
Chapter 5

The Halting Problem

in general it is impossible to determine for which input strings
p a Turing machine T will complete its computation and halt.
The proof of this is reminiscent of the ‘diagonal argument’
used in the proof of Cantor’s Theorem on cardinal numbers,
which states that the number of elements of a set X is strictly
less than the number of subsets of X.

5.1 Sometimes it is possible

It is easy to say when some Turing machines will halt. Consider for example
our adding machine

T : 〈m〉〈n〉 → 〈m + n〉.

We know that, for any Turing machine T , the input strings p for which T (p)
is defined form a prefix-free set.

But it is easy to see that the set

S = {p = 〈m〉〈n〉 : m,n ∈ N}

is not only prefix-free, but is actually a maximal prefix-free set, that is, if
any further string is added to S it will cease to be prefix-free. It follows that
for our adding machine, T (p) is defined precisely when p ∈ S.

Moreover, it is easy to construct a Turing machine H which ‘recognises’
S, ie such that

H(p) =

{
1 if p ∈ S,

0 if p /∈ S.

5–1



5.2. THE HALTING THEOREM 5–2

This argument applies to any Turing machine

T : 〈n〉 → 〈f(n)〉,

where f : N → N is a computable function.
Perhaps surprisingly, there are Turing machines to which it does not

apply.

5.2 The Halting Theorem

Proposition 5.1. There does not exist a Turing machine H such that

H(〈T 〉〈p〉) =

{
1 if T (p) is defined

0 if T (p) is undefined

for every Turing machine T and every string p

Proof I. Suppose such a Turing machine H exists. (We might call it a
‘universal halting machine’.)

Let us set p = 〈T 〉. (In other words, we are going to feed T with its own
code 〈T 〉.) Then

H(〈T 〉〈〈T 〉〉) =

{
1 if T (〈T 〉) is defined

0 if T (〈T 〉) is undefined.

Now let us modify H to construct a ‘doubling machine’ D such that

D(〈T 〉) = H(〈T 〉〈〈T 〉〉)

for any machine T .
Thus D reads the input, expecting the code 〈T 〉 for a Turing machine. It

doesn’t really matter what D does if the input is not of this form; we may
suppose that it either tries to read past the end of the input, or else goes
into an infinite loop. But if the input is of the form 〈T 〉 then D doubles
it, writing first 〈T 〉 on the tape, followed by the string code 〈〈T 〉〉. Then it
emulates H taking this as input.

Thus

D(〈T 〉) = H(〈T 〉〈〈T 〉〉) =

{
1 if T (〈T 〉) is defined,

0 if T (〈T 〉) is undefined.



5.2. THE HALTING THEOREM 5–3

Finally, we modify D (at the output stage) to construct a machine X
which outputs 0 if D outputs 0, but which goes into an infinite loop if D
outputs 1. Thus

X(s) =

{
⊥ if D(s) = 1,

0 if D(s) = 0.

(We don’t care what X does if D(s) is not 0 or 1.) Then

X(〈T 〉) =

{
⊥ if T (〈T 〉) 6= ⊥,

0 if T (〈T 〉) = ⊥.

This holds for all Turing machines T , In particular it holds for the machine
X itself:

X(〈X〉) =

{
⊥ if X(〈X〉) 6= ⊥,

0 if X(〈X〉) = ⊥.

This leads to a contradiction, whether X(〈X〉) is defined or not. We conclude
that there cannot exist a ‘halting machine’ H of this kind.

We improve the result above by showing that in general there does not
exist a halting machine for a single Turing machine.

Theorem 5.1. Suppose U is a universal machine. Then there does not exist
a Turing machine H such that

H(〈p〉) =

{
1 if U(p) is defined

0 if U(p) is undefined.

Proof I. Substituting 〈X〉p for p, we have

H(〈〈X〉p〉) =

{
1 if X(p) is defined

0 if X(p) is undefined.

Evidently we can construct a slight variant H ′ of H which starts by
decoding 〈〈X〉p〉, replacing it by 〈X〉〈p〉, and then acts like H, so that

H ′(〈X〉〈p〉) =

{
1 if X(p) is defined

0 if X(p) is undefined.

But we saw in the Proposition above that such a machine cannot exist.


	Algorithmic Entropy
	The entropy of a string
	Entropy of a number
	The Church-Turing Thesis
	The binary code for numbers

	Joint entropy
	Conditional entropy


