
Appendix A

Cardinality

Cardinality — that is, Cantor’s theory of infinite cardinal
numbers — does not play a direct rôle in algorithmic informa-
tion theory, or more generally in the study of computability,
since all the sets that arise there are enumerable. However,
the proof of Cantor’s Theorem below, using Cantor’s ‘diago-
nal method’, is the predecessor, or model, for our proof of the
Halting Theorem and other results in Algorithmic Informa-
tion Theory. The idea also lies behind Gödel’s Unprovability
Theorem, that in any non-trivial axiomatic system there are
propositions that can neither be proved nor disproved.

A.1 Cardinality

Definition A.1. Two sets X and Y are said to have the same cardinality,
and we write

#(X) = #(Y ),

if there exists a bijection f : X → Y .

When we use the ‘=’ sign for a relation in this way we should verify that
the relation is reflexive, symmetric and transitive. In this case that is trivial.

Proposition A.1. 1. #(X) = #(X);

2. #(X) = #(Y ) =⇒ #(Y ) = #(X);

3. #(X) = #(Y ) & #(Y ) = #(Z) =⇒ #(X) = #(Z).

1–1
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By convention, we write
#(N) = ℵ0.

Definition A.2. We say that the cardinality of X is less than or equal to
the cardinality of Y , and we write

#(X) ≤ #(Y ),

if there exists a injection f : X → Y .
We say that the cardinality of X is (strictly) less than the cardinality of

Y , and we write
#(X) < #(Y ),

if #(X) ≤ #(Y ) and #(X) 6= #(Y ).

Proposition A.2. 1. #(X) ≤ #(X);

2. #(X) ≤ #(Y ) & #(Y ) ≤ #(Z) =⇒ #(X) ≤ #(Z).

Again, these follows at once from the definition of injectivity.

A.1.1 Cardinal arithmetic

Addition and multiplication of cardinal numbers is defined by

#(X) + #(Y ) = #(X + Y ), #(X)×#(Y ) = #(X × Y ),

where X+Y is the disjoint union of X and Y (ie if X and Y are not disjoint
we take copies that are).

However, these operations are not very useful; for if one (or both) of ℵ1,ℵ2
are infinite then

ℵ1 + ℵ2 = ℵ1ℵ2 = max(ℵ1,ℵ1).

The power operation is more useful, as we shall see. Recall that 2X

denotes the set of subsets of X. We set

2#(X) = #(2X).

A.2 The Schröder-Bernstein Theorem

Theorem A.1.

#(X) ≤ #(Y ) & #(Y ) ≤ #(X) =⇒ #(X) = #(Y ).
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Proof I. By definition there exist injective maps

f : X → Y, g : Y → X.

We have to construct a bijection

h : X → Y.

To simplify the discussion, we assume that X and Y are disjoint (taking
disjoint copies if necessary).

Given x0 ∈ X, we construct the sequence

y0 = fx0 ∈ Y, x1 = gy0 ∈ X, y1 = fx1 ∈ Y, . . . .

There are two possibilities:

(i) The sequence continues indefinitely, giving a singly-infinite chain in X:

x0, y0, x1, y1, x2, . . .

(ii) There is a repetition, say
xr = xs

for some r < s. Since f and g are injective, it follows that the first
repetition must be

x0 = xr,

so that we have a loop

x0, y0, x1, y1, . . . , xr, yr, x0.

In case (i), we may be able to extend the chain backwards, if x0 ∈ im(g).
In that case we set

x0 = gy−1,

where y−1 is unique since g is injective.
Then we may be able to go further back:

y−1 = fx−1, x−2 = gy−1, . . . .

There are three possibilities:

(A) The process continues indefinitely, giving a doubly-infinite chain

. . . , x−n, y−n, x−n+1, y−n+1, . . . , x0, y0, x1, . . . .
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(B) The process ends at an element of X, giving a singly-infinite chain

x−n, y−n, x−n+1, . . . .

(C) The process ends at an element of Y , giving a singly-infinite chain

y−n, x−n+1, y−n+1, . . . .

It is easy to see that these chains and loops are disjoint, partitioning the
union X + Y into disjoint sets. This allows us to define the map h on each
chain and loop separately. Thus in the case of a doubly-infinite chain or a
chain starting at an element x−n ∈ X, or a loop, we set

hxr = yr;

while in the case of a chain starting at an element y−n ∈ Y we set

hxr = yr−1.

Putting these maps together gives a bijective map

h : X → Y.

A.3 Cantor’s Theorem

Theorem A.2. The number of elements of a set is strictly less than the
number of subsets of the set:

#(X) < #(2X).

Proof I. We have to show that #(X) ≤ #(2X) but #(X) 6= #(2X).
There is an obvious injection X → 2X , namely

x 7→ {x}.

Hence
#(X) ≤ #(2X).

Suppose there is a surjection

f : X → 2X .

Let
S = {x ∈ X : x /∈ f(x)}.
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Since f is surjective, there exists an element s ∈ X such that

S = f(s).

We ask the question: Does the element s belong to the subset S, or not?
If s ∈ S, then from the definition of S,

s /∈ f(s) = S.

On the other hand, if s /∈ S, then again from the definition of S.

s ∈ S.

Either way, we encounter a contradiction. Hence our hypothesis is unten-
able: there is no surjection, and so no isomorphism, f : X → 2X , ie

#(X) 6= #(2X).

A.4 Comparability

Our aim in this Section is to prove any 2 sets X, Y are comparable, ie

either #(X) ≤ #(Y ) or #(Y ) ≤ #(X).

To this end we introduce the notion of well-ordering.
Recall that a partial order on a set X is a relation ≤ such that

1. x ≤ x for all x;

2. x ≤ y & y ≤ z =⇒ x ≤ z;

3. x ≤ y & y ≤ x =⇒ x = y.

A partial order is said to be a total order if in addition, for all x, y ∈ X,

4. either x ≤ y or y ≤ x.

A total order is said to be a well-ordering if

5. every non-empty subset S ⊂ X has a least element µ(S) ∈ S.

Examples:

1. The natural numbers N are well-ordered.
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2. The integers Z are not well-ordered, since Z itself does not have a least
element.

3. The set of positive reals R+ = {x ∈ R : x ≥ 0} is not well-ordered,
since the set S = {x > 0} does not have a least element in S.

4. The set N ×N with the lexicographic ordering

(m,n) ≤ (m′, n′) if m < m′ or m = m′ & n ≤ n′

is well-ordered. To find the least element (m,n) in a subset S ⊂ N×N
we first find the least m occuring in S; and then among the pairs
(m,n) ∈ S we find the least n.

5. The disjoint sum N + N, with the ordering under which every element
of the first copy of N is less than every element of the second copy of
N, is well-ordered.

It follows at once from the definition that every subset S ⊂ X of a well-
ordered set is well-ordered.

A well-ordered set X has a first (least) element

x0 = µ(X).

Unless this is the only element, X has a second (next least) element

x1 = µ(X \ {x0}).

Simitarly, unless these are the only elements, X has a third element

x2 = µ(X \ {x0, x1}),

and so on. Moreover after all these elements x0, x1, x2, . . . (assuming they
have not exhausted X) there is a next element

xω = µ(X \ {x0, x1, x2, . . . }).

Then comes the element

xω+1 = µ(X \ {x0, x1, x2, . . . , xω}),

and after that elements xω+2, xω+3, . . . .

Proposition A.3. There is at most one order-preserving isomorphism be-
tween 2 well-ordered sets.



A.4. COMPARABILITY 1–7

Proof I. Suppose
f, g : X → Y

are 2 isomorphisms between the well-ordered sets X, Y . Let

z = µ ({x ∈ X : fx 6= gx}) .

In other words, z is the first point at which the maps f and g diverge.
We may assume without loss of generality that

fz < gz.

Since g is an isomorphism,
fz = gt

for some element t ∈ X. But now, since g is order-preserving,

gt < gz =⇒ t < z =⇒ gt = ft =⇒ fz = ft =⇒ z = t =⇒ gz = gt = fy,

contrary to hypothesis. We conclude that f = g, ie f(x) = g(x) for all
x ∈ X.

Although we shall make no use of this, we associate an ordinal number
(or just ordinal) to each well-ordered set. By the last Proposition, two well-
ordered sets have the same ordinal number if and only if they are order-
isomorphic.

A subset I ⊂ X in a partially-ordered set X is called an initial segment
if

x ∈ I & y ≤ x =⇒ y ∈ I.

It is easy to see that the set

I(x) = {y ∈ X : y < x}

(where x < y means x ≤ y but x 6= y) is an initial segment in X for each
x ∈ X.

In a well-ordered set every initial subset I ⊂ X, except X itself, is of this
form; for it is easily seen that

I = I(x),

where
x = µ(X \ I).
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If an element x of a well-ordered set X is not the greatest element of X
then it has an immediate successor x′, namely

x′ = µ({y ∈ X : y > x}).

But not every element x ∈ X (apart from the minimal element x0) need be a
successor element. We call an element x 6= x0 with no immediate predecessor
a limit element.

Lemma 6. If x is a limit element then

I(x) = ∪y<xI(y).

Proof I. Certainly
J = ∪y<xI(y)

is an initial segment. Suppose

J = I(z),

where z ≤ x.
If z < x then x must be the immediate successor to z. For suppose

z < t < x. Then
z ∈ I(t) ⊂ J = I(z),

contrary to the definition of the initial segment I(z).

Lemma 7. Suppose X, Y are well-ordered sets. Then X is order-isomorphic
to at most one initial segment I of Y .

Proof I. If X is isomorphic to two different initial segments I, J ⊂ Y then
there are two different order-preserving injective maps

f, g : X → Y.

Suppose these maps diverge at z ∈ X:

z = µ({x ∈ X : fx 6= gx}).

We may assume without loss of generality that

fz < gz.

But then fz ∈ J = im(g), and so

fz = gt

for some t ∈ X. Thus

gt < gz =⇒ t < z =⇒ ft = gt = fz =⇒ t = z =⇒ fz = gt = gz,

contrary to the definition of z.
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Corollary A.1. If there is such an isomorphism f : X → I ⊂ Y then it is
unique.

This follows at once from the Proposition above.

Proposition A.4. Suppose X, Y are well-ordered sets. Then either there
exists an order-preserving injection

f : X → Y,

or there exists an order-preserving injection

f : Y → X.

Proof I. Suppose there is an order-preserving injection

fx : I(x)→ J

onto an initial segment J of Y for every element x ∈ X. If J = Y for some
x then we are done. Otherwise

J = I(y),

where (from the last Lemma) y is completely determined by x, say

y = f(x).

Then it follows easily that
f : X → Y

is an order-preserving injection.
Suppose there is no such map fx for some x ∈ X. Let z ∈ X be the

smallest such element. If u < v < z then the corollary above shows that fu
is the restriction of fv to I(u). It follows that the maps fu for u < z ‘fit
together’ to give an order-preserving injection

f : I(z)→ Y.

More precisely, if x < z then (from the definition of z) there is an order-
preserving isomorphism

fx : I(x)→ I(y),

where y ∈ Y is well-defined. We set fx = y to define an order-preserving
injection

f : I(z)→ Y

onto an initial segment of Y , contrary to the definition of z.
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If X, Y are two well-ordered sets, we say that the ordinal of X is ≤ the
ordinal of Y if there exists an order-preserving injection f : X → Y . Ordinals
are even further from our main theme than cardinals; but nevertheless, every
young mathematician should be at least vaguely familiary with them.

We denote the ordinal of N with the usual ordering (which we have ob-
served is a well-ordering) by ω:

ω = {0, 1, 2, . . . }.

If X, Y are well-ordered sets then so is the disjoint union X + Y , taking
the elements of X before those of Y . This allows us to add ordinals. For
example

ω + 1 = {0, 1, 2, . . . , ω},

where we have added another element after the natural numbers. It is easy
to see that

ω + 1 6= ω :

the two ordered sets are not order-isomorphic, although both are enumerable.
So different ordinals may correspond to the same cardinal. Of course this is
not true for finite numbers; there is a one-one correspondence between finite
cardinals and finite ordinals.

Note that addition of ordinals is not commutative, eg

1 + ω = ω,

since adding an extra element at the beginning of N does not alter its ordi-
nality.

A.4.1 The Well Ordering Theorem

The Axiom of Choice states that for every set X we can find a map

c : 2X → X

such that
c(S) ∈ S

for every non-empty subset S ⊂ X.
We call such a map c a choice function for X.
The Well Ordering Theorem states that every set X can be well-ordered.

Proposition A.5. The Axiom of Choice and the Well Ordering Theorem
are equivalent.
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Proof I. If X is a well-ordered set then there is an obvious choice function,
namely

c(S) = µ(S).

The converse is more difficult.
Suppose c is a choice function for X. Let us say that a well-ordering of a

subset S ⊂ X has property P if

µ(S \ I) = c(X \ I)

for every initial segment I ⊂ S (except S itself).
We note that such a subset S must start with the elements x0, x1, x2, . . . , xω, . . .

unless S is exhausted earlier.

Lemma 8. ?? A subset S ⊂ X has at most one well-ordering with property
P.

Proof I. Suppose there are two such well-orderings on S. Let us denote
them by < and ⊂, respectively. If x ∈ S let us write

I<(x) ≡ I⊂(x)

to mean that not only are these initial subsets the same but they also carry
the same orderings.

If this is true of every x ∈ S then the two orderings are the same, since

u < v =⇒ u ∈ I<(v) = I⊂(v) =⇒ u ⊂ v.

If however this is not true of all x, let z be the least such according to the
first ordering :

z = µ< ({x ∈ X : I < (x) 6≡ I⊂(x)}) .
If u, v ∈ I<(z) then

u < v =⇒ u ∈ I<(v) = I⊂(v) =⇒ u ⊂ v.

It follows that I<(z) is also an initial segment in the second ordering, say

I<(z) = I⊂(t).

Hence

z = µ<(X \ I<(z)) = c(X \ I<(z)) = c(X \ I⊂(z)) = µ< (X \ I⊂(t)) = t.

Thus
I<(z) = I⊂(z).
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Since, as we saw, the two orderings coincide, it follows that

I<(z) ≡ I⊂(z),

contrary to hypothesis. So there is no such z, and therefore the two orderings
on S coincide.

Lemma 9. Suppose the subsets S, T ⊂ X both carry well-orderings with
property P. Then

either S ⊂ T or T ⊂ S.

Moreover, in the first case S is an initial segment of T , and in the second
case T is an initial segment of S.

Proof I. As before, we denote the well-orderings on S and T by < and ⊂,
respectively.

Consider the elements x ∈ S such that the initial segment I = I<(x) in
S is also an initial segment in T . By the last Lemma, the two orderings on
I coincide.

If
I<(x) = T

for some x we are done: T is an initial segment of S. Otherwise

I = I<(x) = I⊂(x),

with
x = c(X \ I).

Suppose this is true for all x ∈ S.
If S has a largest element s then

S = I<(s) ∪ {s} = I⊂(s) ∪ {s}.

Thus S ⊂ T , and either S = T ,

S = I⊂(s′),

where s′ is the successor to s in T . In either case S is an initial segment of
T .

If S does not have a largest element then

S = ∪x∈SI<(x) = ∪x∈SI⊂(x).

Thus S is again an initial segment of T ; for

u ∈ S, v ∈ T, v ⊂ u =⇒ v ∈ I⊂(u) = I<(u) =⇒ v ∈ S.
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Now suppose that I<(x) is not an initial segment of T for some x ∈ S.
Let z be the smallest such element in S.

Since I<(z) is not an initial segment of T there is an element tinT such
that

t < z & z ⊂ t.

We are now in a position to well-order X. Let us denote by S the set of
subsets S ⊂ X which can be well-ordered with property P ; and let

U = ∪S∈SS.

We shall show that U is well-ordered with property P .
Firstly we define a total ordering on U . Suppose u, v ∈ U . There exists

a set S ∈ S containing u, v; for if u ∈ S1, v ∈ S2, where S1, S2 ∈ S then by
Lemma 9 either S1 ⊂ S2, in which case u, v ∈ S2 or S2 ⊂ S1, in which case
u, v ∈ S1.

Also if u, v ∈ S and T then by the same Lemma the two orderings are
the same. Thus we have defined the order in U unambiguously.

To see that this is a well-ordering, suppose A is a non-empty subset of U ;
and suppose a ∈ A. Then a ∈ S for some S ∈ S. Let

z = µ(A ∩ S).

We claim that z is the smallest element of A. For suppose t < z, t ∈ A.
Then t ∈ I(z) ⊂ S, and so t ∈ A ∩ S, contradicting the minimality of z.

Finally, to see that this well-ordering of U has property P , suppose I is
an initial segment of U , I 6= U . Let z be the smallest element in U \ I; and
suppose z ∈ S, where S ∈ S. Then I = I(z) is an initial segment in S, with

z = µS(S \ I) = c(X \ I),

since S has property P .
Thus

U ∈ S.
If U 6= X let

u = c(X \ U),

and set
V = U ∪ {u}.

We extend the order on U to V by making u the greatest element of
V . It is a straightforward matter to very that V is well-connected, and has
property P . It follows that

V ∈ S =⇒ V ⊂ U,
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which is absurd.
Hence U = X, and so X is well-connected.

Now we can prove the Comparability Theorem.

Theorem A.3. Any 2 sets X, Y are comparable, ie

either #(X) ≤ #(Y ) or #(Y ) ≤ #(X).

Proof I. Let us well-order X and Y . Then by Proposition A.4 either there
exists an injection

j : X → Y,

or there exists an injection
j : Y → X.

In other words,
#(X) ≤ #(Y ) or #(Y ) ≤ #(X).
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