sum_{s \in S} 2^{-|s|} \le 1.$$

7.1.1 Consequences of Kraft's inequality

Proposition 7.1. For each Turing machine T,

$$\sum_{s \in \mathbb{S}} 2^{-H_T(s)} \le 1.$$

Proof \blacktriangleright . We know that

$$\sum_{p:T(p) \text{ is defined}} 2^{-|p|} \le 1.$$

But each s for which T(s) is defined arises from a unique minimal input

$$p = \mu_T(s);$$

while if T(s) is not defined that

$$H_T(s) = \infty \Longrightarrow 2^{-H_T(s)} = 0.$$

It follows that the entropy of strings must increase sufficiently fast to ensure that

$$\sum_{s \in \mathbb{S}} 2^{-H(s)} \le 1.$$

Thus there cannot be more than 2 strings of entropy 2, or more than 16 strings of entropy 4; if there is one string of entropy 2 there cannot be more than 2 of entropy 3; and so on.

7.2 The converse of Kraft's inequality

Theorem 7.2. Suppose $\{h_i\}$ is a set of integers such that

$$\sum 2^{-h_i} \le 1.$$

Then we can find a prefix-free set $\{p_i\} \subset \mathbb{S}$ of strings such that

$$|p_i| = h_i.$$

Moreover this can be achieved by the following strategy: The strings p_0, p_1, \ldots are chosen successively, taking p_i to be the first string (in lexicographical order) of length h_i such that the set

$$\{p_0, p_1, \ldots, p_i\}$$

is prefix-free.

Recall that the lexicographical order of S is

$$\Box < 0 < 1 < 00 < 01 < 10 < 11 < 000 < \cdots,$$

where \Box denotes the empty string.

Proof \blacktriangleright . Suppose the strings $p_0, p_1, \ldots, p_{i-1}$ have been chosen in accordance with the above specification. The remaining space (the 'gaps' in [0, 1))

$$G = [0,1) \setminus (I(p_0) \cup I(p_1) \cup \cdots \cup I(p_{i-1}))$$

is expressible as a finite union of disjoint half-open intervals I(s), say

$$C = I(s_0) \cup I(s_1) \cup \dots \cup I(s_j)$$

where

$$B(s_0) < B(s_1) < \dots < B(s_j)$$

(This expression is unique if we agree to amalgamate any adjoining 'twin' intervals of the form

$$B(b_1,\ldots,b_r,0), B(b_1,\ldots,b_r,1)$$

to form the single interval

$$B(b_1,\ldots,b_r)$$

of twice the length.)

Lemma 3. The intervals $I(s_0), \ldots, I(s_j)$ are strictly increasing in length, ie

$$|s_0| > |s_1| > \cdots > |s_j|;$$

and

 $h_i \le |s_j|,$

so that it is possible to add another string p_i of length h_i .

Proof ►. We prove the result by induction on *i*. Suppose it is true for the prefix-free set $\{p_0, \ldots, p_{i-1}\}$.

Since the intervals $I(s_k)$ are strictly increasing in size, each $I(s_k)$ is at most half as large as its successor $I(s_{k+1})$:

$$|I(s_k)| \le \frac{1}{2} |I(s_{k+1})|.$$

It follows that the total space remaining is

$$< |I(s_j)| \left(1 + \frac{1}{2} + \frac{1}{4} + \cdots\right) = 2|I(s_j)|.$$

The next interval we are to add is to have length h_i . By hypothesis

$$2^{-h_0} + \dots + 2^{h_{i-1}} + 2^{h_i} \le 1.$$

Thus

$$2^{-h_i} \leq 1 - 2^{h_0} - \dots - 2^{h_{i-1}} = |[0,1) \setminus (I(p_0) \cup I(p_1) \cup \dots \cup I(p_{i-1}))| = |I(s_0) \cup I(s_1) \cup \dots \cup I(s_j)| < 2|I(s_j)|.$$

It follows that

$$2^{-h_i} \le |I(s_j)|,$$

or

$$h_i \ge |s_j|.$$

So we can certainly fit an interval I(p) of length 2^{-h_i} into one of our 'gap' intervals $I(s_k)$.

By prescription, we must take the 'first' position available for this new interval. Let us determine where 2^{-h_i} first fits into the sequence of strictly increasing gaps $I(s_0), I(s_1), \ldots$ Suppose

$$|I(s_{k-1})| < 2^{-h_i} \le |I(s_k)|.$$

Then $I(s_k)$ is the first 'gap' into which we can fit an interval I(p) of length 2^{-h_i} .

If in fact

 $2^{-h_i} = |I(s_k)|$

then we set

$$p_i = s_k.$$

In this case, the gap is completely filled, and we continue with one fewer gap, the remaining gaps evidently satisfying the conditions of the lemma.

If however

$$2^{-h_i} < |I(s_k)|$$

then our strategy prescribes that $I(p_i)$ is to come at the 'beginning' of $I(s_k)$, ie

$$p_i = s_k \underbrace{0 \dots 0}^{e \ 0 \cdot s},$$

where

$$e = h_i - |s_k|.$$

We note that

$$I(s_k) \setminus I(p_i) = I(t_0) \cup I(t_1) \cup \cdots \cup I(t_{e-1}),$$

where

$$t_0 = s_k \underbrace{\overbrace{0...0}^{e-1} 0^{\circ}s}_{1, t_1} = s_k \underbrace{\overbrace{0...0}^{e-2} 0^{\circ}s}_{1, \dots, t_{e-2}} = s_k 01, t_{e-1} = s_k 1.$$

Thus after the addition of the new interval $I(p_k)$ the complement

$$[0,1) \setminus (I(p_0) \cup \cdots \cup I(p_i)) =$$

$$I(s_0) \cup \cdots \cup I(s_{k-1}) \cup I(t_0) \cup \cdots \cup I(t_r) \cup I(s_{k+1}) \cup \cdots \cup I(s_j)$$

retains the property described in the lemma. It therefore follows by induction that this property always holds.

It follows that the strategy can be continued indefinitely, creating a prefixfree set of strings with the required properties.

7.3 Chaitin's lemma

We would like to construct a machine T so that specified strings s_0, s_1, \ldots have specified entropies h_0, h_1, \ldots :

$$H_T(s_i) = h_i.$$

By Kraft's Inequality this is certainly not possible unless

$$\sum_{i} 2^{-h_i} \le 1.$$

But suppose that is so. The converse to Kraft's inequality encourages us to believe that we should be able to construct such a machine.

But one question remains. What exactly do we mean by saying that the entropies h_i are 'specified'? *How* are they specified?

If the machine T is to 'understand' the specification, it must be in 'machinereadable' form. In other words, we must have *another* machine M outputting the numbers h_i .

Theorem 7.3. Suppose

 $S\subset \mathbb{S}\times \mathbb{N}$

is a set of pairs (s, h_s) such that

1. The integers h_s satisfy Kraft's condition:

$$\sum_{(s,h_s)\in S} 2^{-h_s} \le 1$$

2. The set S is recursively enumerable.

Then there exists a Turing machine T such that

$$H_T(s) \le h_s$$

for all $(s, h_s) \in S$.

Proof \blacktriangleright . By definition, there exists a machine M which generates the set S, say

$$M(n) = (s_n, h_n) \in S.$$

Suppose we are given an input string p. We have to determine T(p). Our machine does this by successively building up a prefix-free set

$$P = \{p_0, p_1, p_2, \dots\},\$$

where $|p_n| = h_n$, according to the prescription above. As each p_i is created, it is compared with the given string p; and if $p_n = p$ then T outputs the string s_n and halts.

If p never occurs in the prefix-free set P then T(p) is undefined.

More fully, T functions in stages $0, 1, 2, \ldots$ At stage n, T emulating each of $M(0), M(1), \ldots, M(n)$ for n steps.

If M(r) halts after $m \leq N$ steps, with

$$M(r) = \langle s_r \rangle \langle h_r \rangle.$$

Then T adds a further string p_i with $|p_i| = h_r$ to the prefix-free set

$$P = \{p_0, p_1, \dots, p_{i-1}\}$$

which it is building up, by following the 'Kraft prescription'.

Summary We have constructed a machine T with specified entropies $H_T(s_i)$ for specified the string s_i , provided these entropies satisfy Kraft's inequality, and can be recursively generated.