
Chapter 9

Equivalence of the Two
Entropies

W e show that the rival definitions of algorithmic entropy,
H(s) and h(s), are in fact equivalent.

Theorem 9.1.
h(s) = H(s) + O(1).

More precisely, there exists a contant C independent of s such that

h(s) ≤ H(s) ≤ h(s) + C

for all s ∈ S.

Proof I. As we saw in Proposition 8.1,

h(s) ≤ H(s).

We must show that there exists a constant C, dependent only on our choice
of universal machine U , such that

H(s) ≤ h(s) + C

for all strings s ∈ S.

Lemma 1. ∑
s∈S

2−hT (s) ≤ 1.
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Proof I. Each p for which T (p) is defined contributes to hT (s) for just one
s. Hence

∑
s∈S

2−hT (s) =
∑
s∈S

 ∑
p:T (p)=s

2−|s|


=

∑
p:T (p) defined

2−|s|

≤ 1,

since the set of p for which T (p) is defined is prefix-free.

Thus the numbers h(s) satisfy Kraft’s Inequality. However, we cannot
apply the converse as it stands since these numbers are not in general integral.

We therefore set
hs = [h(s)] + 1

for each string s ∈ S. (Here [x] denotes, as usual, the greatest integer ≤ x.)
Thus

h(s) < hs ≤ h(s) + 1.

Since ∑
2−hs ≤

∑
2−h(s) ≤ 1,

the integers hs, or rather the set of pairs

S = {(s, hs)} ∈ S× N,

satisfy the first criterion of Chaitin’s Lemma.
The Converse, if we could apply it, would allow us to construct a machine

M such that
HM(s) ≤ hs

for all s with hs <∞. It would follow from this that

H(s) ≤ HM(s) + |〈M〉|
≤ hs + O(1)

≤ h(s) + O(1).

Unfortunately, we have no reason to suppose that the hs are recursively
enumerable. We cannot therefore apply the Converse directly, since we have
not shown that its second criterion is fulfilled.

Fortunately, a nimble side-step steers us round this obstacle.
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Lemma 2. Suppose T is a Turing machine. Then the set

S ′ = {(s,m) ∈ S× N : hT (s) > 2−m}

is recursively enumerable.

Proof I. We construct a machine M which runs as follows.
At the nth stage, M runs through all 2n+1 − 1 strings p of length ≤ n.

For each such string p, M emulates T for n steps. If T halts within these n
steps, with s = T (p), a note is made of the pair (s, |p|).

At the end of the nth stage, the accumulated total

P′T (s) =
∑

|p|≤n:T (p)=s

2−|p|

is calculated for each string s that has appeared; and for each new integer
m = m(s) for which

P′T (s) ≥ 2−m

the pair (s,m) is output.
(Note that as more inputs are considered, P′T (s) is increasing, tending

towards PT (s). Thus m is decreasing, passing through integers ≥ hT (s).)

Lemma 3. With the notation of the last lemma,∑
s,m:(s,m)∈S′

2−m ≤ 2.

Proof I. As we saw in the proof of the last Lemma, the m = m(s) that arise
for a given s are ≥ hT (s). Hence their sum is

< hT (s)

(
1 +

1

2
+

1

22
+ · · ·

)
= 2hT (s).

Thus the sum for all s is

< 2
∑
s

hT (s) ≤ 2,

by Lemma 1.

Now we can apply the Converse to the set

S ′′ = {(s,m + 1) : (s,m) ∈ S ′} ;
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for we have shown in Lemma 3 that this set satisfies the first criterion, while
we saw in Lemma 1 that it is recursively enumerable.

Thus we can construct a machine M with the property that for each
(s,m) ∈ S we can find a program p such that

M(p) = s, |p| ≤ hs + 1.

It follows that
HM(s) ≤ hs + 1;

and so, taking T = U ,

H(s) ≤ HM(s) + |〈M〉|
≤ hs + |〈M〉|
= hs + O(1)

≤ h(s) + O(1).

Summary
We have established that H(s) and h(s) are equivalent defi-
nitions of entropy. It is thus open to us to use whichever is
more convenient for the problem in hand.
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