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2 1 WHY STUDY ELLIPTIC CURVES?

1  Why study elliptic curves?

The history of elliptic curves goes back to ancient Greece and beyond. They appeared when
studying so-called Diophantine Equations, where one is looking for integer and rational
solutions to polynomial equations. But there are two different approaches to them, one
is algebraic number theory, the other is the analysis of algebraic varieties. The algebraic
number thoery uses properties of the rings and fields the solutions lie in, whereas algebraic
varieties are geometric objects that can be studied.

Now, as we mentioned, there are different kinds of polynomial equations. For example,
a linear equation in two variables x and y, such as ax + by = ¢, where at least one of a,b
is different from zero, obviously has rational solutions. As it can easily be shown, it has
solutions in Z if and only if the greatest common divisor of a and b divides ¢. So there is
not much more to say about linear equations.

It becomes slightly more difficult when considering quadratic equations, but these have
also proven to be fairly easy to analyse. The main tools here are the Hasse-Minkowski-
Theorem!, Hensel’s Lemma® and the law of quadratic reciprocity, which give us a fairly
good understanding of polynomial equations of degree 1 or 2.

However, raising the degree of the polynomial to 3 makes elliptic curves come into play.
The focus of present research is on this topic. They have applications in different areas of
mathematics, we are going to outline a few of them right now.

1.1 Number theory

As we will see in this paper, the set of points on elliptic curves define an abelian group.
Of course, if an elliptic curve is defined over a finite field, the number of points on it is
also finite. While in general, the number of points that lie on an elliptic curve is rather
difficult to compute, there is a theorem which has been developed to give an algorithm for
computing that exact number of points on an elliptic curve.

Theorem 1.1 (Hasse’s Theorem). ® Let F, be a finite field (i.e. the finite field with q
elements) and T" be an elliptic curve. Then the number of points on T' satisfies

IT(F) —q =1 <2v/q.

Here |I'(F,)| denotes the number of points on the curve. But there are some algorithms
used to compute the exact number of points on a curve. For example, one of them is
Satoh’s algorithm.

Furthermore, as mentioned above and to be shown below, we can endow I'(F) in a
natural fashion with the structure of an abelian group. If viewed over a number field (a

'for the theorem and a proof see e.g. E. Selmer, A Course in Arithmetic, Springer Verlag, 1973, Chapter
1V, Theorem 8.

2for the statement and a proof see e.g. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer
Verlag, 1986, Chapter IV, Lemma 1.2, p.112f.

3for a proof see e.g. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Verlag, 1986, Chapter
V, Theorem 1.1, p131.
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field which is an algebraic extension of Q, the set of rational numbers), then its structure
is simply the direct sum of two subgroups:

Theorem 1.2 (Mordell-Weil-Theorem). * Let F be a number field. Then the group T'(F)
18 finitely generated. In particular,

[(F) = Ty (F) x A,
where A is a free abelian group and Uy (F) is the mazimal finite torsion subgroup.

The proof of this theorem depends on the study of the map P — 2 - P.
In practise, the torsion subgroup is relatively easy to compute, but in general the rank
of A or the group itself cannot be computed by a fixed algorithm.

1.2 Cryptography

The use of elliptic curves in cryptography goes back to Neal Koblitz and Victor Miller, who
suggested their use independently of each other in 1985. In comparison to RSA-encryption,
one may use smaller keys when encryption with elliptic curves is used in order to gain the
same security level. This relies on the wide belief that the elliptic curve discrete logarithm
problem is much harder to solve than the factorization of a composite number, which occurs
when trying to decrypt a RSA-encrypted message without knowing the private key. We
will explain the logarithm problem in section 2.3 about point addition.

As the US National Institute for Standards and Technology suggests that RSA with
1024-bit encryption is sufficient to use until 2010, the question arises, what to do when
2009 has passed. One possibility would be to enlarge the key sizes to be safe for another
decade, but the cryptography with elliptic curves provides a serious alternative to that.

1.3 Fermat’s Last Theorem

Devised by Pierre de Fermat in 1637, his last theorem (often also called his last conjecture)
would become one of the most famous theorems in the history of mathematics. It states:

Theorem 1.3 (Fermat’s Last Theorem). Let n be an integer greater than 2, then the
equation

n

has no non-trivial integer solutions.

The number of erroneous proofs of Fermat’s Last Theorem was tremendous. Even many
famous mathematicians spent a lot of time (if not their whole life) working on it, but at
the end the theorem remained a conjecture.

“for a proof see e.g. J. H. Silverman, The Arithmetic of Elliptic Curves, Springer Verlag, 1986, Chapter
VIII, p189ff.
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While extremely easy to state, this theorem remained unproved until 1995, when An-
drew Wiles presented a proof°. In fact, Wiles did not prove Fermat’s Last Theorem, but a
part of the Taniyama-Shimura-conjecture, according to which every elliptic curve over Q
is modular. In 1986, Ken Ribet showed that a solution to the equation z" + y™ = 2", for
n > 3, would provide a counterexample to the Taniyama-Shimura-conjecture, thus would
define a non-modular elliptic curve. This curve would be of the form

y? = x(x —a™)(z +b").

As said above, Wiles did not prove the whole conjecture, but the part he proved already
implies Fermat’s Last Theorem. Finally, more than 350 years after Fermat claimed to have
a proof, this theorem was proved.

Note that in the beginning, even Wiles’s proof seemed to be erroneous. He spent
seven years developing it secretly, sharing his thoughts only with one other Professor from
Princeton. Working together for another year, they were able to fix the gap and establish
the theorem.

2 Introduction

2.1 Basic definitions

Definition 2.1. A cubic curve I over a field F is defined by a polynomial of degree 3 in
two variables.

We say that a point P = (z,y) € F x F is an element of this curve, denoted by I'(F),
if and only if it satisfies

f(z,y) =0,

where f is the polynomial defining the cubic curve.

Definition 2.2. Let I" be a cubic curve and let I'(F) be the set of points on it. Then a
point P € I'(F) where the tangent or the partial derivatives

of . of

— n —

Orp dyp
are both undefined, is called a singular point. A cubic curve without singular points is
called an elliptic curve.

Therefore, a non-singular cubic curve has no self-intersections or cusps (Those would
give two different tangents at those points, which we do not allow).

In general, curves of degree d are classified by using the term genus, where the genus of
such a curve is (d — 1)(d — 2)/2. However, if the curve is singular (even possibly at the line

®Wiles, Andrew (1995). Modular elliptic curves and Fermat’s last theorem, Annals of Mathematics
(141) (1995)(3), 443-551
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at infinity, see below for details), then the genus is reduced. Therefore elliptic curves are
curves of genus 1. We will see that non-singularity is a necessary condition for satisfying
the group axioms. Here is a picture of a few examples of elliptic curves (over R):

2.2 A binary operation

We shall see that the set of points on an elliptic curve can be endowed with a binary
operation of point addition, which is associative and admits inverses such that the set of
points together with this operation is a group.

Proposition 2.3. Let T be an elliptic curve. Assume that P,Q € T'(F) where P and Q
are not necessarily distinct. Then there exists a unique point R € T'(F), which lies on the
line passing through both P and Q).

Note that R is possibly the "line at infinity”, see sections 3.2 and 3.3 for details.

Proof. Note that the "line" X : y = mx + b is well-defined by setting

8f/8yp .
_ 9% 4 p
T 9f 0w,

If it happens that P = (z,y) and @ = (z,—y), with z,y € F, the line A will be parallel
to the y-axis. Therefore we define the third intersection of A with I" to be the point at
infinity, compare Remark 2.4 and section 3.2.

=Q.
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On the other hand, if the y-coordinates of P and @) do not have the same absolute
value, then m = ﬁ But nominator and denominator are elements of the field, and so
is m. Hence d = y — mux is also an element of the field F. Now by the definition of the line
A, it meets the curve where f(z,mx + b) = 0. But f(x, mz + b) is a polynomial of degree

3 in x, so we may write
f(z,mz +b) = ag + a1z + asz”® + aza®,

with a; € F for 1 = 0,1, 2,3. But then the sum of the three roots x1, xs and 3 equals —Z—g
(provided that az # 0), which again is an element of the field. Hence z3 = —z1—2,—2 € F.
So R := (x5, mx3 +b) is the (unique) third point on the line A, as claimed.

Remark 2.4. In the case that the leading coefficient in f(x, mz +b) equals 0, we define the
third point R to be the "line at infinity", which we will see to be a proper definition when
viewing the elliptic curve in the projective space (see section 3.2).

Note that in the proof it was important to have the curve restricted to a non-singular
curve. For example, if P is a self-intersection of a cubic curve, then P % P could not be
defined, since we would have two different tangents at P, both intersecting the curve in a
third point, but they were different. Thus the binary operation would not be well-defined.

However, it is possible to define this operation on a singular cubic curve, if we exclude
the singular point from domain and range. Then the group of points with respect to
addition below will depend on the type of singularity at that point. This makes even
singular cubic curves interesting to be studied, but we are not interested in such an analysis
in this paper.

Definition 2.5. Let I' be an elliptic curve. We define a binary operation on I'(F) by
setting

x: ['(F) x (F) — I(F)
(P.Q) — PxQ:=R,

where R is the third point on the line through P and Q.

Observation 2.6. Since there is a unique third on a line defined by two points on an
elliptic curve, this operation is commutative by definition, since P x Q = @ * P for all
points P, Q € I'(F).
Also, every set of three point on a line is uniquely determined, hence for all points
P,Q,R € T'(F):
P=Q«xR&Q=RxP< R=PxQ.

So the operation * is symmetric.
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2.3 Addition in I'(F)

In fact, the operation * fails to be associative (this is easily verified), so we cannot use it as
our group operation on the set of points on an elliptic curve. But we may use it to define
an addition that turns I'(F) into a group.

Definition 2.7. Let I'(F) be the set of points on an elliptic curve I' and fix a point
O € TI'(F). Then we define another binary relation by putting

+:T(F) x T'(F) — T(F)
(P,Q) — P+Q:=0x(P=xQ).

Our next aim is to verify, given the addition + with respect to some point O, that O
is the neutral element for 4+ and that all points have additive inverses.

Proposition 2.8. Let T'(IF) be the set of points on an elliptic curve I'. Assume that the
addition + is defined in the above matter by a fized point O € I'(F). Then O is the neutral
element of +, that is:

(VPeT'(F):P+O=0+P=P.

Further, each point has an inverse with respect to +:
(VPel'(F)3Qel'(F):P+Q=0
Proof. Let P € I'(F). Then
P+0O=0x%x(P*x0)=P,

since + is commutative (Observation 2.6).
For the existence of inverses, again let P € I'(IF). Defining the point @ := (O * O) * P
gives us the additive inverse of P, since

Q+P=0x(Q+«P)=0x%(0x0)=0.
So —P = (@ exists. ]

The only axiom left to verify for (I'(F),+) to become an abelian group is the associa-
tivity of +.

Proposition 2.9. The binary operation + is associative, that is for all P,Q, R € I'(IF):
P+(Q+R)=(P+Q)+R

Proof. In fact, this is not obvious, and the proof is rather lengthy. We invite the reader
to verify this geometrically using algorithm 3.5 (for a proof see e.g. J. H. Silverman,
The Arithmetic of Elliptic Curves, Springer Verlag, 1986, Chapter III, Proposition 2.2,
p5h5.). O
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Summarizing the results, we can state the following

Theorem 2.10. Let T" be an elliptic curve over a field F. Further, let T'(F) be the set of
points on I'. Then (I'(F),+, O) is an abelian group.

Actually, as we have seen, the choice of O € I'(F) is arbitrary, so after a first glance,
one might say that a different choice of O defines a different operation. However, they are
not completely different. For, if we fix another point A € I'(F), then the map

P+,@Q=P+Q—A

again defines an associative and commutative operation on the same set. So the affine
transformation X — X + A, for X € I'(F), does nothing than moving the origin, or the
neutral element O onto O + A.

Going back to the section on cryptography, we see that if we fix a point P € T'(F), then
we can define kP for k € N (and similarly for k € Z) by putting

k-P=P+---+P, (=k)-P:=—(P+---+P).
N——— —_——

k times k times

Now the logarithm problem mentioned in section 1.2 is to find the integer k given
the points P and Q = kP. This is an NP-Problem, so the task is widely believed (but
not proved yet) to be unsolvable in polynomial time. This fact is also used when using
RSA-encryption, but the logarithm problem is believed to be even harder to solve than the
factorization of a large natural number.

The aim of the next section is to establish a link between elliptic curves and Weierstrass
equations, and we introduce the projective space P" in which we can choose O such that
the addition becomes easy to calculate.

3 Classification of elliptic curves

3.1 Weierstrass equations

Recall that an elliptic curve I' over a field [F is defined to be a polynomial in two variables
of degree 3. However, it can be shown that every elliptic curve I" can be described by
another equation.

Definition 3.1. The polynomial
D:Y?Z A+ XYZ+a3Y 7%= X+ a0 X?Z +au X 7% + ag 2

defines a curve in the projective space P2. This equation is said to be a Weierstrass
equation.
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Using non-homogeneous coordinates z = % and y = %, we get the following equation:

T:y? + ayzy + asy = 23 + a2 + auz + ag

If we further assume that char(F) # 2, then we can simplify this equation by sending
y — 3(y — a1z — a3) into

I': y2 = 42> + byz? + 2byx + bg,
where by = a? + 4ag, by = 2a4 + ajaz and bg = a3 + 4ag.

Definition 3.2. Given a curve with the above representation, we define

bg 1= a%a()- + 4dagsag — ajazaq + a2a§ — ai,
cy = by — 24by,
A = —bgbg, —8bi - 27bg + 9bgb4b6,
. i
] = Z

The quantity A is called the discriminant, and j is called the j-invariant of the curve T

The j-invariant gives rise to another property of elliptic curves, that we mention for
completeness. The proposition states that two elliptic curves are equivalent (over the
algebraic closure of the field) if and only if they have the same j-invariant.

If it also happens that char(F) # 3, then the Weierstrass equation of I' can be trans-
formed into something even simpler. Hence, if char(F) ¢ {2,3}, then we may assume I" to
be given by an equation of the form

:y? =2+ Az + B,

where A and B are results of the appropiate transformation. In this case, the discriminant
and the j-invariant of I can be calculated by

| 1728(44%)
- =

We shall see now that a non-singular curve I' always has discriminant different from 0
and vice versa.

A = —16(4A% + 27B%), j

Proposition 3.3. Let I" be a curve defined by a Weierstrass equation. Then che curve I’
is an elliptic curve (i.e. a non-singular curve) if and only if the discriminant A is different
from 0.

Proof. We omit the proof here (for the proof see J. H. Silverman, The Arithmetic of Elliptic
Curves, Springer Verlag, 1986, Chapter III, Proposition 1.4 (a) (i), p50). Note that the
main ingredient for the proof is that a vanishing discriminant gives rise to multiple roots
in the polynomial, therefore to singular points. O



10 3 CLASSIFICATION OF ELLIPTIC CURVES

3.2 The projective space

We are now going to view elliptic curves in the projective space P2. First, we need to define
what we mean by a projective space.

Definition 3.4. The projective n-dimensional space P" over a field [F is defined as the set

of (n+1)-tuples (zy, . .., x,) € F*" where at least one x; # 0 and we identify two elements
if they are a scalar multiple of each other. The equivalence class of {\(xq,...,z,),\ € F}
is denoted by [z, ...,x,]|, where these xy,...,x, are called the homogeneous coordinates

of that point.

For example, if we work in R3, then every non-zero point a € R? defines a 1-dimensional
linear subspace. The intersection of this line with the plane {(z,y,2) € R?: 2 = 1}, gives
us a well-defined map from R? to P2, where a line parallel to the plane is identified with
the point [0,1,0] € P2, the "point at infinity" which has already been mentioned above.
We thus see that a point in P? can be uniquely identified with a line in R3, and vice versa.

More general, an n-dimensional linear subspace of P (assuming that n < m) uniquely
defines an (n + 1)-dimensional linear subspace in F™*!. This also holds in the reverse
direction.

3.3 The neutral element

Now, that we have established a connection between elliptic curves and Weierstrass equa-
tions and we introduced the projective space, let us review the results from section 2.3.

Recall that the main result of section 2.3 was that the set of points on an elliptic curve I
has the algebraic structure of an abelian group, denoted (I'(IF), 4, O). The most surprising
result was that we may choose the neutral element O as an arbitrary point in I'(F).

However, a good choice of O can make life easier. That is, the operation + gives a fairly
easy geometric algorithm to compute the sum of two point P and Q if O := [0,1,0] € P?
that is if O is the point at infinity. Then adding two points is done by the following
algorithm.

Algorithm 3.5 (adding points on elliptic curves). Let I' be an elliptic curve, and ['(F) be
the set of points on it. Choose O to be the point at infinity, and let P,Q € I'(F). Then
the sum P + ) can be computed geometrically as follows:

1. Draw the (unique) line A that intersects I' at the points P and Q.
2. Find the (unique) third point S where X intersects I'. Note that S = P * Q.

3. Draw another line yu, intersecting I' at R and which is parallel to the y-axis (i.e. its
intersections are S and O, the point at infinity).

4. The sum R = P + (@ is now the third intersection of p with I'.

Here is an example of that algorithm:
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4 Isogenies

4.1 Definition

As one could have suspected, the operations of addition and inversion of the abelian group
['(F) are in fact more than just group operations, the next theorem will give us a further
property of them.

Theorem 4.1. Let T be an elliptic curve and Py, Py, P € T'(F). Then the group law
operations
(P, P)— P+ P, P+——P

define morphisms.
Having noticed this fact, we can turn to isogenies.

Definition 4.2. Let I'; and I's be elliptic curves. A map ¢ : I'y — I's is called an isogeny
if and only if it preserves the structure of the group of points on it, that is, if ¢ is a
homomorphism from I'y(F) to I'y(F).

It can be shown that for any isogeny either ¢(I';) = {O} or ¢(I'y) = I'; holds. Thus
any non-trivial isogeny is an epimorphism onto I';. Furthermore, any non-singular rational
map between two elliptic curves that maps the neutral element of the first onto the one of
the second can be shown to be a homomorphism, thus an isogeny.



12 4 ISOGENIES

4.2 Other algebraic structures

Recalling Theorem 2.10, we note that isogenies are homomorphisms between (abelian)
groups, thus the isogenies itself carry an algebraic structure.

Definition 4.3. Let I'y and I'y be elliptic curves. Then Hom(I'y,I's) is defined to be the
set of all isogenies from I'y to I's.

For two isogenies ¢, 1 € Hom(I'y,I'y) we define

(o +¢)(P) = (P) +¢(P),

Lemma 4.4. Under this addition law, Hom(I'1,T's) is a group. Further, if ' = T'y = 'y,
then End(T") := Hom(I', I") which, together with the mutiplication law

(ey)(P) = @(¥(P)),

forms a ring.

Proof. This is geometrically obvious, we invite the reader to check the group and ring
axioms. ]
Further, the automorphism group Aut(I') C End(I") consists of the invertible isogenies.

Ezample 4.5. For each k € Z we can define the isogeny ¢, : I' — I' by defining ¢,,(P) =
mP for all P € I'(IF) (we set ¢o(P) = O for all P). Hence we also can regard Hom(I';, I's)
as a Z-module.

Proposition 4.6. The map p,, is non-constant provided that m # 0.

Proof. First, one shows that if char(F) # 2 and ps = ¢ implies that A = 0, so I was not
an elliptic curve, which is a contradiction. Secondly, using the fact that v, = pm o ©n,
one shows that there is a point P of order 2, that is ¢o(P) = O. But then for m odd,
obviously ¢,,(P) = P # O.

For char(F) = 2, one finds a point of order 3. O

Theorem 4.7. Let I', Ty and I'y be elliptic curves.
1. The group of isogenies Hom(I'1,'s) is a torsion-free Z-module.
2. The endomorphism ring End(T") is an integral domain.
Proof. We assume that for ¢ € Hom(I'1,I'y) and for k € Z
Pk © P = Po-

Now by Propostion 4.6, we see that either k£ = 0 or ¢ = g, so Hom(I';,T's) is torsion-free.

This result shows that End(I") has characteristic 0. But now, if ¢,¢ € End(I") and
Y o1 = g, then either one must be the constant map. Hence End(I") is an integral
domain. [
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As we see from these results, elliptic curves contain even more structure than announced
in the introduction. The isogenies of two different groups also form a group, and the
isogenies from one curve to itself even carry a ring structure which can be investigated.

Finally, we now have a glance into further analysis of elliptic curves using isogenies.
In fact, one uses the maps ¢, as discussed above to study the torsion subgroup of I'(F).
These are all points such that ¢,,(P) = O. Note that in general the torsion groups are
different for different integers m.

Further, by some properties that will not be discussed in this paper, one can deduce
the structure of the (finite) torsion group for a fixed n.

Another main result is that any morphism between two elliptic curves can be decom-
posed into an isogeny and a translation.

But this is beyond the scope of this paper.



