
Chapter 10

Conditional entropy re-visited

R ecall that in Chapter 4 we defined the conditional en-
tropy H(s | t) of one string s given another string t. We

stated, but did not prove, the fundamental identity

H(s, t) = H(t) +H(s | t).

Informally, this says that the information in t, together with
the additional information in s, is precisely the information
in both s and t. This result is the last piece of the jigsaw in
the basic theory of algorithmic entropy. The proof we give
now is somewhat convoluted, involving the equivalence of the
two entropies, as well as a further application of the converse
to Kraft’s Inequality.

10.1 Conditional Entropy

Recall the definition of H(s | t): Let τ = µ(t) be the minimal input out-
putting t from our universal machine U . Then we consider the set of pairs
(T, p) consisting of a Turing Machine T and a string p such that

T (τp) = s;

and we define H(s | t) to be the minimum of

|〈T 〉|+ |p|.

(We cannot simply take the minimum of |p| over strings p such that

p : U(τp) = s,

10–1

10.2. THE LAST PIECE OF THE JIGSAW 10–2

because U is going to halt as soon as it has read in τ . So we make an indirect
reference to the fact that

H(s) ≤ HT (s) + |〈T 〉|,

since U(〈T 〉p) = T (p).)

10.2 The last piece of the jigsaw

Theorem 10.1.

H(s, t) = H(t) +H(s | t) +O(1).

Our proof is in two parts.

1. The easy part:

H(s, t) ≤ H(t) +H(s | t) +O(1).

2. The harder part:

H(s | t) ≤ H(s, t)−H(t) + C,

where C is a constant depending only on our choice of universal machine
U .

10.3 The easy part

Proposition 10.1. There exists a Turing machine M such that

HM(s, t) ≤ H(t) +H(s | t)

for all s, t ∈ S.

Proof I. Let
τ = µ(t)

be the minimal program for t:

U(τ) = t, H(t) = |τ |.

By the definition of conditional entropy H(s | t), we can find a machine T
and a string p such that

T (τp) = s, H(s | t) = |〈T 〉|+ |p|.

10.4. THE HARD PART 10–3

It follows that
U(〈T 〉τp) = T (τp) = t.

Now we construct the machine M as follows. M starts by imitating U ,
so that if the input string is

q = 〈T 〉τp
then M will compute U(q) = t. However, it does not output t but simply
records its value for later use.

But now M goes back to the beginning of the string q (which it has wisely
stored) and skips the machine code 〈T 〉.

Now M imitates U again, but this time with input τp. Since U(τ) = s, U
will only read in the prefix τ before halting and outputting s. Our machine
M does not of course output s. Instead it outputs the coded version 〈s〉.

Finally, it goes back to the remembered string t and outputs 〈t〉 before
halting.

In summary,
M(〈T 〉τp) = 〈s〉〈t〉.

It follows that

HM(s, t) ≤ |〈T 〉|+ |τ |+ |p|
= |τ |+ (|〈T 〉|+ |p|)
= H(t) +H(s | t).

Corollary 10.1. We have

H(s, t) ≤ H(t) +H(s | t) +O(1).

Proof I. Since
H(s, t) ≤ HM(s, t) + |〈M〉|,

the Proposition implies that

H(s, t) ≤ H(t) +H(s | t) + |〈M〉|
= H(t) +H(s | t) +O(1).

10.4 The hard part

Proposition 10.2. For each string t ∈ S,∑
s∈S

2−(h(s,t)−h(t)) ≤ C,

where C is a constant depending only on our choice of universal machine U .

10.4. THE HARD PART 10–4

Proof I. Lemma 1. Given a machine T , there exists a machine M such
that ∑

s∈S

PT (s, t) ≤ PM(t)

(where PT (s, t) = PT (〈s〉〈t〉)).

Proof I. Let the machine M start by imitating T , except that instead of
outputting 〈s〉〈t〉, it skips 〈s〉 and then decodes 〈t〉 —that is, as T outputs
〈s〉〈t〉 M outputs t, and then halts.

It follows that
T (p) = 〈s〉〈t〉 =⇒M(p) = t.

Hence ⋃
s∈S

PT (s, t) =
∑
s∈S

 ∑
p:T (p)=〈s〉〈t〉

2−|p|

≤

∑
p:M(p)=t

2−|p|

= PM(t).

Lemma 2. With the same assumptions as the last Lemma,∑
s∈S

2−hT (s,t) ≤ 2−hM (t).

Proof I. This follows at once from the last Lemma, since

2−hT (s,t) = PT (s, t), 2−hM (t) = PM(t).

Lemma 3. For any Turing machine T ,

hT (s) ≤ 2|〈T 〉|h(s).

Proof I. Since
T (p) = s⇐⇒ U(〈T 〉p) = s,

it follows that

2−h(s) =
∑

q:U(q)=s

2−|q|

≥
∑

p:T (p)=s

2−|〈T 〉p|

= 2−|〈T 〉|
∑

p:T (p)=s

2−|p|

= 2−|〈T 〉| h(s).

10.4. THE HARD PART 10–5

Lemma 4. ∑
s∈S

2−h(s,t) ≤ 2−h(t)+c,

where c is a constant depending only on our choice of universal machine U .

Proof I. This follows at once on taking T = U in Lemma 2, and applying
Lemma 3 with T = M .

The result follows on taking h(t) to the other side.

Corollary 10.1. ∑
s∈S

2−(H(s,t)−H(t)) ≤ C ′,

where C ′ depends only U .

Proof I. This follows from the Proposition on applying the Equivalence The-
orem 9.1.

We can now formulate our strategy. Let us fix the string t. Suppose

τ = µ(t)

is the minimal program for t:

U(τ) = s, |τ | = H(t).

We can re-write Corollary 10.1 as∑
s∈S

2−(H(s,t)−H(t)+c) ≤ 1,

where c depends only on U . Thus the numbers

hs = H(s, t)−H(t) + c

satisfy Kraft’s inequality ∑
s∈S

2−hs ≤ 1.

If these numbers were integers, and were recursively enumerable, then we
could find a prefix-free set (depending on t)

Pt = {pst : s ∈ S}

such that
|pst| ≤ H(s, t)−H(t) + c.

10.4. THE HARD PART 10–6

Now let us prefix this set with µ(t) = τ :

µ(t)Pt = {µ(t)pst : s ∈ S}.

It is easy to see that the sets µ(t)Pt for different t are disjoint; and their
union

P =
⋃
t∈S

µ(t)Pt = {s, t ∈ S : µ(t)pst}.

is prefix-free.
Thus we may—with luck—be able to construct a machine T such that

T (µ(t)pst) = t

for each pair s, t ∈ S.
From this we would deduce that

H(s | t) ≤ |pst|+ |〈T 〉|
≤ H(s, t)−H(t) + c+ |〈T 〉|
= H(s, t)−H(t) +O(1),

as required.
Now for the gory details. Our machine T starts by imitating U . Thus if

the input string is
q = τp (τ ∈ Ω(U))

M begines by reading in τ and computing

t = U(τ).

However, instead of outputting t, T stores τ and t for further use.
We are only interested in the case where τ is the minimal program for t:

τ = µ(t), |τ | = H(t).

Of course, this is not generally true. But if it is not true then we do not
care whether T (q) is defined or not, or if it is defined what value it takes.
Therefore we assume in what follows that τ = µ(s).

By Corollary 10.1 above,∑
s∈S

2−(H(s,t)−H(t)+c) ≤ 1

Thus if we set
hs = [H(s, t)−H(t) + c+ 2]

10.4. THE HARD PART 10–7

then ∑
s∈S

2−hs ≤ 1

2
.

As in Chapter 9, we cannot be sure that the set

S ′ = {(s, hs) : s ∈ S} ⊂ S× N

is recursively enumerable. However, we can show that a slightly—but not
too much—larger set S is recursively enumerable. (This is the reason for
introducing the factor 1

2
above—it allows for the difference between S and

S ′.)

Lemma 5. Let

S ′ = {(s, hs) : s ∈ S}, S ′′ = {(s, n) : n ≥ hs}.

There exists a recursively generated set S ⊂ S× N such that

S ′ ⊂ S ⊂ S ′′.

Proof I. We construct an auxiliary machine M which recursively generates
the set

Ω(U) = {U(p) : p ∈ S}.
As each U(p) is generated, M determines if it is of the form 〈s〉〈t〉 (where t
is the string U(τ)). If it is then M checks if the pair (s, n), where

n = |p| − |τ |+ c+ 1

has already been output; if not, it outputs 〈s〉〈n〉.
Since

|p| ≥ H(s, t)

by definition, while by hyothesis

|τ | = H(t),

it follows that
n ≥ H(s, t)−H(t) + c+ 1 = hs,

and so (s, n) ⊂ S ′′. Hence
S ⊂ S ′′.

On the other hand, with the particular input p = µ(s, t),

|p| = H(s, t)

and so n = hs. Thus (s, ht) ∈ S. and so

S ′ ⊂ S.

10.4. THE HARD PART 10–8

But now ∑
(t,n)∈S

2−n ≤ 1,

since each t contributes at most

2−ht + 2−ht−1 + 2−ht−2 + · · · = 2 · 2−ht .

We can therefore follow Kraft’s prescription for a prefix-free set. As each
pair (s, n) is generated, T determines a string psn such that

|psn| ≤ 2−n,

in such a way that the set

P = {psn : (s, n) ∈ S}

is prefix-free.
As each string psn is generated, T checks the input string q to see if

q = τpsn.

If this is true then the computation is complete: T outputs s and halts:

T (τptn) = s.

One small point: in comparing τpsn with the input string q, T might well
go past the end of q, so that T (q) is undefined. However, in that case q is
certainly not of the form τps′n′ , since this would imply that

τps′n′ ⊂ τpst,

contradicting the ‘prefix-freedom’ of P .
To recap, we have constructed a machine T such that for each pair s, t ∈ S

we can find a string pst with

T (µ(t)pst) = s, |pst| ≤ H(s, t)−H(t) + c.

But now, from the definition of the conditional entropy H(s | t),

H(s | t) ≤ |pst|+ |〈T 〉|
≤ H(s, t)−H(t) + c+ |〈T 〉|
= H(s, t)−H(t) +O(1).

Summary
With the proof that

H(s, t) = H(t) +H(s | t) +O(1)

the basic theory of algorithmic entropy is complete.

	Conditional entropy re-visited
	Conditional Entropy
	The last piece of the jigsaw
	The easy part
	The hard part

