Course 428 — Sample Paper 2

Timothy Murphy
24 April 2006

Credit will be given for the best 6 questions answered. Logarith-
mic tables will be available.

. Show that if a,b € Z and ged(a,b) = d then there exist u,v € Z such
that
au+bv =d.

Show that if m,n € N with ged(m,n) = 1 and r, s € Z then there is an
x € Z such that

r=rmodm, xz=smodn.

What is the smallest integer x > 0 such that

r=3mod 28, z=>5mod 1017

Answer:

(a) Consider the set S of integers of the form
au+bv  (u,v € Z).
Let d be the smallest integer > 0 in S. We claim that
d = ged(a,b).

Firstly,
d | a;

for otherwise we could divide a by d,
a=qd-+r,

with 0 < r < d, and then r € S, contradicting the minimality of
d.



Similarly
d|b.

Conversely,
ela,b = eld.

Hence

d = ged(a, b),

and the result follows.

[For an alternative proof, carry out the Euclidean algorithm to
compute ged(a, b):

a:bql—l—ﬁ, (O<T1<b),
b:’/’1QQ+7’2, (O<T2<T1),
rL=Traq3 + 13, (0 <713 <1),

until finally

T'n—1 = TnQn+1,
with rpyq = 0.
Then it follows, working backwards, that

r, = ged(a, b).

It also follows, working backwards, that r, can be expressed in the
form
Ty = Ti_1U; + T50;

with u;,v; € Z; and so, finally,
T = au + bv.]
(b) Consider the map
6 : Z/(mn) — Z/(m) x Z/(n)
under which
r mod mn +— (r mod m,r mod n).
This map is injective. For suppose

r mod m = s mod m, r mod n = s mod n,



(c)

ie
ml|r—s, n|r—s.

Then
mn | r—s,

since ged(m,n) = 1, ie
r mod mn = s mod mn.

But each of the two sets Z/(mn) and Z/(m) x Z/(n) contains mn
elements. Hence

O injective =—> O surjective.
In other words, given any r,s € Z we can find x € Z such that
O(x) = (r,s),
1€
rmod m =r, x modn = s.

Let us use the Fuclidean Algorithm (slightly modified, to allow
negative remainders) to determine ged(28,101):

101 = 28 -4 — 11,
28 =11-3 5,
11=5-2+1.

Thus ged(28,101) = 1 (as is obvious anyway by factoring); and
working backwards,

1=11-2-5
=11 —2(3-11 — 28)
—2.28-5-11
—2.28 —5(4-28 —101)
—5.101 — 18- 28.

Thus
5-101 =1 mod 28, 18-28 = —1 mod 101.



It follows that
n=3-5-101—-5-18-28

satisfies
n =3 mod 28, n =5 mod 101.

The general solution of these simultaneous congruences will be
m=n-+28-101 ¢

with q € Z.
We have to choose q so that

0<m<-28-101,

1e
1)
m = .
28 - 101
Computing,
n =15 x 101 — 90 - 28
= 1515 — 2520
= —1005
Hence

m = 28 - 101 — 1005
= 2828 — 1005
= 1823.

[Of course any method of arriving at this result would be valid.]

2. Show that if 2 4 1 is prime then m = 2" for some n € N.
Show that the Fermat number

F,=2%"+1,

where n > 0, is prime if and only if

M —

32 7' = 1 modF,.

Use this test to determine the primality of Fj.

Answer:



(a) If r is odd then
r+1]2"+1.

Thus if m contains an odd factor r, say m =rs, then
2°+ 1127 + 1.

It follows that if 2™ + 1 is prime then m has no odd factors, ie
m = 2" for some n.

(b) Suppose F), is prime.
We assume the following result.

Lemma 2.1. If p is an odd prime then

p— a
o' = (—) mod p
p

for any a coprime to p.

Applying this with p = F,,

32" -1 = (;) mod p.

F,=1mod5

Since

it follows by Gauss’ Recipricity Law that

But
22" =1 mod 3

(since 3* = 1),
p = F, =2 mod 3.

Thus

It follows that



(c) Conversely, suppose
32" = _1 mod F,.
Suppose F,, is composite, say
= qr,
where q is prime. Then
32" = 1 mod q.
It follows that the order of 3 mod q is 22". But we know that
397! = 1 mod g¢.
It follows that
2% [q -1,
e
Fo=1lgq—1,

which is impossible since q < F,,
(d) Since
Fy=2" 4+1=2%41=257,
we must compute

32" — 328 10d 257.

We know that the order of 3mod ;257 divides 256, ie it is a power
of 2. And

3?6 = 1 mod 257 = 3'%® = 41 mod 257;

while
3128 = 1 mod 257 < 3% = 41 mod 257.

We have to show that this is not the case.
Now

3> =3.81 = 243.
Thus

3° = —14 mod 257.



Hence
319 =142 = 196 = —61 mod 257,

and so
32=-9.61 =—549 = —35 mod 257.
Thus
31 = —315 = 58 mod 257,
and
316 =522 = 8 = 23 mod 257,
Hence
332 = 25 mod 257,
and so

364 =912 = 4096 =4-1024 =4 - —4 = —16 mod 257.
So
3% =162 = —1 mod 257,

and we conclude that F3 1s prime.

3. Define the Jacobi symbol Y for m e N, n € Z with m odd. As-
n

suming Gauss’ Law of Quadratic Reciprocity, show that if m,n € N

are both odd then
m n m—1n—1
— (=) =(=1)72 = .

for all a coprime to n.
Answer:
(a) If
m:pl...p'f‘7 anl"'qS?

with p;, q; prime, then the Jacobi symbol is defined by

(-1 ()
n 1<i<r 1<j<s \di

e i



(b) Gauss’ Law states that

(@) G) o=
() ()1 )

i?j

It follows that

Lemma 3.1. If u,v are odd then

uv — 1 u—1 wv-—1
= d 2.
2 SR

Proof. 1f u,v are odd then

(u—1)(v —1) = 0mod 4,
(uw—1)=(u—1)+ (v—1) mod 4,

or

which is evident.

Repeated application of this Lemma gives
2 Z 2
eyest

Multiplying these together,

m—1 n—l_zpi—l qgj — 1
=2 2
Z’J

CmE



(¢) Suppose n is prime. Then

n—1 _

a _1modn:>an771£j:1modn.

Suppose (E) = 1. Then
n

n—1

a=b = az =b""'=1modn.

Now the equation

in the finite field F,, = Z/(n) has at most (n — 1)/2 roots. But
there are (n — 1)/2 quadratic residues. Hence

anT_lzlmodn <= (ﬂ) =1.

n

Conversely, suppose this holds for all a coprime to n; and suppose
n 1S not prime.

Then n must be square-free. For suppose
n = pq,

where p is prime and ged(p,q) = 1.
By hypothesis
a" ' =1modn

for all a coprime to n. Hence

n—1 _

a 1 mod p°,

e the order of a mod p° divides n — 1.
Since ¢(p°) = p*~H(p — 1), the order of

a € (Z/p°)*

divides p~*(p — 1); and it is easy to see that there are elements
whose order is divisible by p, eg a = 1 + p is such an element,
since

a?'=14(p—1)p=1-pmod p?

so the order of a does not divide p — 1.



By the Chinese Remainder Theorem we can find a such that
a=1+pmodp°, a=1modygq.

Then a is coprime to n, and p divides the order of a mod n.
Hence
p | n— 17
which is absurd.
Thus
n=pip2---Pr,
with distinct primes p;.

We can certainly find an a with

eg by the Chinese Remainder Theorem we can find a such that a is
a quadratic non-residue mod py and a quadratic residue modulo
the other p;. Then

a7 = —1 mod n,
and so
a"7 = —1 mod Di
for each 1.
Suppose
2°n—1,

ie 2¢ | n — 1 but 2¢ ¥ n — 1. [In other words,
n—1=2m,

where m is odd. Note that in the following argument, we are only
concerned with the power of 2 dividing the order of an element; if
you like we are concerned with the 2-adic value of the order.]
Then the order of a mod n is divisible by 2¢; hence the order of
a mod p; is also divisible by 2¢. Thus

2€|p7§_17



e
p; = 1 mod 2°

for each 1.

But now choose a so that it is a quadratic non-residue mod p;
and mod ps but a quadratic residue modulo the other p;. Then

Hence

a"7 =1mod n,
and so

0”7 =1mod p.
Thus if

2/ || order(a mod p)
then
f<e—1;
while on the other hand, since 2¢ | p — 1,
a%z—lmodp = f>e

We conclude that n must be prime.
Remarks:

(a) I've removed the part of this question which read:

Apply this test to determine the primality (or otherwise)
of 100135.

I think I gave this question as homework in an earlier year when
the course covered computer methods for primality testing and fac-
torisation. I quess I expected the student to write a computer pro-
gram to solve this question. I certainly don’t see any way of solving
it ‘by hand’ in the time available in an exam!

Running the program /usr/ games/ factor 10013 on the Maths
computer system tells me that

10013 =17-19 - 31.



Recall that if p is an odd prime then
(2) _J1 ifp=+£1modS§,
p) |-1 if p = £3 mod 8.
10013 =5= —3 mod 8

2 N\
(10013)

Thus if n = 10013 s prime then

Since

it follows that

2°006 = _1 mod 10013.

It is easy to compute this, knowing the factorisation of n.
The order of 2 mod 17 is 5 since

2' =16 = —1 mod 17.
The order of 2 mod 31 is 5 since
2° =32 =1 mod 31.

It remains to compute the order of 2 mod 19. This order divides
19 — 1 = 18. Since it is not 2 or 3, it must be 6, 9 or 18.

We have
20 = 64 = 7 mod 19.
Hence
29 =8.7=56=—1mod 19.
Thus the order of 2 mod 19 is 18.
Since

5006 mod 5 =1, 5006 mod 18 = 2,

it follows that
=1 mod 17,
25006 £ = 9 mod 19,
= 1 mod 31.

So certainly
25006 £ 1 mod 10013.



(b)

In fact this argument shows that

=1 mod 17,
210012 0 = 4 mod 19,
= 1 mod 31.

So
210012 £ 1 mod 10013,

and 10013 fails even Fermat’s primality test.
The method suggested in the question is a perfectly sensible prob-

a
abilistic primality test, since it is easy to compute | — | using the
n

generalised Reciprocity Law given earlier in the question. It could
be used as an alternative to the standard Miller-Rabin probabilistic
primality test.

Let us recall the Miller-Rabin test for the primality of n.

Let
n—1=2mn,

where m s odd.

If n is prime then

2°m

™ =1modn — a2 '™ = +1 mod n.

If now

e—1
> ™ =1modn

then .
a’> "™ = +1mod n.

Continuing in this way, we conclude that if ged(a,n) = 1 then
either

2fm:

a —1 modn

for some f € [0,e — 1], or else

a™ =1 mod n.

Conversely, if this is true for all a coprime to n then n must be
prime.



The proof is very similar to that in the question, and depends in
the same way on the power of 2 dividing the order of a modulo
different numbers. To simplify the discussion, let us write

v(a,n) =e
if the order of a mod n is r and
2| 7.
It is not difficult to see that

@®" = —1modn < v(a,n) = f+ 1.

But if p | n then

a2fm —

f
=—1modn = a*™=

—1lmod p = v(a,p) = f+ 1.

Thus

v(a,p) = v(a,n)
if p | n. In particular, v(a,p) is the same for all primes dividing
n.
But it is easy to see that this cannot be the case if two distinct
primes p,q | n.
For by the Chinese Remainder Theorem we can find a which is

a quadratic residue mod p and a quadratic non-residue mod q.
Then

p—1 q—1

a? =1lmodp, a2 =-—1modg.

On the other hand, we can find b which is a quadratic non-residue
mod p and a quadratic residue mod q. Then

p—1

b2 = —1mod p, b%zlmodq.
But it follows from these that

v(a,p) <wv(b,p), wv(a,q)>v(bq),
which s clearly incompatible with

v(a,p) = v(a,q), v(b,p) = v(b,q).

It only remains to deal with the case

n = p°.
But as we saw in our proof, it is easy to find a in this case such
that
a" ' # 1 mod n.



4. Show that every irrational number o € R\ Q has an infinity of rational
approximations x/y with

x 1
o=~ < —.
Y Y
Find five such approximations for v/2.

Suppose m > 1 is square-free. Show that the equation
2 —my* =1

has an infinity of solutions.

Answer:

(a) Choose any integer N > 0, and consider the remainders

{0a}, {1a}, {2a},...{Na},
where
{z} =z —[x].
These N + 1 numbers lie in the interval [0,1). Let us divide this
interval into N equal parts

0,1/N), [1/N,2/N),...,[(N —1)/N,1).

Two of the remainders, say {ra}, {sa} with r <s, must fall into
the same sub-interval.

But then ]
{sa} — {ra}| < N
In other words,

|sa — [sa] — (ra — [ra])| < %

On setting
r=[sa] —[ra], y=s-—r,

this can be written ]

— < _

from which the result follows since

y < N.



(b) We can get approximants to V2 from its continued fraction:

V2 =1+ (V2-1),
and
S
V2-1
=2+ (V2-1).
Thus
V2=11,2,2,2,...].
The approximants are
Dn
qn
where
Pn = QpPrn—1 +pn—27 dn = QpQn—1 + dn—2,
with

p=a=1qp=1 pi=aau+1=2 g =a =1

The first 6 approrimants are

1
17
2
17
2-2+1 5
2-1+1 3’
2-5+2 1
2.34+41 7’
2-1245 29
2.74+3 17
2-204+12 70
21747 41
These all satisfy

N 1
|a_17_ <

Qn QnQn-i-l

1
< —.

q2



(¢) Here is an alternative solution to Pell’s equation
22 —my? =1

based on the fact that the continued fraction for \/m is periodic:
say

Vmo=lag, ..., o1, Gn, .. Qnkl,
ie the continued fraction for \/m starts with an initial sequence of
length £, followed by a repeated sequence of length k.
Let p,/qn be the successive approximants, so that

Pn = ApPn—1 + Pn—2, n = GnQn-1 1+ Gn-2;

and let
ap = [an, Gpyt, .-,

so that u

Vm = [ag, ..., Gp_1, 0] = —,

Un
where
Up = OpPp—1 + Pp—2, Un = OpQn—1+ qn—2.

Then

Oy = Qpyk
if n > £, or more generally
Qpn = Optkj

for 7 >0.
We know that
Puln-1 = qnPn-1 = (=1)".
[This is readily proved by induction on n.] Thus if we set

Mn: (pnl pn2>
dn—1 4n-2

det M, = (—1)",

then

In particular M, is unimodular, ie its inverse is also an integer

matric.
()

Now



Since
Upyk = Qp
ifn >4,
Untk/Unik = Un/Vp

(o) =2 ()
o (V) =20 (V)

o _f(a b
M =M, M”““_(c d)

Thus

for some \.
It follows that

Hence if we set

then

1€
av/m+b=XA/m, c/m+d=
Eliminating A,
av/'m +b = v/m(cy/m + d),
1e
(b—cm)+ (a—d)y/m = 0.

Thus
b=cm, a=d.

But
det M = ad — bc = +1,

according as k is even or odd; and so
a® —mb* = £1.

Since we can replace k by kj, this gives a solution — in fact an
infinity of solutions — of Pell’s equation

r? —my® = 1.



5. Determine the ring A of integers in the field Q(v/5), and show that the
Fundamental Theorem of Arithmetic holds in this ring.

The Fibonacci numbers u; are defined by the recursion relation
ug =0, up =1, upr = u; + u—1.
Suppose p # 5 is a prime number. Show that
p | up—1 if p==+1mod 5,

while
p | upyr if p=+2mod 5,

Answer:

(a) We assume the following result.

Lemma 5.1. The algebraic number « is an algebraic integer if
and only if its minimal polynomial m(x) over Q has integer coef-
ficients.

Suppose B
a=ut+vVbeZ

where u,v € Q.

Then « satisfies the equation
(x —u)? = 50%,
1e
f(z) = 2% = 2uzx + (u* — 50*) = 0.
If v =0 then the minimal polynomial of o is
m(z) =x — u;

so o € Z if and only if u € Z.
If v # 0 then f(x) must be the minimal polynomial of a. Thus

a €7 = 2u, u* —5°€Z.

Hence



with a € Z. Also

a
502 — — €7
v 1 € 4,
and so
5v? = ¢
47
with ¢ € Z. It follows that
b
V= —
2
with b € Z.
But now 2 g
2 2 G" —
- =
U v 1
Thus
a’® — 5v® = 0 mod 4.
Since

n? =0 or 1 mod 4,

this holds if and only if a,b are both odd or both even.

We conclude that the integers in Q(\/g) are the numbers of the
form
a+ b5
2 9
where a,b € Z and a = b mod 2.

In other words, the integers are the numbers
m+nf (m,n € Z)

where

g1tV
-2

6. Define an ideal a in a commutative ring A.

What is meant by saying that a is prime?

Show that a maximal ideal is necessarily prime. Does the converse
hold?

Sketch the proof that in a number ring every ideal is a product of prime
ideals, unique up to order.

Answer:



(a) An ideal a C A is a non-empty subset such that

. a,bea = a+bea;
1. a € A, bea = ab € a.

(b) The ideal a # A is prime if
ab € a = a € atextordb € a.

[An alternative, equivalent, definition is: The ideal p # A is prime

if
abCp = aCporbCp

for any two ideals a,b C A.]
(¢) Suppose the ideal a C A is mazimal; and suppose

ab € a.

Consider the ideal
@ =a+(a)={r+ay:x€a, yinA}.

Evidently
acCad CA

Hence, from the mazximality of a,
a =a or A.
Thus if a ¢ a then o/ = A. In that case, 1 € @, ie
r+ay =1
for some x € a, y € A. But then, multiplying by b,
b=bx+ (ab)y,
Since x,ab € a it follows that
bea.

Thus a is prime.
(d) No. The ideal (0) C Z is prime but not mazimal.

(e) i. Suppose A is a number ring.



Lemma 6.1. As an abelian group, A is finitely-generated:
AT,

It follows from this that every ideal a C A is also finitely-
generated as an abelian group.

Lemma 6.2. Every non-zero ideal a € A contains a non-zero
rational integer n € 7.

Lemma 6.3. If a € A is a non-zero ideal then the quotient-
ring A/a is finite.

We define the norm of a non-zero ideal a C A as

|a| = #£(A/a),
and set
()] = 0.
Lemma 6.4. A finite integral domain is a field.

Lemma 6.5. Every non-zero prime ideal p C A is mazximal.

Lemma 6.6. Every non-zero ideal a C A contains a product
of maximal ideals:

pr--prCa

Proof. We argue by induction on |a|.
If a is prime, the result is immediate.
If not then there exist elements a,b € A such that

abea, abé¢a.

Then
(a4 (a))(a+ (b)) C a.

By the inductive hypothesis,

pr---p, Ca+(a), qi---qs Ca+(b).

Then
Pr--Prqr---qs C a.
m
Suppose A is an integral domain with field of fractions k. A

fractional ideal is a non-empty subset a C k such that ca is
an ideal in A for some non-zero c € k.



If a is a fractional ideal then we set

at={c€k:cacC A}.

1

It is easy to see that a™" is a fractional ideal, and that

Acal.

The non-zero fractional ideal a is said to be invertible if
aa !t = A

This is the same as saying that there is a fractional ideal b
such that
ab = A.

The ideal a C A is invertible if and only if there is an ideal
b C A such that
ab = (o),

where ¢ € A is non-zero.

Ifce A, ¢#0 and
(C):al"'ar

then the ideals ay, ..., a, are all invertible.
We assume again that A is a number ring.

Lemma 6.7. If p C A is mazimal then

pl#A

Proof. Choose ¢ € p, ¢ # 0. Then there exist maximal ideals
p1,...,p, such that

p1---pr C (0).

Let us assume that r is minimal.
Since

pr---pr C(c) Cp,
one of p; = p. Let us assume that p; = p.
Choose a € pa---p,, a ¢ (c). Then

ap C (¢) but a ¢ (c).
It follows that

ac’t € p~ ' but ac”! ¢ A.



Lemma 6.8. Every mazximal ideal p C A is invertible.

[This is the main Lemma, and the only one that makes use of
the fact that A consists of algebraic integers.]

Proof. Clearly
Acy,

SO

pp~' =por A
In the second case p is invertible. Suppose then that

-1

o =p
and suppose o € p~!. Then
ap C p.

It follows that « is an algebraic integer, ie
ac€knZ=A.

Thus
plc A

But we saw earlier that this was not the case; hence p is
invertible. [

Lemma 6.9. Every non-zero ideal a C A is expressible as a
product of prime ideals.

Proof. We argue by induction on |a|. If a is prime there is
nothing to prove. Otherwise (from a Lemma above) we can
find maximal ideals pq, ..., p, such that

pip2---pr Coa.

Let us assume that this is a minimal solution, ie there is no
such product with < r maximal ideals.
We know that p; is invertible. Hence

po--pr Cpola

But p;'a is strictly larger than a, since otherwise

p2---pr Coa



contrary to the minimality of r.
Thus
Ipi'al < la,

and so, by the inductive hypothesis,
prla=qi-q,,

with ¢1,...,qs maximal.
But then, multiplying by p,

a=piq:---9s.
O

Lemma 6.10. The expression of a non-zero ideal a C A as
a product of mazimal ideals is unique up to order.

Proof. We argue by induction on the minimal number of ide-
als in such an expression.

Suppose
a=pr--pr=0q1 Qs
Then
G CPp1-pr = 1 =Pi
for some i.

We may suppose, after re-ordering the p; if necessary, that
q1 = p1. Hence, multiplying by p;*,

pfla:p2...pr :qZ"'qsa
and the result follows by the inductive hypothesis. Il

7. Show that the integral

['(s) :/ e "2 dx
0

converges for all s € C with R(s) > 0.

Show how I'(s) can be extended to a meromorphic function in the whole
of C, and determine its poles and zeros.

Answer:



(a)

(b)

If x € ]0,00) then
"] =

where 0 = R(s). Since

e *z" —-0asx — o0

for all n, the integral converges at the top for all s.

At the bottom,
|57 < =059

if R(s) > €. Hence the integral converges at the bottom if R(s) > 0.
If R(s) > 0 then, on integrating by parts,

[(s+1) = / e "z’ drx
0

= [—e’%s] —|—s/ e Tt dr
0
0

o0
= s/ ezl dx
0

=sTI(s).

Thus

I(s) = M

Now the right-hand side is meromorphic in R(s) > —1, with a
single simple pole at s = 0; so this formula defines an analytic
continuation of I'(s) to R(s) > —1.

But repeating this argument, for any integer r > 0,

[(s+r
(s+1)---(s+r—1)

(s) = -

defining an analytic continuation of I'(s) to R(s) > —r.
In this way T'(s) is extended to a meromorphic function in the
whole plane C, with poles at s =0,—1,—2,....

We assume the following result:

Lemma 7.1. For all s € C\ Z,

™

[(s) (1 —s) =

sinms



[This identity can be established in various ways. Perhaps the
neatest is via the identity

L vt 4, D()D(v)
/Ot (- tytar =

which can be established by expressing I'(u)I'(v) as a double inte-

gral.]
It follows from this result that I'(s) has no zeros, since sinws has
no poles.

8. Show that the series
() =14+27°+3"°+---

converges for all s € C with (s) > 1.
Does it converge for any s with R(s) = 17
Show how ((s) can be extended to a meromorphic function in f(s) > 0.

Answer:
(a) If s = o +it then

s slogn

ns=e ologn eztlogn'

=€

Hence

Now
S

converges if o > 1, by comparison with

Jo- ]

[We are using the fact that if f(z) is increasing and > 0 then
S>> f(n) and [ f(z)dx converge or diverge together.]

It follows that
>

is absolutely convergent for R(s) > 1.




(b) The series
2

does not converges for any s on the real line R(s) = 1.
The result is obvious if s = 1, so we may suppose that

s=1+41t,
where t # 0.
We have
1 .
n—s — _n—zt
n
lefit logn'
n
Thus

1
R(n™%) = — cos(tlogn);
n
so it is sufficient to show that

1
— tl
Z " cos(tlogn)

n

18 divergent.
Choose a large integer m, and consider the terms in the interval

2mm < tlogn < (2m + 1/4)m,
1€
62m7r/t <n< e(2m+1/4)7r/t _ €2m7r/t e7r/4t

Wiathin this range,
cos(tlogn) > cosm/4 = 1/sqrt2,

while
1

S 67(2m+1/4)7r/t _ Cef2mﬂ'/t’
n
where
C=e ™
The length of the interval is

! _2mm/t
C'e?mrlt,



where
=M 1>0.

Thus the number of integers in the interval is
= C/€2m7r/t —1.

Hence the contribution of these terms — all positive — is

ce’ . Q —2mm [t
NoRERVoR
cc’

2

>

for sufficiently large M.
We conclude that the series is not convergent.

(c) We can use Riemann-Stieltjes integration by parts to continue ((s)
analytically to R(s) >0

Let
fz)=[z], g(z)=xz—[7]
Then
g(z) =z — f(x),
and so
Zn’s =1 +/1 x%df (x)
=1 +/1 x%dr — /1 r*dg(x).

Now

N _
1—N s+1 1
/ z %dr = — as N — oo
1 s—1 s—1

if R(s) > 1, while

/IN r%dg(z) = [gg—sg(f)]i\’ + S/lN v g(z)d
— 1+ s/loo x5 g(2)dx

Thus




if R(s) > 1.
Since g(x) is bounded, the integral on the right is convergent in
R(s) > 0, and defines a holomorphic function there. This formula
therefore defines an analytic continuation of ((s) to R(s), as a
meromorphic function with a single simple pole at s = 1 (with
residue 1).

9. Outline the proof of Dirichlet’s Theorem, that there are an infinity of
primes in any arithmetic sequence dn + r with ged(r, d) = 1.
Answer:

(a) Let x be a character of the group (Z/d)*. We extend x to a
function on Z/(d) by setting

x(a) =0 if ged(a,d) > 1;
and we then extend this to a function

x:4Z — C.

(b) We define the corresponding L-function by

Ly(s)= %

(¢) This series converges absolutely for R(s) > 1, and so defines a
holomorphic function there.

(d) If x # Xo, the principal character mod d (corresponding to the
trivial character of (Z/d)* ) then

Z x(n) =0.

0<n<d

[This follows from the orthogonality of the characters.]

(e) If x # xo then the series converges for R(s) > 0, and so defines a
holomorphic function there.

[This follows from the fact that the partial sums

S)= Y x(n)

0<n<zx



are bounded. For

Ly(s) = / ioxst(x)
= [27°8(2)]_ +s / 7S (x)dx

_ / v 18(x)da

and the integral on the right converges for R(s) > 0, since S(x) is
bounded.]

(f) The L-function can also be analytically continued to R(s) > 0 if
X = Xo, but in this case the function has a simple pole at s = 1.

[This follows on setting

For T'(x) is bounded, and

o0

x°dS(x

/1 oox o(d/d)dz — /1 " T ()

¢(d 1 1 + 8/ :L‘_S_IT(Z‘)dZL‘7
1

S —

on integrating by parts. Since T(x) is bounded, the integral is
convergent in R(s) > 0 and defines a holomorphic function there.]

(9) L,(s) satisfies the Euler Product Formula

L) =] (1 - x(p))_l

p ps
for R(s) > 1
(h) It follows by logarithmic differentiation that
L) (s)
X —S
L(s) > logpp + hy(s),
p

where hy(s) is holomorphic in R(s) > 1/2.



10.

11.

(i) The characters of a finite abelian group G form a basis for the
functions on G.

In particular, we can find a linear combination

fn) =) e x(n)
of the characters of (Z/d)* such that

={y =

Since

_)o if X # Xo,
2, X = {cb(d) if x = chi,

it follows that

(j) If now we take the same linear combination of the L-functions we
see that

s):_

3 > logpp® + h(s),

p=r mod d

L
Ly(

2.6
X

where h(s) is holomorphic in R(s) > 1/2.

If there are only a finite number of primes p = r mod d then the
function on the right is holomorphic in R(s) > 1/2.

However, the term on the left corresponding to xo has a simple pole at

s = 1 since L,,(s) has a pole there.

The proof is not quite complete, since if any of the L-functions had
a zero at s = 1 this would contribute a pole on the left, which might
cancel out the pole from the yq term.

Lemma 11.1. L, (1) # 0 for any L-function.

With this the proof of Dirichlet’s Theorem is complete.

[I gave a proof of the Lemma in the course, but there was a gap in it;
it was only valid if x is non-real.



If x is real (but # xo), ie
x(n) = +1

for all n, then a rather complicated calculation shows that
L,(1)>0,

and so completes the proof of the Theorem.]



