
Chapter 7

Kraft’s Inequality and its
Converse

K raft’s inequality constrains entropy to increase at a
certain rate. Its converse—sometimes known as Chaitin’s

lemma—shows that we can construct machines approaching
arbitrarily close to this constraint.

7.1 Kraft’s inequality

Recall that, for any Turing machine T , the set of strings

S = {p ∈ S : T (p) defined}

is prefix-free.

Theorem 7.1. (Kraft’s Inequality) If S ⊂ S is prefix-free then∑
s∈S

2−|s| ≤ 1.

Proof I. To each string s = b1b2 . . . bn we associate the binary number

B(s) = 0 · b1b2 . . . bn ∈ [0, 1),

and the half-open interval

I(s) = [B(s), B(s) + 2−|s|) ⊂ [0, 1).

Lemma 1. The real numbers B(s), s ∈ S are dense in [0, 1).
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Proof I. If
x = 0.b1b2 · · · ∈ [0, 1)

then
B(b1), B(b1b2), B(b1b2b3)→ x.

Recall that we write s ≺ s′ to mean that s is a prefix of s′, eg

01101 ≺ 0110110.

Lemma 2. For any two strings s, s′ ∈ S,

1. B(s′) ∈ I(s)⇐⇒ s ≺ s′;

2. I(s′) ⊂ I(s)⇐⇒ s ≺ s′;

3. I(s), I(s′) are disjoint unless s ≺ s′ or s′ ≺ s

Proof I. 1. Let
s = b1 . . . bn.

Suppose s ≺ s′, say

s′ = b1 . . . bnbn+1 . . . bn+r.

Then

B(s) ≤ B(s′) = B(s) + 2−n0.bn+1 . . . bn+r < B(s) + 2−n = B(s) + 2−|s|.

Conversely, supppose s 6≺ s′. Then either s′ ≺ s (but s′ 6= s); or else
s, s′ differ at some point, say

s = b1 . . . br−1brbr+1 . . . bn, s
′ = b1 . . . br−1crcr+1 . . . cm,

where br 6= cr.

If s′ ≺ s or br = 1, cr = 0 then B(s′) < B(s).

If br = 0, cr = 1 then

B(s′) ≥ 0.b1 . . . br−11 > B(s) = 0.b1 . . . br−10br+1 . . . bn/

Thus

B(s) =
a

2n
, B(s′) =

b

2n
,

with a < b. Hence

B(s′) ≥ B(s) +
1

2n
.
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2. Suppose s ≺ s′. Then

B(s′′) ∈ I(s′) =⇒ s′ ≺ s′′ =⇒ s ≺ s′′ =⇒ B(s′′) ∈ I(s).

It follows that
I(s′) ⊂ I(s).

Conversely,

I(s′) ⊂ I(s) =⇒ B(s′) ∈ I(s) =⇒ s ≺ s′.

3. If I(s), I(s′) are disjoint then we can find s′′ ∈ S such that

B(s′′) ∈ I(s) ∩ I(s′),

so that

s ≺ s′′, s′ ≺ s′′

which implies that

s ≺ s′ or s′ ≺ s.

Conversely,

s ≺ s′ =⇒ I(s′) ⊂ I(s), s′ ≺ s =⇒ I(s) ⊂ I(s′);

and in neither case are I(s), I(s′) disjoint.

It follows from the last result that if the set of strings S ⊂ S is prefix-free
then the half-intervals

{I(s) : s ∈ S}

are disjoint; and so, since they are all contained in [0, 1),∑
s∈S

|I(s)| =
∑
s∈S

2−|s| ≤ 1.

7.1.1 Consequences of Kraft’s inequality

Proposition 7.1. For each Turing machine T ,∑
s∈S

2−HT (s) ≤ 1.
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Proof I. We know that ∑
p:T (p) is defined

2−|p| ≤ 1.

But each s for which T (s) is defined arises from a unique minimal input

p = µT (s);

while if T (s) is not defined that

HT (s) =∞ =⇒ 2−HT (s) = 0.

It follows that the entropy of strings must increase sufficiently fast to
ensure that ∑

s∈S

2−H(s) ≤ 1.

Thus there cannot be more than 2 strings of entropy 2, or more than 16
strings of entropy 4; if there is one string of entropy 2 there cannot be more
than 2 of entropy 3; and so on.

7.2 The converse of Kraft’s inequality

Theorem 7.2. Suppose {hi} is a set of integers such that∑
2−hi ≤ 1.

Then we can find a prefix-free set {pi} ⊂ S of strings such that

|pi| = hi.

Moreover this can be achieved by the following strategy: The strings p0, p1, . . .
are chosen successively, taking pi to be the first string (in lexicographical
order) of length hi such that the set

{p0, p1, . . . , pi}

is prefix-free.

Recall that the lexicographical order of S is

� < 0 < 1 < 00 < 01 < 10 < 11 < 000 < · · · ,

where � denotes the empty string.



7.2. THE CONVERSE OF KRAFT’S INEQUALITY 7–5

Proof I. Suppose the strings p0, p1, . . . , pi−1 have been chosen in accordance
with the above specification. The remaining space (the ‘gaps’ in [0, 1))

G = [0, 1) \ (I(p0) ∪ I(p1) ∪ · · · ∪ I(pi−1))

is expressible as a finite union of disjoint half-open intervals I(s), say

C = I(s0) ∪ I(s1) ∪ · · · ∪ I(sj)

where
B(s0) < B(s1) < · · · < B(sj).

(This expression is unique if we agree to amalgamate any adjoining ‘twin’
intervals of the form

B(b1, . . . , br, 0), B(b1, . . . , br, 1)

to form the single interval
B(b1, . . . , br)

of twice the length.)

Lemma 3. The intervals I(s0), . . . , I(sj) are strictly increasing in length, ie

|s0| > |s1| > · · · > |sj|;

and
hi ≤ |sj|,

so that it is possible to add another string pi of length hi.

Proof I. We prove the result by induction on i. Suppose it is true for the
prefix-free set {p0, . . . , pi−1}.

Since the intervals I(sk) are strictly increasing in size, each I(sk) is at
most half as large as its successor I(sk+1):

|I(sk)| ≤ 1

2
|I(sk+1|.

It follows that the total space remaining is

< |I(sj)|
(

1 +
1

2
+

1

4
+ · · ·

)
= 2|I(sj)|.

The next interval we are to add is to have length hi. By hypothesis

2−h0 + · · ·+ 2hi−1 + 2hi ≤ 1.
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Thus

2−hi ≤ 1− 2h0 − · · · − 2hi−1

= |[0, 1) \ (I(p0) ∪ I(p1) ∪ · · · ∪ I(pi−1))|
= |I(s0) ∪ I(s1) ∪ · · · ∪ I(sj)|
< 2|I(sj)|.

It follows that

2−hi ≤ |I(sj)|,

or

hi ≥ |sj|.

So we can certainly fit an interval I(p) of length 2−hi into one of our ‘gap’
intervals I(sk).

By prescription, we must take the ‘first’ position available for this new
interval. Let us determine where 2−hi first fits into the sequence of strictly
increasing gaps I(s0), I(s1), . . . . Suppose

|I(sk−1)| < 2−hi ≤ |I(sk)|.

Then I(sk) is the first ‘gap’ into which we can fit an interval I(p) of length
2−hi .

If in fact
2−hi = |I(sk)|

then we set
pi = sk.

In this case, the gap is completely filled, and we continue with one fewer gap,
the remaining gaps evidently satisfying the conditions of the lemma.

If however
2−hi < |I(sk)|

then our strategy prescribes that I(pi) is to come at the ‘beginning’ of I(sk),
ie

pi = sk

e 0’s︷ ︸︸ ︷
0 . . . 0,

where
e = hi − |sk|.
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We note that

I(sk) \ I(pi) = I(t0) ∪ I(t1) ∪ · · · ∪ I(te−1),

where

t0 = sk

e− 1 0’s︷ ︸︸ ︷
0 . . . 0 1, t1 = sk

e− 2 0’s︷ ︸︸ ︷
0 . . . 0 1, . . . , te−2 = sk01, te−1 = sk1.

Thus after the addition of the new interval I(pk) the complement

[0, 1) \ (I(p0) ∪ · · · ∪ I(pi)) =

I(s0) ∪ · · · ∪ I(sk−1) ∪ I(t0) ∪ · · · I(tr) ∪ I(sk+1) ∪ · · · ∪ I(sj)

retains the property described in the lemma. It therefore follows by induction
that this property always holds.

It follows that the strategy can be continued indefinitely, creating a prefix-
free set of strings with the required properties.

7.3 Chaitin’s lemma

We would like to construct a machine T so that specified strings s0, s1, . . .
have specified entropies h0, h1, . . . :

HT (si) = hi.

By Kraft’s Inequality this is certainly not possible unless∑
i

2−hi ≤ 1.

But suppose that is so. The converse to Kraft’s inequality encourages us to
believe that we should be able to construct such a machine.

But one question remains. What exactly do we mean by saying that the
entropies hi are ‘specified’? How are they specified?

If the machine T is to ‘understand’ the specification, it must be in ‘machine-
readable’ form. In other words, we must have another machine M outputting
the numbers hi.

Theorem 7.3. Suppose
S ⊂ S× N

is a set of pairs (s, hs) such that
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1. The integers hs satisfy Kraft’s condition:∑
(s,hs)∈S

2−hs ≤ 1.

2. The set S is recursively enumerable.

Then there exists a Turing machine T such that

HT (s) ≤ hs

for all (s, hs) ∈ S.

Proof I. By definition, there exists a machine M which generates the set S,
say

M(n) = (sn, hn) ∈ S.

Suppose we are given an input string p. We have to determine T (p). Our
machine does this by successively building up a prefix-free set

P = {p0, p1, p2, . . . },

where |pn| = hn, according to the prescription above. As each pi is created,
it is compared with the given string p; and if pn = p then T outputs the
string sn and halts.

If p never occurs in the prefix-free set P then T (p) is undefined.
More fully, T functions in stages 0, 1, 2, . . . . At stage n, T emulating each

of M(0),M(1), . . . ,M(n) for n steps.
If M(r) halts after m ≤ N steps, with

M(r) = 〈sr〉〈hr〉.

Then T adds a further string pi with |pi| = hr to the prefix-free set

P = {p0, p1, . . . , pi−1}

which it is building up, by following the ‘Kraft prescription’.

Summary
We have constructed a machine T with specified entropies
HT (si) for specified the string si, provided these entropies
satisfy Kraft’s inequality, and can be recursively generated.
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