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Credit will be given for the best 6 questions answered. Logarith-
mic tables will be available.

1. Show that if a, b ∈ Z and gcd(a, b) = d then there exist u, v ∈ Z such
that

au + bv = d.

Show that if m, n ∈ N with gcd(m, n) = 1 and r, s ∈ Z then there is an
x ∈ Z such that

x ≡ r mod m, x ≡ s mod n.

What is the smallest integer x > 0 such that

x ≡ 3 mod 28, x ≡ 5 mod 101?

Answer:

(a) Consider the set S of integers of the form

au + bv (u, v ∈ Z).

Let d be the smallest integer > 0 in S. We claim that

d = gcd(a, b).

Firstly,
d | a;

for otherwise we could divide a by d,

a = qd + r,

with 0 < r < d, and then r ∈ S, contradicting the minimality of
d.



Similarly
d | b.

Conversely,
e | a, b =⇒ e | d.

Hence
d = gcd(a, b),

and the result follows.

[For an alternative proof, carry out the Euclidean algorithm to
compute gcd(a, b):

a = bq1 + r1, (0 < r1 < b),

b = r1q2 + r2, (0 < r2 < r1),

r1 = r2q3 + r3, (0 < r3 < r2),

until finally
rn−1 = rnqn+1,

with rn+1 = 0.

Then it follows, working backwards, that

rn = gcd(a, b).

It also follows, working backwards, that rn can be expressed in the
form

rn = ri−1ui + rivi

with ui, vi ∈ Z; and so, finally,

rn = au + bv.]

(b) Consider the map

Θ : Z/(mn) → Z/(m)× Z/(n)

under which

r mod mn 7→ (r mod m, r mod n).

This map is injective. For suppose

r mod m = s mod m, r mod n = s mod n,



ie

m | r − s, n | r − s.

Then
mn | r − s,

since gcd(m, n) = 1, ie

r mod mn = s mod mn.

But each of the two sets Z/(mn) and Z/(m)×Z/(n) contains mn
elements. Hence

Θ injective =⇒ Θ surjective.

In other words, given any r, s ∈ Z we can find x ∈ Z such that

Θ(x) = (r, s),

ie

x mod m = r, x mod n = s.

(c) Let us use the Euclidean Algorithm (slightly modified, to allow
negative remainders) to determine gcd(28, 101):

101 = 28 · 4− 11,

28 = 11 · 3− 5,

11 = 5 · 2 + 1.

Thus gcd(28, 101) = 1 (as is obvious anyway by factoring); and
working backwards,

1 = 11− 2 · 5
= 11− 2(3 · 11− 28)

= 2 · 28− 5 · 11

= 2 · 28− 5(4 · 28− 101)

= 5 · 101− 18 · 28.

Thus
5 · 101 ≡ 1 mod 28, 18 · 28 ≡ −1 mod 101.



It follows that
n = 3 · 5 · 101− 5 · 18 · 28

satisfies
n ≡ 3 mod 28, n ≡ 5 mod 101.

The general solution of these simultaneous congruences will be

m = n + 28 · 101 q

with q ∈ Z.

We have to choose q so that

0 ≤ m < ·28 · 101,

ie

m =
[ n

28 · 101

]
.

Computing,

n = 15× 101− 90 · 28

= 1515− 2520

= −1005

Hence

m = 28 · 101− 1005

= 2828− 1005

= 1823.

[Of course any method of arriving at this result would be valid.]

2. Show that if 2m + 1 is prime then m = 2n for some n ∈ N.

Show that the Fermat number

Fn = 22n

+ 1,

where n > 0, is prime if and only if

322n−1 ≡ −1 mod Fn.

Use this test to determine the primality of F3.

Answer:



(a) If r is odd then
x + 1 | xr + 1.

Thus if m contains an odd factor r, say m = rs, then

2s + 1|2rs + 1.

It follows that if 2m + 1 is prime then m has no odd factors, ie
m = 2n for some n.

(b) Suppose Fn is prime.

We assume the following result.

Lemma 2.1. If p is an odd prime then

a
p−1
2 ≡

(
a

p

)
mod p

for any a coprime to p.

Applying this with p = Fn,

322n−1 ≡
(

3

p

)
mod p.

Since
Fn ≡ 1 mod 5

it follows by Gauss’ Recipricity Law that(
3

p

)
=

(
p

3

)
.

But
22n ≡ 1 mod 3

(since 32 ≡ 1),
p = Fn ≡ 2 mod 3.

Thus (
p

3

)
=

(
2

3

)
= −1.

It follows that

322n−1 ≡ −1 mod p.



(c) Conversely, suppose

322n−1 ≡ −1 mod Fn.

Suppose Fn is composite, say

Fn = qr,

where q is prime. Then

322n−1 ≡ −1 mod q.

It follows that the order of 3 mod q is 22n
. But we know that

3q−1 ≡ 1 mod q.

It follows that

22n | q − 1,

ie

Fn − 1 | q − 1,

which is impossible since q < Fn,

(d) Since

F3 = 223

+ 1 = 28 + 1 = 257,

we must compute
327

= 3128 mod 257.

We know that the order of 3mod ; 257 divides 256, ie it is a power
of 2. And

3256 ≡ 1 mod 257 =⇒ 3128 ≡ ±1 mod 257;

while
3128 ≡ 1 mod 257 ⇐⇒ 364 ≡ ±1 mod 257.

We have to show that this is not the case.

Now
35 = 3 · 81 = 243.

Thus
35 ≡ −14 mod 257.



Hence
310 ≡ 142 = 196 ≡ −61 mod 257,

and so
312 ≡ −9 · 61 = −549 ≡ −35 mod 257.

Thus
314 ≡ −315 ≡ 58 mod 257,

and
316 ≡ 522 ≡ 8 = 23 mod 257,

Hence
332 ≡ 26 mod 257,

and so

364 ≡ 212 = 4096 = 4 · 1024 ≡ 4 · −4 = −16 mod 257.

So
3128 ≡ 162 ≡ −1 mod 257,

and we conclude that F3 is prime.

3. Define the Jacobi symbol

(
m

n

)
for m ∈ N, n ∈ Z with m odd. As-

suming Gauss’ Law of Quadratic Reciprocity, show that if m, n ∈ N
are both odd then (

m

n

)(
n

m

)
= (−1)

m−1
2

n−1
2 .

Prove that the odd number n ∈ N is prime if and only if

a
n−1

2 ≡
(

a

n

)
mod n

for all a coprime to n.

Answer:

(a) If
m = p1 · · · pr, n = q1 · · · qs,

with pi, qj prime, then the Jacobi symbol is defined by(
m

n

)
=

∏
1≤i≤r, 1≤j≤s

(
pi

qj

)
.



(b) Gauss’ Law states that(
p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2 .

It follows that (
m

n

) (
n

m

)
=

∏
i,j

(
pi − 1

2

qj − 1

2

)
.

Lemma 3.1. If u, v are odd then

uv − 1

2
≡ u− 1

2
+

v − 1

2
mod 2.

Proof. If u, v are odd then

(u− 1)(v − 1) ≡ 0 mod 4,

ie

(uv − 1) ≡ (u− 1) + (v − 1) mod 4,

or

uv − 1

2
≡ u− 1

2
+

v − 1

2
mod 2.

which is evident.

Repeated application of this Lemma gives

m− 1

2
≡

∑
i

pi − 1

2
,

n− 1

2
≡

∑
j

qj − 1

2
.

Multiplying these together,

m− 1

2

n− 1

2
=

∑
i,j

pi − 1

2

qj − 1

2

=

(
m

n

) (
n

m

)
.



(c) Suppose n is prime. Then

an−1 ≡ 1 mod n =⇒ a
n−1

2 ≡ ±1 mod n.

Suppose

(
a

n

)
= 1. Then

a ≡ b2 =⇒ a
n−1

2 ≡ bn−1 ≡ 1 mod n.

Now the equation

x
n−1

2 = 1

in the finite field Fn = Z/(n) has at most (n − 1)/2 roots. But
there are (n− 1)/2 quadratic residues. Hence

a
n−1

2 ≡ 1 mod n ⇐⇒
(

a

n

)
= 1.

Conversely, suppose this holds for all a coprime to n; and suppose
n is not prime.

Then n must be square-free. For suppose

n = peq,

where p is prime and gcd(p, q) = 1.

By hypothesis
an−1 ≡ 1 mod n

for all a coprime to n. Hence

an−1 ≡ 1 mod pe,

ie the order of a mod pe divides n− 1.

Since φ(pe) = pe−1(p− 1), the order of

a ∈ (Z/pe)×

divides pe−1(p − 1); and it is easy to see that there are elements
whose order is divisible by p, eg a = 1 + p is such an element,
since

ap−1 ≡ 1 + (p− 1)p ≡ 1− p mod p2,

so the order of a does not divide p− 1.



By the Chinese Remainder Theorem we can find a such that

a ≡ 1 + p mod pe, a ≡ 1 mod q.

Then a is coprime to n, and p divides the order of a mod n.
Hence

p | n− 1,

which is absurd.

Thus
n = p1p2 · · · pr,

with distinct primes pi.

We can certainly find an a with(
a

n

)
= −1,

eg by the Chinese Remainder Theorem we can find a such that a is
a quadratic non-residue mod p1 and a quadratic residue modulo
the other pi. Then

a
n−1

2 ≡ −1 mod n,

and so

a
n−1

2 ≡ −1 mod pi

for each i.

Suppose
2e ‖ n− 1,

ie 2e | n− 1 but 2e+1 - n− 1. [In other words,

n− 1 = 2em,

where m is odd. Note that in the following argument, we are only
concerned with the power of 2 dividing the order of an element; if
you like we are concerned with the 2-adic value of the order.]

Then the order of a mod n is divisible by 2e; hence the order of
a mod pi is also divisible by 2e. Thus

2e | pi − 1,



ie

pi ≡ 1 mod 2e

for each i.

But now choose a so that it is a quadratic non-residue mod p1

and mod p2 but a quadratic residue modulo the other pi. Then(
a

n

)
= (−1)(−1)1 · · · 1 = 1.

Hence

a
n−1

2 ≡ 1 mod n,

and so

a
n−1

2 ≡ 1 mod p.

Thus if
2f ‖ order(a mod p)

then
f ≤ e− 1;

while on the other hand, since 2e | p− 1,

a
p−1
2 ≡ −1 mod p =⇒ f ≥ e.

We conclude that n must be prime.

Remarks:

(a) I’ve removed the part of this question which read:

Apply this test to determine the primality (or otherwise)
of 10013.

I think I gave this question as homework in an earlier year when
the course covered computer methods for primality testing and fac-
torisation. I guess I expected the student to write a computer pro-
gram to solve this question. I certainly don’t see any way of solving
it ‘by hand’ in the time available in an exam!

Running the program /usr/ games/ factor 10013 on the Maths
computer system tells me that

10013 = 17 · 19 · 31.



Recall that if p is an odd prime then(
2

p

)
=

{
1 if p ≡ ±1 mod 8,

−1 if p ≡ ±3 mod 8.

Since
10013 ≡ 5 ≡ −3 mod 8

it follows that (
2

10013

)
= −1.

Thus if n = 10013 is prime then

25006 ≡ −1 mod 10013.

It is easy to compute this, knowing the factorisation of n.

The order of 2 mod 17 is 5 since

24 = 16 ≡ −1 mod 17.

The order of 2 mod 31 is 5 since

25 = 32 ≡ 1 mod 31.

It remains to compute the order of 2 mod 19. This order divides
19− 1 = 18. Since it is not 2 or 3, it must be 6, 9 or 18.

We have
26 = 64 ≡ 7 mod 19.

Hence
29 ≡ 8 · 7 = 56 ≡ −1 mod 19.

Thus the order of 2 mod 19 is 18.

Since
5006 mod 5 = 1, 5006 mod 18 = 2,

it follows that

25006


≡ 1 mod 17,

≡ 2 mod 19,

≡ 1 mod 31.

So certainly
25006 6≡ −1 mod 10013.



In fact this argument shows that

210012


≡ 1 mod 17,

≡ 4 mod 19,

≡ 1 mod 31.

So
210012 6≡ 1 mod 10013,

and 10013 fails even Fermat’s primality test.

(b) The method suggested in the question is a perfectly sensible prob-

abilistic primality test, since it is easy to compute

(
a

n

)
using the

generalised Reciprocity Law given earlier in the question. It could
be used as an alternative to the standard Miller-Rabin probabilistic
primality test.

Let us recall the Miller-Rabin test for the primality of n.

Let
n− 1 = 2em,

where m is odd.

If n is prime then

a2em ≡ 1 mod n =⇒ a2e−1m ≡ ±1 mod n.

If now
a2e−1m ≡ 1 mod n

then
a2e−2m ≡ ±1 mod n.

Continuing in this way, we conclude that if gcd(a, n) = 1 then
either

a2f m ≡ −1 mod n

for some f ∈ [0, e− 1], or else

am ≡ 1 mod n.

Conversely, if this is true for all a coprime to n then n must be
prime.



The proof is very similar to that in the question, and depends in
the same way on the power of 2 dividing the order of a modulo
different numbers. To simplify the discussion, let us write

v(a, n) = e

if the order of a mod n is r and

2e ‖ r.

It is not difficult to see that

a2f m ≡ −1 mod n ⇐⇒ v(a, n) = f + 1.

But if p | n then

a2f m ≡ −1 mod n =⇒ a2f m ≡ −1 mod p =⇒ v(a, p) = f + 1.

Thus
v(a, p) = v(a, n)

if p | n. In particular, v(a, p) is the same for all primes dividing
n.

But it is easy to see that this cannot be the case if two distinct
primes p, q | n.

For by the Chinese Remainder Theorem we can find a which is
a quadratic residue mod p and a quadratic non-residue mod q.
Then

a
p−1
2 ≡ 1 mod p, a

q−1
2 ≡ −1 mod q.

On the other hand, we can find b which is a quadratic non-residue
mod p and a quadratic residue mod q. Then

b
p−1
2 ≡ −1 mod p, b

q−1
2 ≡ 1 mod q.

But it follows from these that

v(a, p) < v(b, p), v(a, q) > v(b, q),

which is clearly incompatible with

v(a, p) = v(a, q), v(b, p) = v(b, q).

It only remains to deal with the case

n = pe.

But as we saw in our proof, it is easy to find a in this case such
that

an−1 6≡ 1 mod n.



4. Show that every irrational number α ∈ R\Q has an infinity of rational
approximations x/y with

|α− x

y
| < 1

y2
.

Find five such approximations for
√

2.

Suppose m > 1 is square-free. Show that the equation

x2 −my2 = 1

has an infinity of solutions.

Answer:

(a) Choose any integer N > 0, and consider the remainders

{0α}, {1α}, {2α}, . . . {Nα},

where
{x} = x− [x].

These N + 1 numbers lie in the interval [0, 1). Let us divide this
interval into N equal parts

[0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N, 1).

Two of the remainders, say {rα}, {sα} with r < s, must fall into
the same sub-interval.

But then

|{sα} − {rα}| < 1

N
.

In other words,

|sα− [sα]− (rα− [rα])| < 1

N
.

On setting
x = [sα]− [rα], y = s− r,

this can be written

|yα− x| < 1

N
,

from which the result follows since

y ≤ N.



(b) We can get approximants to
√

2 from its continued fraction:

√
2 = 1 + (

√
2− 1),

and

1√
2− 1

=
√

2 + 1

= 2 + (
√

2− 1).

Thus √
2 = [1, 2, 2, 2, . . . ].

The approximants are
pn

qn

where
pn = anpn−1 + pn−2, qn = anqn−1 + qn−2,

with

p0 = a0 = 1, q0 = 1, p1 = a0a1 + 1 = 2, q1 = a1 = 1.

The first 6 approximants are

1

1
,

2

1
,

2 · 2 + 1

2 · 1 + 1
=

5

3
,

2 · 5 + 2

2 · 3 + 1
=

12

7
,

2 · 12 + 5

2 · 7 + 3
=

29

17
,

2 · 29 + 12

2 · 17 + 7
=

70

41
.

These all satisfy

|α− pn

qn

| < 1

qnqn+1

<
1

q2
n

.



(c) Here is an alternative solution to Pell’s equation

x2 −my2 = 1

based on the fact that the continued fraction for
√

m is periodic:
say √

m = [a0, . . . , a`−1, ȧn, . . . , ˙an+k],

ie the continued fraction for
√

m starts with an initial sequence of
length `, followed by a repeated sequence of length k.

Let pn/qn be the successive approximants, so that

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2;

and let
αn = [an, an+1, . . . ],

so that √
m = [a0, ..., an−1, αn] =

un

vn

,

where
un = αnpn−1 + pn−2, vn = αnqn−1 + qn−2.

Then
αn = αn+k

if n ≥ `, or more generally

αn = αn+kj

for j ≥ 0.

We know that
pnqn−1 − qnpn−1 = (−1)n.

[This is readily proved by induction on n.] Thus if we set

Mn =

(
pn−1 pn−2

qn−1 qn−2

)
then

det Mn = (−1)n−1.

In particular Mn is unimodular, ie its inverse is also an integer
matrix.

Now

Mn

(√
m
1

)
=

(
un

vn

)



Since
αn+k = αn

if n ≥ `,
un+k/vn+k = un/vn

Thus (
un+k

vn+k

)
= λ

(
un

vn

)
for some λ.

It follows that

Mn+k

(√
m
1

)
= λ Mn

(√
m
1

)
.

Hence if we set

M = M−1
n Mn+k =

(
a b
c d

)
then

M

(√
m
1

)
= λ

(√
m
1

)
,

ie

a
√

m + b = λ
√

m, c
√

m + d = λ.

Eliminating λ,

a
√

m + b =
√

m(c
√

m + d),

ie

(b− cm) + (a− d)
√

m = 0.

Thus
b = cm, a = d.

But
det M = ad− bc = ±1,

according as k is even or odd; and so

a2 −mb2 = ±1.

Since we can replace k by kj, this gives a solution — in fact an
infinity of solutions — of Pell’s equation

x2 −my2 = 1.



5. Determine the ring A of integers in the field Q(
√

5), and show that the
Fundamental Theorem of Arithmetic holds in this ring.

The Fibonacci numbers ui are defined by the recursion relation

u0 = 0, u1 = 1, ui+1 = ui + ui−1.

Suppose p 6= 5 is a prime number. Show that

p | up−1 if p ≡ ±1 mod 5,

while
p | up+1 if p ≡ ±2 mod 5,

Answer:

(a) We assume the following result.

Lemma 5.1. The algebraic number α is an algebraic integer if
and only if its minimal polynomial m(x) over Q has integer coef-
ficients.

Suppose
α = u + v

√
5 ∈ Z̄

where u, v ∈ Q.

Then α satisfies the equation

(x− u)2 = 5v2,

ie

f(x) = x2 − 2ux + (u2 − 5v2) = 0.

If v = 0 then the minimal polynomial of α is

m(x) = x− u;

so α ∈ Z̄ if and only if u ∈ Z.

If v 6= 0 then f(x) must be the minimal polynomial of α. Thus

α ∈ Z̄ ⇐⇒ 2u, u2 − 5v2 ∈ Z.

Hence
u =

a

2
,



with a ∈ Z. Also

5v2 − a2

4
∈ Z,

and so
5v2 =

c

4
,

with c ∈ Z. It follows that

v =
b

2

with b ∈ Z.

But now

u2 − 5v2 =
a2 − 5b2

4
.

Thus
a2 − 5v2 ≡ 0 mod 4.

Since
n2 ≡ 0 or 1 mod 4,

this holds if and only if a, b are both odd or both even.

We conclude that the integers in Q(
√

5) are the numbers of the
form

a + b
√

5

2
,

where a, b ∈ Z and a ≡ b mod 2.

In other words, the integers are the numbers

m + nθ (m, n ∈ Z)

where

θ =
1 +

√
5

2
.

6. Define an ideal a in a commutative ring A.

What is meant by saying that a is prime?

Show that a maximal ideal is necessarily prime. Does the converse
hold?

Sketch the proof that in a number ring every ideal is a product of prime
ideals, unique up to order.

Answer:



(a) An ideal a ⊂ A is a non-empty subset such that

i. a, b ∈ a =⇒ a + b ∈ a;

ii. a ∈ A, b ∈ a =⇒ ab ∈ a.

(b) The ideal a 6= A is prime if

ab ∈ a =⇒ a ∈ atextorb ∈ a.

[An alternative, equivalent, definition is: The ideal p 6= A is prime
if

ab ⊂ p =⇒ a ⊂ p or b ⊂ p

for any two ideals a, b ⊂ A.]

(c) Suppose the ideal a ⊂ A is maximal; and suppose

ab ∈ a.

Consider the ideal

a′ = a + (a) = {x + ay : x ∈ a, yinA}.

Evidently
a ⊂ a′ ⊂ A.

Hence, from the maximality of a,

a′ = a or A.

Thus if a /∈ a then a′ = A. In that case, 1 ∈ a′, ie

x + ay = 1

for some x ∈ a, y ∈ A. But then, multiplying by b,

b = bx + (ab)y,

Since x, ab ∈ a it follows that

b ∈ a.

Thus a is prime.

(d) No. The ideal (0) ⊂ Z is prime but not maximal.

(e) i. Suppose A is a number ring.



Lemma 6.1. As an abelian group, A is finitely-generated:

A ∼= Zr.

It follows from this that every ideal a ⊂ A is also finitely-
generated as an abelian group.

Lemma 6.2. Every non-zero ideal a ∈ A contains a non-zero
rational integer n ∈ Z.

Lemma 6.3. If a ∈ A is a non-zero ideal then the quotient-
ring A/a is finite.

We define the norm of a non-zero ideal a ⊂ A as

|a| = #(A/a),

and set
|(0)| = 0.

Lemma 6.4. A finite integral domain is a field.

Lemma 6.5. Every non-zero prime ideal p ⊂ A is maximal.

Lemma 6.6. Every non-zero ideal a ⊂ A contains a product
of maximal ideals:

p1 · · · pr ⊂ a.

Proof. We argue by induction on |a|.
If a is prime, the result is immediate.
If not then there exist elements a, b ∈ A such that

ab ∈ a, a, b /∈ a.

Then
(a + (a))(a + (b)) ⊂ a.

By the inductive hypothesis,

p1 · · · pr ⊂ a + (a), q1 · · · qs ⊂ a + (b).

Then
p1 · · · prq1 · · · qs ⊂ a.

Suppose A is an integral domain with field of fractions k. A
fractional ideal is a non-empty subset a ⊂ k such that ca is
an ideal in A for some non-zero c ∈ k.



If a is a fractional ideal then we set

a−1 = {c ∈ k : ca ⊂ A}.

It is easy to see that a−1 is a fractional ideal, and that

A ⊂ a−1.

The non-zero fractional ideal a is said to be invertible if

aa−1 = A.

This is the same as saying that there is a fractional ideal b

such that
ab = A.

The ideal a ⊂ A is invertible if and only if there is an ideal
b ⊂ A such that

ab = (c),

where c ∈ A is non-zero.
If c ∈ A, c 6= 0 and

(c) = a1 · · · ar

then the ideals a1, . . . , ar are all invertible.
We assume again that A is a number ring.

Lemma 6.7. If p ⊂ A is maximal then

p−1 6= A.

Proof. Choose c ∈ p, c 6= 0. Then there exist maximal ideals
p1, . . . , pr such that

p1 · · · pr ⊂ (c).

Let us assume that r is minimal.
Since

p1 · · · pr ⊂ (c) ⊂ p,

one of pi = p. Let us assume that p1 = p.
Choose a ∈ p2 · · · pr, a /∈ (c). Then

ap ⊂ (c) but a /∈ (c).

It follows that

ac−1 ∈ p−1 but ac−1 /∈ A.



Lemma 6.8. Every maximal ideal p ⊂ A is invertible.

[This is the main Lemma, and the only one that makes use of
the fact that A consists of algebraic integers.]

Proof. Clearly
A ⊂ p−1,

so
pp−1 = p or A.

In the second case p is invertible. Suppose then that

pp−1 = p;

and suppose α ∈ p−1. Then

αp ⊂ p.

It follows that α is an algebraic integer, ie

α ∈ k ∩ Z̄ = A.

Thus
p−1 ⊂ A.

But we saw earlier that this was not the case; hence p is
invertible.

Lemma 6.9. Every non-zero ideal a ⊂ A is expressible as a
product of prime ideals.

Proof. We argue by induction on |a|. If a is prime there is
nothing to prove. Otherwise (from a Lemma above) we can
find maximal ideals p1, . . . , pr such that

p1p2 · · · pr ⊂ a.

Let us assume that this is a minimal solution, ie there is no
such product with < r maximal ideals.
We know that p1 is invertible. Hence

p2 · · · pr ⊂ p−1
1 a.

But p−1
1 a is strictly larger than a, since otherwise

p2 · · · pr ⊂ a,



contrary to the minimality of r.
Thus

|p−1
1 a| < |a|,

and so, by the inductive hypothesis,

p−1
1 a = q1 · · · qs,

with q1, . . . , qs maximal.
But then, multiplying by p,

a = p1q1 · · · qs.

Lemma 6.10. The expression of a non-zero ideal a ⊂ A as
a product of maximal ideals is unique up to order.

Proof. We argue by induction on the minimal number of ide-
als in such an expression.
Suppose

a = p1 · · · pr = q1 · · · qs.

Then
q1 ⊂ p1 · · · pr =⇒ q1 = pi

for some i.
We may suppose, after re-ordering the pi if necessary, that
q1 = p1. Hence, multiplying by p−1

1 ,

p−1
1 a = p2 · · · pr = q2 · · · qs,

and the result follows by the inductive hypothesis.

7. Show that the integral

Γ(s) =

∫ ∞

0

e−xxs−1 dx

converges for all s ∈ C with <(s) > 0.

Show how Γ(s) can be extended to a meromorphic function in the whole
of C, and determine its poles and zeros.

Answer:



(a) If x ∈ [0,∞) then
|xs| = xσ

where σ = <(s). Since

e−xxn → 0 as x →∞

for all n, the integral converges at the top for all s.

At the bottom,
|xs−1| < x−(1+ε)

if <(s) > ε. Hence the integral converges at the bottom if <(s) > 0.

(b) If <(s) > 0 then, on integrating by parts,

Γ(s + 1) =

∫ ∞

0

e−xxs dx

=
[
−e−xxs

]∞
0

+ s

∫ ∞

0

e−xxs−1 dx

= s

∫ ∞

0

e−xxs−1 dx

= s Γ(s).

Thus

Γ(s) =
Γ(s + 1)

s
.

Now the right-hand side is meromorphic in <(s) > −1, with a
single simple pole at s = 0; so this formula defines an analytic
continuation of Γ(s) to <(s) > −1.

But repeating this argument, for any integer r > 0,

Γ(s) =
Γ(s + r

s(s + 1) · · · (s + r − 1)
,

defining an analytic continuation of Γ(s) to <(s) > −r.

In this way Γ(s) is extended to a meromorphic function in the
whole plane C, with poles at s = 0,−1,−2, . . . .

We assume the following result:

Lemma 7.1. For all s ∈ C \ Z,

Γ(s) Γ(1− s) =
π

sin πs
.



[This identity can be established in various ways. Perhaps the
neatest is via the identity∫ 1

0

tu−1(1− t)v−1dt =
Γ(u)Γ(v)

Γ(u + v)
,

which can be established by expressing Γ(u)Γ(v) as a double inte-
gral.]

It follows from this result that Γ(s) has no zeros, since sin πs has
no poles.

8. Show that the series

ζ(s) = 1 + 2−s + 3−s + · · ·

converges for all s ∈ C with <(s) > 1.

Does it converge for any s with <(s) = 1?

Show how ζ(s) can be extended to a meromorphic function in <(s) > 0.

Answer:

(a) If s = σ + it then

ns = es log n = eσ log n eit log n.

Hence
|ns| = eσ log n = nσ.

Now ∑
n−σ

converges if σ > 1, by comparison with∫
x−σ =

[
1

1− σ
x1−σ

]
.

[We are using the fact that if f(x) is increasing and > 0 then∑
f(n) and

∫
f(x)dx converge or diverge together.]

It follows that ∑
n−s

is absolutely convergent for <(s) > 1.



(b) The series ∑
n−s

does not converges for any s on the real line <(s) = 1.

The result is obvious if s = 1, so we may suppose that

s = 1 + it,

where t 6= 0.

We have

n−s =
1

n
n−it

=
1

n
e−it log n.

Thus

<(n−s) =
1

n
cos(t log n);

so it is sufficient to show that∑
n

1

n
cos(t log n)

is divergent.

Choose a large integer m, and consider the terms in the interval

2mπ ≤ t log n ≤ (2m + 1/4)π,

ie

e2mπ/t ≤ n ≤ e(2m+1/4)π/t = e2mπ/t eπ/4t

Within this range,

cos(t log n) ≥ cos π/4 = 1/sqrt2,

while
1

n
> e−(2m+1/4)π/t = Ce−2mπ/t,

where
C = e−π/4t.

The length of the interval is

C ′e2mπ/t,



where
C ′ = eπ/4t − 1 > 0.

Thus the number of integers in the interval is

> C ′e2mπ/t − 1.

Hence the contribution of these terms — all positive — is

>
CC ′
√

2
− C√

2
e−2mπ/t

>
CC ′

2

for sufficiently large M .

We conclude that the series is not convergent.

(c) We can use Riemann-Stieltjes integration by parts to continue ζ(s)
analytically to <(s) > 0

Let
f(x) = [x], g(x) = x− [x].

Then
g(x) = x− f(x),

and so

N∑
1

n−s = 1 +

∫ N

1

x−sdf(x)

= 1 +

∫ N

1

x−sdx−
∫ N

1

x−sdg(x).

Now ∫ N

1

x−sdx =
1−N−s+1

s− 1
→ 1

s− 1
as N →∞

if <(s) > 1, while∫ N

1

x−sdg(x) =
[
x−sg(x)

]N

1
+ s

∫ N

1

x−s−1g(x)dx

→ 1 + s

∫ ∞

1

x−s−1g(x)dx

Thus

ζ(s) =
1

s− 1
+ s

∫ ∞

1

x−s−1g(x)dx



if <(s) > 1.

Since g(x) is bounded, the integral on the right is convergent in
<(s) > 0, and defines a holomorphic function there. This formula
therefore defines an analytic continuation of ζ(s) to <(s), as a
meromorphic function with a single simple pole at s = 1 (with
residue 1).

9. Outline the proof of Dirichlet’s Theorem, that there are an infinity of
primes in any arithmetic sequence dn + r with gcd(r, d) = 1.

Answer:

(a) Let χ be a character of the group (Z/d)×. We extend χ to a
function on Z/(d) by setting

χ(a) = 0 if gcd(a, d) > 1;

and we then extend this to a function

χ : Z → C.

(b) We define the corresponding L-function by

Lχ(s) =
∑

n

χ(n)

n−s
.

(c) This series converges absolutely for <(s) > 1, and so defines a
holomorphic function there.

(d) If χ 6= χ0, the principal character mod d (corresponding to the
trivial character of (Z/d)×) then∑

0≤n≤d

χ(n) = 0.

[This follows from the orthogonality of the characters.]

(e) If χ 6= χ0 then the series converges for <(s) > 0, and so defines a
holomorphic function there.

[This follows from the fact that the partial sums

S(x) =
∑

0≤n≤x

χ(n)



are bounded. For

Lχ(s) =

∫ ∞

1−
x−sdS(x)

=
[
x−sS(x)

]∞
1− + s

∫
x−s−1S(x)dx

= s

∫
x−s−1S(x)dx

and the integral on the right converges for <(s) > 0, since S(x) is
bounded.]

(f) The L-function can also be analytically continued to <(s) > 0 if
χ = χ0, but in this case the function has a simple pole at s = 1.

[This follows on setting

T (x) =
φ(d)

d
x− S(x).

For T (x) is bounded, and

 Lχ0(s) =

∫ ∞

1−
x−sdS(x)

=

∫ ∞

1−
x−s(φ(d/d)dx−

∫ ∞

1−
x−sdT (x)

=
φ(d)

d

1

s− 1
+ s

∫ ∞

1

x−s−1T (x)dx,

on integrating by parts. Since T (x) is bounded, the integral is
convergent in <(s) > 0 and defines a holomorphic function there.]

(g) Lχ(s) satisfies the Euler Product Formula

Lχ(s) =
∏

p

(
1− χ(p)

ps

)−1

for <(s) > 1.

(h) It follows by logarithmic differentiation that

L′χ(s)

Lχ(s)
= −

∑
p

log pp−s + hχ(s),

where hχ(s) is holomorphic in <(s) > 1/2.



(i) The characters of a finite abelian group G form a basis for the
functions on G.

In particular, we can find a linear combination

f(n) =
∑

χ

cχ χ(n)

of the characters of (Z/d)× such that

f(n) =

{
1 if n = r,

0 if n 6= r.

Since ∑
0≤n≤d

χ(n) =

{
0 if χ 6= χ0,

φ(d) if χ = chi0,

it follows that

cχ0 =
1

φ(d)
.

(j) If now we take the same linear combination of the L-functions we
see that ∑

χ

cχ

L′χ(s)

Lχ(s)
= −

∑
p≡r mod d

log pp−s + h(s),

where h(s) is holomorphic in <(s) > 1/2.

10. If there are only a finite number of primes p ≡ r mod d then the
function on the right is holomorphic in <(s) > 1/2.

However, the term on the left corresponding to χ0 has a simple pole at
s = 1 since Lχ0(s) has a pole there.

11. The proof is not quite complete, since if any of the L-functions had
a zero at s = 1 this would contribute a pole on the left, which might
cancel out the pole from the χ0 term.

Lemma 11.1. Lχ(1) 6= 0 for any L-function.

With this the proof of Dirichlet’s Theorem is complete.

[I gave a proof of the Lemma in the course, but there was a gap in it;
it was only valid if χ is non-real.



If χ is real (but 6= χ0), ie
χ(n) = ±1

for all n, then a rather complicated calculation shows that

Lχ(1) > 0,

and so completes the proof of the Theorem.]


