
Turing: A Java application for Turing
machines

Timothy Murphy
<tim@maths.tcd.ie>

School of Mathematics, Trinity College Dublin

February 28, 2013

Contents

1 Introduction 2

2 The Turing class 2
2.1 Turing class data . 3
2.2 Turing instance data . 4
2.3 Turing constructors . 5

3 The Rule class 6
3.1 Rule constructors . 7

4 The Tape class 9
4.1 Tape instance data . 9
4.2 Tape instance methods . 10
4.3 Tape constructors . 11

5 Running the machine 11

6 The main routine 14

7 Cweb and the ‘j’ switch 16

8 Administrivia 17

Abstract

1

The “Turing” application documented here reads in the specifica-
tion of a Turing machine from a file, and then accepts input which
is processed and output as it would be by the machine. We follow
Donald Knuth’s “Literate Programming” recipe, in which application
and documentation are combined in a single “web” file.

1 Introduction

The application begins by reading in the specification of a Turing machine
T as a sequence of quadruples

(i, b, a, j),

where i and j number the input and output states, b is the bit (0 or 1) under
the scanner, and a is the action to be taken, from the choice

A = {Noop, Swap, Left, Right, Read, Write}.

The rules are read in from a file, with one quadruple per line. (Anything
on a line beyond the quadruple is regarded as a comment, and is ignored.)

The order of the quadruples does not matter. Nor need all possible
quadruples (given the number of states) be listed; those omitted are assumed
to be of the form (i, b, Noop, 0), q0 being both initial and halting state.

Having read in the rules, the application looks for input data through the
standard input. This processed as it is read, and the output is sent to the
standard output.

2 The Turing class

Our application is written in Java. The definition or specification of a Java
class can be divided into 5 parts (not all of which are necessarily, or even
usually, present), namely

Instance data — the ‘fields’ which are defined for each object in the class,
and which in turn define that object; as for example if T is an object
in the Turing class then the field T .tape holds the tape of the machine
in question.

Instance methods — the routines which act on objects and their fields, as
for example T .run () describes how the machine is to run.

Constructors — the code describing how an object in the class is created.

2

Class methods — routines not specific to a particular object in the class,
as for example the main routine required in any Java application.

Class data — data shared by all the objects in the class, as for example,
the constant definitions of the actions Noop , Swap , Read , Write , Left
and Right .

importjava .io .∗;2

importjava .net .∗;
importjava .util .∗;
public class Turing extends Thread
{
〈Turing instance data 8 〉
〈Turing instance methods 34 〉
〈Turing constructors 14 〉
〈Turing class data 5 〉
〈Turing class methods 41 〉
}

¶ Although a Java file can only define 1 public class, it can include other
subsidiary classes, which are, however, only visible within the file.

〈 Subsidiary classes 17 〉3

2.1 Turing class data

Although Java does not support typedef s, it may help readability if we
introduce a few ‘pseudo-types’ with the help of ctangle .

format Bit int4

format State int
format Action int
format Time int

#define Bit ≡ boolean
#define State ≡ int
#define Action ≡ int
#define Time ≡ int

¶ It is convenient to represent the 6 possible actions numerically.

3

〈Turing class data 5 〉 ≡5

final static int Noop = 0;
final static int Swap = 1;
final static int Read = 2;
final static int Write = 3;
final static int Left = 4;
final static int Right = 5;
public final static String actionName [] = {"Noop", "Swap", "Read",

"Write", "Left", "Right", };
See also chunk 6.

This code is used in chunk 2.

¶ We define a number of boolean variables, which can be set by program
switches. Otherwise they take the default values below.

〈Turing class data 5 〉 +≡6

public static boolean debugging = false ;
public static boolean interactive = false ;
public static boolean numericIO = false ;

2.2 Turing instance data

¶ The machine ‘progresses’ in discrete steps, which we may think of as
occurring at times t = 0, 1,

〈Turing instance data 8 〉 ≡8

Time time ;
See also chunks 9, 10, 11, 12, and 13.

This code is used in chunk 2.

¶ At each moment the machine is in a state

q = q(t) ∈ Q = {q0, . . . , qN−1},

where N = numStates . We identify state qi with its label i. Thus, in effect,

Q = {0, 1, . . . , numStates − 1}.

〈Turing instance data 8 〉 +≡9

State state ;
int numStates ;

4

¶ Each Turing machine has an associated tape , that is, an object in the
Tape class defined below.

〈Turing instance data 8 〉 +≡10

Tape tape ;

¶ The rules defining the Turing Machine are organised as a Java ArrayList ,
with rule (i, b, a, j) in position 2i + b. (Recall the b = 0 or 1.)

〈Turing instance data 8 〉 +≡11

static ArrayList < Rule > rules = new ArrayList < Rule > ();

¶ Finally, the machine communicates with the ‘outside world’ through an
input stream and an output stream.

〈Turing instance data 8 〉 +≡12

Reader in ;
Writer out ;

¶ By default, input and output consist of sequences of 0’s and 1’s. But if
the numericIO switch is given, then these are both converted to sequences
of natural numbers, following the code

n 7→
n 1’s︷ ︸︸ ︷

11 . . . 1 0.

For example the input
111101111110

is coded as
4, 6

〈Turing instance data 8 〉 +≡13

int inBuf = 0;
int outBuf = 0;

2.3 Turing constructors

An object in a Java class must be explicitly created, by using one of the
constructor methods provided. The constructor methods all have the same
name as the class — in our case Turing .

To construct a Turing we must be given an array of Rule s. The input
and output character streams may also be specified.

5

〈Turing constructors 14 〉 ≡14

public Turing (ArrayList < Rule > rules ,Reader in ,Writer out)
{

this.in = in ;
this.out = out ;
tape = new Tape ();
}

See also chunks 15 and 16.

This code is used in chunk 2.

¶ If no input and output streams are specified, these are assumed to be
System .in and System .out , the standard Java I/O streams.

〈Turing constructors 14 〉 +≡15

public Turing (ArrayList < Rule > rules)
{

this(rules ,new InputStreamReader (System .in),new
OutputStreamWriter (System .out));

}

¶ We give a default constructor for a ‘bare’ Turing machine, whose rules
are presumably read in later. (We shall not use this constructor.)

〈Turing constructors 14 〉 +≡16

public Turing ()
{

this(null);
}

3 The Rule class

Each rule consists of a quadruple

(inStat , bit , action , outState)

eg

(3, 1, Left, 5),

indicating that if the machine is in state q3 with bit 1 under the scanner then
the scanner will move left along the tape, and the state will change to q5.

6

〈 Subsidiary classes 17 〉 ≡17

class Rule {
Bit bit ;
State inState ;
Action action ;
State outState ;

〈Rule constructors 18 〉
〈Rule methods 26 〉
}

See also chunks 27 and 28.

This code is used in chunk 3.

3.1 Rule constructors

Each line in the ‘rule file’ contains a quadruple, as described above. We use
the Java StringTokenizer routine to abstract the rule from the line.

Empty lines, and lines starting with #, are ignored. Otherwise each line
must contain a valid rule. If it does not, it ‘throws a BadRuleException ’.

〈Rule constructors 18 〉 ≡18

Rule(String line)
throws BadRuleException {
〈Parse line 19 〉
〈Get inState 20 〉
〈Get bit 21 〉
〈Get action 22 〉
〈Get outState 23 〉
}

See also chunks 24 and 25.

This code is used in chunk 17.

¶ 〈Parse line 19 〉 ≡19

StringTokenizer st = new StringTokenizer (line , "(,) \t");
if (st .countTokens () 6= 4) throw new BadRuleException (line);

This code is used in chunk 18.

¶ 〈Get inState 20 〉 ≡20

inState = Integer .parseInt (st .nextToken ());
This code is used in chunk 18.

7

¶ 〈Get bit 21 〉 ≡21

int b = Integer .parseInt (st .nextToken ());

if (b ≡ 0) bit = false ;
else if (b ≡ 1) bit = true ;
else throw new BadRuleException (line);

This code is used in chunk 18.

¶ 〈Get action 22 〉 ≡22

String act = st .nextToken ().toLowerCase ();
if (act .equals ("noop")) action = Turing .Noop ;
else if (act .equals ("swap")) action = Turing .Swap ;
else if (act .equals ("read")) action = Turing .Read ;
else if (act .equals ("write")) action = Turing .Write ;
else if (act .equals ("left")) action = Turing .Left ;
else if (act .equals ("right")) action = Turing .Right ;
else throw new BadRuleException (line);

This code is used in chunk 18.

¶ 〈Get outState 23 〉 ≡23

outState = Integer .parseInt (st .nextToken ());
if (inState < 0 ∨ outState < 0) throw new BadRuleException (line);

This code is used in chunk 18.

¶ A second constructor requires all the fields to be given.

〈Rule constructors 18 〉 +≡24

Rule(State inState ,Bit bit ,Action action ,State outState)
{

this.inState = inState ;
this.bit = bit ;
this.action = action ;
this.outState = outState ;
}

¶ Our final constructor gives an empty rule, with fields to be filled in.

〈Rule constructors 18 〉 +≡25

Rule()
{ }

8

¶ 〈Rule methods 26 〉 ≡26

public String toString ()
{

StringBuffer buf = new StringBuffer ();
buf .append (’(’);
buf .append (inState);
buf .append (’,’);
buf .append (bit ? ’1’ : ’0’);
buf .append (’,’);
buf .append (Turing .actionName [action]);
buf .append (’,’);
buf .append (outState);
buf .append (’)’);
return buf .toString ();
}

This code is used in chunk 17.

¶ If an error occurs when reading in the rules we throw a BadRuleException .

〈 Subsidiary classes 17 〉 +≡27

class BadRuleException extends Exception
{

public static final long serialVersionUID = 24362462L;

public BadRuleException ()
{

sup@&er ();
}
public BadRuleException (Strings)
{

sup@&er (s);
}
}

4 The Tape class

We implement the tape as two Java Stack s, corresponding to the two halves
of the tape (i < 0 and i > 0), together with an ‘accumulator bit’ correspond-
ing to the visible ‘square’ i = 0.

〈 Subsidiary classes 17 〉 +≡28

class Tape {

9

Bit accumulator ;
private Stack < Boolean > leftTape ;
private Stack < Boolean > rightTape ;

〈Tape instance methods 30 〉
〈Tape constructors 33 〉
}

4.1 Tape instance methods

¶ 〈Tape instance methods 30 〉 ≡30

void left ()
{

rightTape .push (accumulator);
if (leftTape .empty ()) leftTape .push (false);
accumulator = (leftTape .pop());
}
void right ()
{

leftTape .push (accumulator);
if (rightTape .empty ()) rightTape .push (false);
accumulator = (rightTape .pop());
}

See also chunk 31.

This code is used in chunk 28.

¶ We include a routine for ‘printing out’ the contents of the tape. This is
a little awkward, since we have to pop the bits off the stacks to view them,
saving them on a temporary stack so that we can restore them.

〈Tape instance methods 30 〉 +≡31

public String toString ()
{

Stack < Boolean > tmpStack = new Stack < Boolean > ();
StringBuffer buf = new StringBuffer ();
while (¬leftTape .empty ()) {

BooleanO = leftTape .pop();
tmpStack .push (O);
}
while (¬tmpStack .empty ()) {

BooleanB = tmpStack .pop();

10

buf .append (B.booleanValue () ? ’1’ : ’0’);
leftTape .push (B);
}
buf .append (’*’);
buf .append (accumulator ? ’1’ : ’0’);
buf .append (’*’);
while (¬rightTape .empty ()) {

BooleanB = rightTape .pop();
buf .append (B.booleanValue () ? ’1’ : ’0’);
tmpStack .push (B);
}
while (¬tmpStack .empty ()) {

BooleanO = tmpStack .pop();
rightTape .push (O);
}
return "Tape: " + buf .toString ();
}

4.2 Tape constructors

To construct a tape we must create the two Stack s constituting its left and
right halves.

¶ 〈Tape constructors 33 〉 ≡33

public Tape()
{

leftTape = new Stack < Boolean > ();
rightTape = new Stack < Boolean > ();
accumulator = false ;
}

This code is used in chunk 28.

5 Running the machine

Since our Turing class extends the Thread class, we must provide instance
methods start and run ,

〈Turing instance methods 34 〉 ≡34

public void start ()
{

11

time = 0;
state = 0;
}

See also chunk 35.

This code is used in chunk 2.

¶ The run routine is the heart of our Turing machine. Essentially, it puts
the machine into an infinite loop, reading the rules and taking the appropriate
action. The machine exits from the loop if and when it re-enters state 0.

〈Turing instance methods 34 〉 +≡35

public void run ()
{
〈Buffer input and output 36 〉
int col = 0;
Rule r = rules .get (0);

while (true) {
if (debugging) {
〈Print out rule being followed 38 〉
}
〈Take appropriate action 37 〉
〈Move to new state 39 〉
〈Exit if state = 0 40 〉
time ++;
}
}

¶ 〈Buffer input and output 36 〉 ≡36

BufferedReader input = new BufferedReader (in);
PrintWriter output = new PrintWriter (out , true);

This code is used in chunk 35.

¶ 〈Take appropriate action 37 〉 ≡37

int b = tape .accumulator ? 1 : 0;
char ch = ’ ’;

System .out .println ("rule: " + r);
System .out .println ("accumulator: " + tape .accumulator);
switch (r.action) {
case Noop : break;

12

case Swap : tape .accumulator = ¬tape .accumulator ;
break;

case Left : tape .left ();
break;

case Right : tape .right ();
break;

case Read :
if (numericIO) { }
else {

try {
loop :

while (true) {
ch = (char) in .read ();
if (ch ≡ ’0’ ∨ ch ≡ ’1’) break loop ;
}
}
catch(IOExceptione)
{

System .out .println ("Read past end of input");
System .exit (1);
}
tape .accumulator = (ch ≡ ’1’);
}
break;

case Write : System .out .println ("accumulator: " + tape .accumulator);
if (numericIO) { }
else {

output .print (tape .accumulator ? ’1’ : ’0’);
if (++col ≥ 256) {

output .println ();
col = 0;
}
}
break;
}

This code is used in chunk 35.

¶ 〈Print out rule being followed 38 〉 ≡38

System .err .println (tape);
This code is used in chunk 35.

13

¶ 〈Move to new state 39 〉 ≡39

int index = 2 ∗ r.outState ;

if (tape .accumulator) index ++;
r = rules .get (index);

This code is used in chunk 35.

¶ 〈Exit if state = 0 40 〉 ≡40

if (r.inState ≡ 0) {
output .println ();
System .exit (0);
}

This code is used in chunk 35.

6 The main routine

Every Java application must have at least one class method, namely the
main () program. As we see, this simply reads in the rules for a Turing
machine, creates the machine, and sets it running.

〈Turing class methods 41 〉 ≡41

public static void main (String []args)
{
〈Process any options 42 〉
if (argc 6= 1) {

usage ();
System .exit (1);
}
〈Open rules file 43 〉
Rule defaultRule = new Rule(0, false , 0, 0);

for (int i = 0; i < 32; i++) {
rules .add (defaultRule);
}
〈Read in rules 44 〉
int numRules = rules .size ();

System .out .println ("numRules: " + numRules);
TuringT = new Turing (rules);
T .run ();
}

See also chunk 45.

This code is used in chunk 2.

14

¶ 〈Process any options 42 〉 ≡42

int argc = args .length ;
int optCount = 0;

for (; optCount < argc ∧ args [optCount].charAt (0) ≡ ’-’; optCount ++)
{
if (args [optCount].length () ≡ 1) continue;
switch (args [optCount].charAt (1)) {
case ’d’: debugging = true ;

break;
case ’n’: numericIO = true ;

break;
default: usage ();

System .exit (1);
}
}
argc −= optCount ;

This code is used in chunk 41.

¶ 〈Open rules file 43 〉 ≡43

BufferedReader rulesFile = null ;
try {

rulesFile = new BufferedReader (new FileReader (args [optCount]));
}
catch(IOExceptione)
{

System .err .println ("Cannot open rules file: " + args [optCount]);
System .exit (1);
}

This code is used in chunk 41.

¶ 〈Read in rules 44 〉 ≡44

String line = null ;

int lineno = 0;
int index ;
Rule r = null ;

while (true) {
try {

line = rulesFile .readLine ();
}

15

catch(IOExceptione)
{ }
if (line ≡ null) break;
lineno ++;
line = line .trim ();
if (line .isEmpty ()) continue;
if (line .charAt (0) 6= ’(’) continue;
try {
r = new Rule(line);
index = 2 ∗ r.inState ;
if (r.bit) index ++;
rules .set (index , r);
System .out .println ("rule[" + index + "]: " + r.toString ());
}
catch(BadRuleExceptione)
{

System .err .println ("(line " + lineno + ")");
}
if (debugging) System .err .println (r);
}

This code is used in chunk 41.

¶ We define one other class method, to print out a usage message.

〈Turing class methods 41 〉 +≡45

public static void usage ()
{

System .err .println ("Usage: Turing [switches] rulesFile ");
System .err .println ("switches: -d (debug)");
System .err .println ("switches: -i (interactive)");
}

7 Cweb and the ‘j’ switch

Knuth’s original ‘web ’ format ([?]) was tied to Pascal. Later Knuth and
Levy developed ‘cweb ’ (knuth3) to provide output in C. Since Java is a
dialect of C, cweb only requires minor modifications to output Java. These
are contained in the change files ctang−java .ch , cweav−java .ch and comm−
java .ch , all of which can be found at ftp://ftp.maths.tcd.ie/pub/TeX/

javaTeX. If ctangle and cweave are compiled with these change files (as

16

eg by modifying the cweb Makefile by changing the line ‘TCHANGES =’ to
‘TCHANGES = ctang − java .ch ’, and similarly for WCHANGES and CCHANGES).
then the ‘+j’ switch can be used to output Java, eg

% ctangle +j Turing.w

produces the file Turing .java which can then be compiled in the usual way

% javac -O Turing.java

and then run by

% java Turing

On the other hand, this document was produced by

% cweave -j Turing.w

producing the LATEX file Turing .tex which can be processed in the usual way

% latex Turing

% xdvi Turing

% dvips Turing

8 Administrivia

The file Turing .w from which this document is derived can be retrieved from
ftp://ftp.maths.tcd.ie/pub/TeX/javaTeX/javaweb/examples/Turing.w.

For simplicity this work is published subject to the GNU GPL Licence.
Essentially this allows the work to be freely copied and used, provided the
original file Turing .w is made available. Changes should preferably be made
through a change file — perhaps Turing .ch .

17

Index

accumulator : 28, 30, 31, 33,
37, 39.

act : 22.
Action: 4, 17, 24.
action : 17, 22, 24, 26, 37.
actionName : 5, 26.
add : 41.
append : 26, 31.
argc : 41, 42.
args : 41, 42, 43.
ArrayList : 11, 14, 15.
b: 21, 37.
BadRuleException : 18, 19, 21,

22, 23, 27, 44.
bit : 17, 21, 24, 26, 44.
Bit: 4, 17, 24, 28.
Boolean : 28, 31, 33.
booleanValue : 31.
buf : 26, 31.
BufferedReader : 36, 43.
CCHANGES: 46.
ch : 37, 46, 47.
charAt : 42, 44.
col : 35, 37.
comm : 46.
countTokens : 19.
ctang : 46.
ctangle : 4, 46.
cweav : 46.
cweave : 46.
cweb : 46.
debugging : 6, 35, 42, 44.
defaultRule : 41.
empty : 30, 31.
equals : 22.
er : 27.
err : 38, 43, 44, 45.
Exception : 27.
exit : 37, 40, 41, 42, 43.

false : 6, 21, 30, 33, 41.
FileReader : 43.
get : 35, 39.
i: 41.
in : 12, 14, 15, 36, 37.
inBuf : 13.
index : 39, 44.
input : 36.
InputStreamReader : 15.
inStat : 17.
inState : 17, 20, 23, 24, 26, 40, 44.
Integer : 20, 21, 23.
interactive : 6.
io : 2.
IOException : 37, 43, 44.
isEmpty : 44.
java : 2, 46.
Left : 2, 5, 22, 37.
left : 30, 37.
leftTape : 28, 30, 31, 33.
length : 42.
line : 18, 19, 21, 22, 23, 44.
lineno : 44.
loop : 37.
main : 2, 41.
Makefile : 46.
net : 2.
nextToken : 20, 21, 22, 23.
Noop : 2, 5, 22, 37.
null : 16, 43, 44.
numericIO : 6, 13, 37, 42.
numRules : 41.
numStates : 9.
optCount : 42, 43.
out : 12, 14, 15, 36, 37, 41, 44.
outBuf : 13.
output : 36, 37, 40.
OutputStreamWriter : 15.
outState : 17, 23, 24, 26, 39.

18

parseInt : 20, 21, 23.
pop : 30, 31.
print : 37.
println : 37, 38, 40, 41, 43, 44, 45.
PrintWriter : 36.
push : 30, 31.
r: 35, 44.
Read : 2, 5, 22, 37.
read : 37.
Reader : 12, 14.
readLine : 44.
Right : 2, 5, 22, 37.
right : 30, 37.
rightTape : 28, 30, 31, 33.
Rule: 11, 14, 15, 17, 18, 24,

25, 35, 41, 44.
rules : 11, 14, 15, 35, 39, 41, 44.
rulesFile : 43, 44.
run : 2, 34, 35, 41.
serialVersionUID : 27.
set : 44.
size : 41.
st : 19, 20, 21, 22, 23.
Stack : 28, 31, 32, 33.
start : 34.
State: 4, 9, 17, 24.
state : 9, 34.
String : 5, 18, 22, 26, 27, 31,

41, 44.
StringBuffer : 26, 31.
StringTokenizer : 18, 19.
sup : 27.
Swap : 2, 5, 22, 37.
System : 15, 37, 38, 40, 41, 42,

43, 44, 45.
Tape: 10, 14, 28, 33.
tape : 2, 10, 14, 37, 38, 39.
TCHANGES: 46.
tex : 46.
Thread : 2, 34.
Time: 4, 8.

time : 8, 34, 35.
tmpStack : 31.
toLowerCase : 22.
toString : 26, 31, 44.
trim : 44.
true : 21, 35, 36, 37, 42, 44.
Turing : 2, 14, 15, 16, 22, 26,

34, 41, 46, 47.
usage : 41, 42, 45.
util : 2.
WCHANGES: 46.
web : 46.
Write : 2, 5, 22, 37.
Writer : 12, 14.

19

List of Refinements

〈Buffer input and output 36 〉 Used in chunk 35.

〈Exit if state = 0 40 〉 Used in chunk 35.

〈Get action 22 〉 Used in chunk 18.

〈Get bit 21 〉 Used in chunk 18.

〈Get inState 20 〉 Used in chunk 18.

〈Get outState 23 〉 Used in chunk 18.

〈Move to new state 39 〉 Used in chunk 35.

〈Open rules file 43 〉 Used in chunk 41.

〈Parse line 19 〉 Used in chunk 18.

〈Print out rule being followed 38 〉 Used in chunk 35.

〈Process any options 42 〉 Used in chunk 41.

〈Read in rules 44 〉 Used in chunk 41.

〈 Subsidiary classes 17, 27, 28 〉 Used in chunk 3.

〈Take appropriate action 37 〉 Used in chunk 35.

〈Rule constructors 18, 24, 25 〉 Used in chunk 17.

〈Rule methods 26 〉 Used in chunk 17.

〈Tape constructors 33 〉 Used in chunk 28.

〈Tape instance methods 30, 31 〉 Used in chunk 28.

〈Turing class data 5, 6 〉 Used in chunk 2.

〈Turing class methods 41, 45 〉 Used in chunk 2.

〈Turing constructors 14, 15, 16 〉 Used in chunk 2.

〈Turing instance data 8, 9, 10, 11, 12, 13 〉 Used in chunk 2.

〈Turing instance methods 34, 35 〉 Used in chunk 2.

20

