Appendix A

Cardinality

Cardinality — that is, Cantor’s theory of infinite cardinal
numbers — does not play a direct role in algorithmic informa-
tion theory, or more generally in the study of computability,
since all the sets that arise there are enumerable. However,
the proof of Cantor’s Theorem below, using Cantor’s ‘diago-
nal method’, is the predecessor, or model, for our proof of the
Halting Theorem and other results in Algorithmic Informa-
tion Theory. The idea also lies behind Godel’s Unprovability
Theorem, that in any non-trivial axiomatic system there are
propositions that can neither be proved nor disproved.

A.1 Cardinality

Definition A.1. Two sets X and Y are said to have the same cardinality,
and we write

#(X) =#(Y),
if there exists a bijection f: X — Y.

When we use the ‘=" sign for a relation in this way we should verify that
the relation is reflexive, symmetric and transitive. In this case that is trivial.

Proposition A.1. 1. #(X) = #(X);
2. #(X) = #(Y) = #(Y) = #(X);
5. #(X) = #(Y) & #(Y) = #(2) = #(X) = #(2).

1-1



A.2. THE SCHRODER-BERNSTEIN THEOREM 1-2

By convention, we write

Definition A.2. We say that the cardinality of X is less than or equal to
the cardinality of Y, and we write

#(X) < #(Y),

if there exists a injection f: X — Y.
We say that the cardinality of X is (strictly) less than the cardinality of
Y, and we write

#(X) < #(Y),
if #(X) < #(Y) and #(X) # #(Y).
Proposition A.2. 1. #(X) < #(X);
2. #(X) < #(Y) & #(Y) < #(2) = #(X) < #(2).

Again, these follows at once from the definition of injectivity.

A.1.1 Cardinal arithmetic

Addition and multiplication of cardinal numbers is defined by

HX)+#Y) = #(X +Y),  #(X) x #(V) = #(X xY),

where X +Y is the disjoint union of X and Y (ie if X and Y are not disjoint
we take copies that are).

However, these operations are not very useful; for if one (or both) of Ny, Ry
are infinite then

Nl + NQ = NlNQ = maX(Nl,Nl).

The power operation is more useful, as we shall see. Recall that 2%
denotes the set of subsets of X. We set

2#(X) = 4(2%).

A.2 The Schroder-Bernstein Theorem

Theorem A.l.
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Proof ». By definition there exist injective maps
f:X—=>Y g:Y > X
We have to construct a bijection
h: X —=Y.

To simplify the discussion, we assume that X and Y are disjoint (taking
disjoint copies if necessary).
Given xg € X, we construct the sequence

w=froeY, xi=gpe X, mn=[friey,....
There are two possibilities:
(i) The sequence continues indefinitely, giving a singly-infinite chain in X:
2o, Yo, L1, Y1, L2, - - -
(ii) There is a repetition, say
Ty = Ty

for some r < s. Since f and g are injective, it follows that the first
repetition must be
o = Tp,

so that we have a loop
Zo, Yo, L1, Y15+ - -5 Ty Yry Lo-

In case (i), we may be able to extend the chain backwards, if z € im(g).
In that case we set

o = gYy-1,

where y_; is unique since g is injective.
Then we may be able to go further back:

Y1=[fr 1, T2=9gy-1, ...
There are three possibilities:

(A) The process continues indefinitely, giving a doubly-infinite chain

ey Ty Y=y Tept 1, Y—n415 - - -, L0, Yo, L1y v v - -
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(B) The process ends at an element of X, giving a singly-infinite chain
Ty Yy Tty e e -
(C) The process ends at an element of Y, giving a singly-infinite chain
Yorns T o1y Yty - - -

It is easy to see that these chains and loops are disjoint, partitioning the
union X + Y into disjoint sets. This allows us to define the map h on each
chain and loop separately. Thus in the case of a doubly-infinite chain or a
chain starting at an element x_, € X, or a loop, we set

hx, = y,;
while in the case of a chain starting at an element y_,, € Y we set
hz, = yr_1.
Putting these maps together gives a bijective map

h: X —=Y.

A.3 Cantor’s Theorem

Theorem A.2. The number of elements of a set is strictly less than the
number of subsets of the set:

#(X) < #(27).

Proof ». We have to show that #(X) < #(2%) but #(X) # #(2%).
There is an obvious injection X — 2%, namely

Hence
#(X) < #(27).
Suppose there is a surjection

f:X —=2X

Let
S={reX:z¢ f(x)}.
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Since f is surjective, there exists an element s € X such that

S = f(s).

We ask the question: Does the element s belong to the subset S, or not?
If s € S, then from the definition of .S,

s & f(s) =S5
On the other hand, if s ¢ S, then again from the definition of S.
seSs.

Either way, we encounter a contradiction. Hence our hypothesis is unten-
able: there is no surjection, and so no isomorphism, f : X — 2%, ie

#(X) # #(27).

A.4 Comparability
Our aim in this Section is to prove any 2 sets X, Y are comparable, ie
cither #(X) < #(Y) or #(Y) < #(X).

To this end we introduce the notion of well-ordering.
Recall that a partial order on a set X is a relation < such that

1. o <z for all x;

2. e <y &y<zr=ux<z

.r<y&y<r=uz=y.

A partial order is said to be a total order if in addition, for all z,y € X,
4. either z < yory < z.

A total order is said to be a well-ordering if

5. every non-empty subset S C X has a least element p(S) € S.

Ezxamples:

1. The natural numbers N are well-ordered.
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2. The integers Z are not well-ordered, since Z itself does not have a least
element.

3. The set of positive reals Rt = {z € R : # > 0} is not well-ordered,
since the set S = {z > 0} does not have a least element in S.

4. The set N x N with the lexicographic ordering
(m,n) < (m',n)itm<m orm=m'&n<n

is well-ordered. To find the least element (m,n) in a subset S C N x N
we first find the least m occuring in S; and then among the pairs
(m,n) € S we find the least n.

5. The disjoint sum N + N, with the ordering under which every element
of the first copy of N is less than every element of the second copy of
N, is well-ordered.

It follows at once from the definition that every subset S C X of a well-
ordered set is well-ordered.
A well-ordered set X has a first (least) element

xo = pu(X).
Unless this is the only element, X has a second (next least) element
z1 = p(X N\ {zo}).
Simitarly, unless these are the only elements, X has a third element
x2 = (X \ {zo, 21}),

and so on. Moreover after all these elements xg, 21, xs,... (assuming they
have not exhausted X) there is a next element

zy, = (X \ {zo, 1, 22,...}).
Then comes the element
Tr1 = (X \{zo, x1, T2, ..., 2u}),
and after that elements z, 9, 213, . ...

Proposition A.3. There is at most one order-preserving isomorphism be-
tween 2 well-ordered sets.
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Proof ». Suppose
frg: X =Y

are 2 isomorphisms between the well-ordered sets X,Y. Let

z=p({reX: fo#gzx}).

In other words, z is the first point at which the maps f and g diverge.
We may assume without loss of generality that

fz<gz.

Since ¢ is an isomorphism,
fz=gt

for some element ¢ € X. But now, since g is order-preserving,
gt<gr=—=t<z=gt=ft—= fz2=ft—= 2=t = gz = gt = [y,

contrary to hypothesis. We conclude that f = g, ie f(x) = g(x) for all
reX.

Although we shall make no use of this, we associate an ordinal number
(or just ordinal) to each well-ordered set. By the last Proposition, two well-
ordered sets have the same ordinal number if and only if they are order-
isomorphic.

A subset I C X in a partially-ordered set X is called an initial segment
if

rel&y<zr=yel

It is easy to see that the set
I(z)={ye X :y <z}

(where z < y means x < y but x # y) is an initial segment in X for each
reX.

In a well-ordered set every initial subset I C X, except X itself, is of this
form; for it is easily seen that

where
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If an element z of a well-ordered set X is not the greatest element of X
then it has an immediate successor z’, namely

' =p({y € X1y >a}).

But not every element x € X (apart from the minimal element z() need be a
successor element. We call an element x # x with no immediate predecessor
a limit element.

Lemma 6. If x is a limit element then
I(z) = Uy I (y).
Proof ». Certainly
J = Uy<xl(y)

is an initial segment. Suppose
J =1(2),

where z < x.
If z < x then  must be the immediate successor to z. For suppose
z <t <z Then
zel(t) CcJ=1(z),

contrary to the definition of the initial segment (z).

Lemma 7. Suppose X,Y are well-ordered sets. Then X is order-isomorphic
to at most one initial segment I of Y.

Proof ». If X is isomorphic to two different initial segments I, J C Y then
there are two different order-preserving injective maps

f,g: X =Y.
Suppose these maps diverge at z € X:
z=p({r e X : fo # gr}).
We may assume without loss of generality that
fz<gz.
But then fz € J =1im(g), and so
fz=gt
for some ¢ € X. Thus
gt<gr=—=tl<z= ft=gt=fz2=—=1t=2= fz=gt =gz,

contrary to the definition of z.



A.4. COMPARABILITY 1-9

Corollary A.1. If there is such an isomorphism f: X — I CY then it is
unique.

This follows at once from the Proposition above.

Proposition A.4. Suppose X,Y are well-ordered sets. Then either there
exists an order-preserving injection

f: X—=Y,
or there exists an order-preserving injection
f:Yy—X.
Proof ». Suppose there is an order-preserving injection
fo:I(x) = J

onto an initial segment J of Y for every element x € X. If J =Y for some
x then we are done. Otherwise

J =1(y),

where (from the last Lemma) y is completely determined by z, say
y=[f(z).

Then it follows easily that
f: X—=Y

is an order-preserving injection.

Suppose there is no such map f, for some x € X. Let z € X be the
smallest such element. If u < v < z then the corollary above shows that f,
is the restriction of f, to I(u). It follows that the maps f, for u < z ‘fit
together’ to give an order-preserving injection

f:I(z) =Y.

More precisely, if + < z then (from the definition of z) there is an order-
preserving isomorphism
fo: 1(x) = I(y),
where y € Y is well-defined. We set fr = y to define an order-preserving
injection
f:l(z) =Y

onto an initial segment of Y, contrary to the definition of z.
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If X,Y are two well-ordered sets, we say that the ordinal of X is < the
ordinal of Y if there exists an order-preserving injection f : X — Y. Ordinals
are even further from our main theme than cardinals; but nevertheless, every
young mathematician should be at least vaguely familiary with them.

We denote the ordinal of N with the usual ordering (which we have ob-
served is a well-ordering) by w:

w=1{0,1,2,...}.

If X,Y are well-ordered sets then so is the disjoint union X + Y, taking
the elements of X before those of Y. This allows us to add ordinals. For
example

w+1=140,1,2,... w}

where we have added another element after the natural numbers. It is easy
to see that
w+l#w:
the two ordered sets are not order-isomorphic, although both are enumerable.
So different ordinals may correspond to the same cardinal. Of course this is
not true for finite numbers; there is a one-one correspondence between finite
cardinals and finite ordinals.
Note that addition of ordinals is not commutative, eg

14+w=uw,
since adding an extra element at the beginning of N does not alter its ordi-

nality.

A.4.1 The Well Ordering Theorem

The Aziom of Choice states that for every set X we can find a map
c:2¥ 5 X
such that
c(S)es

for every non-empty subset S C X.
We call such a map ¢ a choice function for X.
The Well Ordering Theorem states that every set X can be well-ordered.

Proposition A.5. The Aziom of Choice and the Well Ordering Theorem
are equivalent.
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Proof ». If X is a well-ordered set then there is an obvious choice function,
namely

The converse is more difficult.
Suppose c is a choice function for X. Let us say that a well-ordering of a
subset S C X has property P if

W(S\I) = o(X \ 1)

for every initial segment I C S (except S itself).

We note that such a subset S must start with the elements xq, 1, z2, ..., Ty, . ..

unless S is exhausted earlier.

Lemma 8. 77 A subset S C X has at most one well-ordering with property

P.

Proof ». Suppose there are two such well-orderings on S. Let us denote
them by < and C, respectively. If z € S let us write

I(7) = Ic(x)

to mean that not only are these initial subsets the same but they also carry
the same orderings.
If this is true of every x € S then the two orderings are the same, since

u<v=u€l (v)=1-(v) = uCw.

If however this is not true of all x, let z be the least such according to the
first ordering:

z=pc({reX:I<(z)#I-(x)}).
If u,v € I-(z) then

u<v=u€l (v)=1-(v) = uCw.
It follows that I_(z) is also an initial segment in the second ordering, say
Io(z) = Ic(t).
Hence
2= pe(X\1<(2)) = (X \ 1(2)) = (X \ Lc(2)) = pe (X \ L () = 2.
Thus



A.4. COMPARABILITY 1-12

Since, as we saw, the two orderings coincide, it follows that

I(2) = I(2),

contrary to hypothesis. So there is no such z, and therefore the two orderings
on S coincide.

Lemma 9. Suppose the subsets S, T C X both carry well-orderings with
property P. Then
either S C T orT C S.

Moreover, in the first case S is an initial segment of T', and in the second
case T is an initial segment of S.

Proof ». As before, we denote the well-orderings on S and 7" by < and C,
respectively.
Consider the elements € S such that the initial segment I = I(z) in
S is also an initial segment in 7. By the last Lemma, the two orderings on
I coincide.
If
I (x)=T

for some x we are done: T is an initial segment of S. Otherwise
I'=1I(x) = Ic(x),

with
r=c(X\I).

Suppose this is true for all z € S.
If S has a largest element s then

S=1(s)U{s}=1-(s)U{s}.
Thus S C T, and either S =T,
S — Ic(sl),

where s is the successor to s in T'. In either case S is an initial segment of
T.
If S does not have a largest element then

S = Umesj<<x> = Uweslc(x).
Thus S is again an initial segment of T’; for

ueS,vel,vCu=ve€l-(u)=I(u)=veS.
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Now suppose that I_(z) is not an initial segment of 7" for some x € S.
Let z be the smallest such element in S.
Since I-(z) is not an initial segment of 7" there is an element tinT such
that
t<z&zCt.

We are now in a position to well-order X. Let us denote by S the set of
subsets S C X which can be well-ordered with property P; and let

U - USess.

We shall show that U is well-ordered with property P.

Firstly we define a total ordering on U. Suppose u,v € U. There exists
a set S € S containing u, v; for if u € S7, v € Sy, where 57,5 € § then by
Lemma [J either S; C Sy, in which case u,v € Sy or Sy C Sy, in which case
u,v € 5.

Also if u,v € S and T then by the same Lemma the two orderings are
the same. Thus we have defined the order in U unambiguously.

To see that this is a well-ordering, suppose A is a non-empty subset of U;
and suppose a € A. Then a € S for some S € S. Let

z=pu(ANS).

We claim that z is the smallest element of A. For suppose t < z, t € A.
Then t € I(z) C S, and so t € AN S, contradicting the minimality of z.
Finally, to see that this well-ordering of U has property P, suppose [ is
an initial segment of U, I # U. Let z be the smallest element in U \ I; and
suppose z € S, where S € §. Then [ = I(z) is an initial segment in S, with

2= ps(S\ 1) = e(X\ I),

since S has property P.

Thus
UeS.
If U # X let
u=c(X\U),
and set
V =UU{u}.

We extend the order on U to V' by making u the greatest element of
V. It is a straightforward matter to very that V' is well-connected, and has
property P. It follows that

VeS=VcCcU,
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which is absurd.
Hence U = X, and so X is well-connected.

Now we can prove the Comparability Theorem.

Theorem A.3. Any 2 sets X, Y are comparable, ie
cither #(X) < #(Y) or #(Y) < #(X).

Proof ». Let us well-order X and Y. Then by Proposition either there
exists an injection
j: X =Y,

or there exists an injection
7Y - X.

In other words,

#(X) < #(Y) or #(Y) < #(X).
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