
Chapter 1

Algebraic numbers and
algebraic integers

1.1 Algebraic numbers

Definition 1.1. The number α ∈ C is said to be algebraic if it satisfies a
polynomial equation

xn + a1x
n−1 + · · ·+ an

with rational coefficients ai ∈ Q.
We denote the set of algebraic numbers by Q̄.

Examples:

1. α = 1
2

√
2 is algebraic, since it satisfies the equation

x2 − 1

2
= 0.

2. α = 3
√

2 + 1 is algebraic, since it satisfies the equation

(x− 1)3 = 2,

ie

x3 − 3x2 + 3x− 3 = 0.

Proposition 1.1. Q ⊂ Q̄.

Proof I. This is trivial; r ∈ Q satisfies the equation x− r = 0. J
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Theorem 1.1. Q̄ is a subfield of C.

Proof I. We have to show that

α, β ∈ Q̄ =⇒ α + β, αβ ∈ Q̄,

and that
α ∈ Q̄, α 6= 0 =⇒ 1/α ∈ Q̄.

The last result is easy to prove; if α satisfies the equation

f(x) = xn + a1x
n−1 + · · ·+ an = 0

then 1/α satisfies

xnf(1/x) = anx
n + · · ·+ a1x + a0 = 0.

For the first part, we introduce an alternative description of algebraic
numbers.

Lemma 1. The number α ∈ C is algebraic if and only if the vector space
over Q

V = 〈1, α, α2, . . . 〉

is finite-dimensional.

Proof I Suppose dimQ V = d. Then the d + 1 elements

1, α, . . . , αd

are linearly dependent over Q, ie α satisfies an equation of degree ≤ d.
Conversely, if

αn + a1α
n−1 + · · ·+ an = 0

then
αn = −a1α

n−1 − · · · − an ∈ 〈1, α, . . . , αn−1〉.

Now
αn+1 = −a1α

n − · · · − anα ∈ 〈1, α, . . . , αn−1〉;

and so successively

αn+2, αn+3, · · · ∈ 〈1, α, . . . , αn−1〉.

Thus
V = 〈1, α, . . . , αn−1〉

is finitely-generated. J
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Now suppose α, β ∈ Q̄. Let

U = 〈1, α, α2, . . . 〉, V = 〈1, β, β2, . . . 〉.

By the Lemma above, U, V are finite dimensional vector spaces over Q; and

αU ⊂ U, βV ⊂ V.

Let
UV = 〈uv : u ∈ U, v ∈ V 〉

be the vector space spanned by the elements uv. (Thus the general element
of UV is of the form u1v1 + · · ·urvr.)

Then UV is finite-dimensional; for if U, V are spanned by u1, . . . , um, v1, . . . , vn,
respectively, then UV is spanned by the mn elements uivj.

Furthermore,

(α + β)UV ⊂ UV, (αβ)UV ⊂ UV.

Hence
α + β, αβ ∈ Q̄,

by the Lemma. J

A slight variant of the Lemma is sometimes useful.

Proposition 1.2. The number α ∈ C is algebraic if and only if there exists
a finite-dimensional (but non-zero) vector space

V ⊂ C

such that
αV ⊂ V.

Proof I. If α is algebraic then we can take

V = 〈1, α, α2, . . . 〉

by the previous Lemma.
Conversely, suppose dimQ V = d. Choose v ∈ V, v 6= 0. Then the d + 1

elements
v, αv, . . . , αdv

are linearly dependent, and so (as before) α satisfies an equation of degree
≤ d. J
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Theorem 1.2. Q̄ is algebraically closed, ie if α ∈ C satisfies an equation

xn + c1x
n−1 + · · ·+ cn = 0

with ci ∈ Q̄ then α ∈ Q̄.

Proof I. For i = 1, . . . , n let Vi be a finite-dimensional (but non-zero) vector
space such that

ciVi ⊂ Vi;

and let
V0 = 〈1, α, . . . , αn−1〉.

Set
V = V0V1 · · ·Vn−1,

ie the vector space spanned by the products

αiv1 · · · vn−1,

with vi ∈ Vi.
Then

αV ⊂ V.

It is sufficient for this to show that

αi+1v1 · · · vn−1 ∈ V.

This is immediate unless i = n− 1, in which case

αnv1 · · · vn = −
∑

0≤i<n

αiv1 · · · vi−1(civi)vi+1 · · · vn−1.

But civi ∈ Vi. Hence
αnv1 · · · vn ∈ V,

and so
αV ⊂ V.

Since V is finite-dimensional, it follows from Proposition 1.2 above that

α ∈ Q̄.

J
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1.2 The minimal polynomial of an algebraic

number

Recall that a polynomial f(x) ∈ k[x] is said to be monic if its leading coeffi-
cient is 1:

f(x) = xn + a1x
n−1 + · · ·+ an.

Proposition 1.3. An algebraic number α ∈ Q̄ satisfies a unique monic
polynomial m(x) ∈ Q[x] of minimal degree; and if f(x) ∈ Q[x] then

f(α) = 0 ⇐⇒ m(x) | f(x).

Proof I. If α satisfies two monic polynomials m1(x), m2(x) of the same de-
gree, then it satisfies the polynomial m1(x)−m2(x) of lower degree.

If f(α) = 0, divide f(x) by m(x), say

f(x) = m(x)q(x) + r(x),

where deg r(x) < deg m(x). Then

r(α) = f(α)−m(α)q(α) = 0,

contradicting the minimality of m(x) unless r(x) = 0, ie m(x) | f(x). J

Definition 1.2. The polynomial m(x) is called the minimal polynomial of
α; and if deg m(x) = d then α is said to be an algebraic number of degree d.

1.3 Algebraic integers

Definition 1.3. The number α ∈ C is said to be an algebraic integer if it
satisfies a polynomial equation

xn + a1x
n−1 + · · ·+ an

with integer coefficients ai ∈ Z.
We denote the set of algebraic integers by Z̄.

Remark. In algebraic number theory, an algebraic integer is often just called
an integer, while the ordinary integers (the elements of Z) are called rational
integers.

Examples:
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1. We have
α = 3

√
2 + 1 ∈ Z̄,

since α satisfies

(x− 1)2 = 18,

ie

x2 − 2x− 17 = 0.

2. Again,
α =

√
2 +

√
3 ∈ Z̄,

since α satisfies

(x−
√

3)2 = (x− 2
√

3 + 3 = 2,

ie

x2 − 2
√

3x + 1 = 0.

Hence

(x2 + 1)2 = 12x2,

ie

x4 − 10x2 + 1 = 0.

Proposition 1.4. 1. Z ⊂ Z̄;

2. Z̄ ∩ Q = Z ie if an algebraic integer is rational then it is a rational
integer.

Proof I. The first part is trivial: n ∈ Z satisfies the equation z − n = 0.
For the second part, suppose

α =
r

s
,

with r, s ∈ Z, gcd(r, s) = 1, satisfies

xn + a1x
n−1 + · · ·+ an
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with ai ∈ Z.
Then

rn + a1r
n−1s + · · ·+ ans

n = 0.

Hence
s | rn.

Since gcd(r, s) = 1, this is only possible if s = ±1, ie α ∈ Z. J

Proposition 1.5. If α ∈ Q̄ then

nα ∈ Z̄

for some non-zero n ∈ Z.

Proof I. We may take the equation satisfied by α in the form

a0x
n + a1x

n−1 + · · ·+ an = 0.

But then β = a0α satisfies

xn + a0a1x
n−1 + · · ·+ an

0an = 0,

and so
a0α ∈ Z.

J

Thus each algebraic number α can be written in the form

α =
β

n

where β is an algebraic integer and n is a rational integer.

Theorem 1.3. Z̄ is a subring of C.

Proof I. We have to show that

α, β ∈ Z̄ =⇒ α + β, αβ ∈ Z̄.

We follow an argument very similar to the proof that Q̄ is a field (Propo-
sition 1.1). except that we use abelian groups (which we can think of as
modules over Z) in place of vector spaces over Q.

We start by introducing an alternative description of algebraic integers.
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Lemma 2. The number α ∈ C is an algebraic integer if and only if the
abelian group

B = 〈1, α, α2, . . . 〉 ⊂ C

is finitely-generated.

Proof I This abelian group is torsion-free. It follows from the Structure
Theory for Finitely-Generated Abelian Groups (which we shall abbreviate to
FGAG) that a torsion-free abelian group B is finitely-generated if and only
if it is free, ie

B ∼= Zr

for some r. We say in this case that B has rank r; and it follows from the
theory that every subgroup C ⊂ B has rank s ≤ r:

C = Zs (s ≤ r).

Suppose B has rank r. Let b1, . . . , br be a basis for B, ie each element
b ∈ B is a linear combination

b = z1b1 + · · ·+ zrbr

with integer coefficients zi ∈ Z.
Each of the bi’s can be expressed as a linear combination of a finite number

of powers αi. Taken together, these expressions for b1, . . . , br involve only a
finite number of powers of α, say a subset of {1, α, α2, . . . , αn−1}.

Then
αn ∈ 〈b1, . . . , br〉 ⊂ 〈1, α, . . . , αn−1〉.

Thus αn is a linear combination (with integer coefficients) of 1, α, . . . , αn−1,
say

αn = z0 + z1α + · · ·+ zn−1α
n−1.

In other words, α satisfies an equation

xn − zn−1x
n−1 − · · · − z0 = 0.

Hence
α ∈ Z̄.

On the other hand, suppose α satisfies an equation

xn + a1x
n−1 + · · ·+ an = 0

with ai ∈ Z. Let
C = 〈1, α, . . . , αn−1〉.
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Then
αn = −a1α

n−1 − · · · − an ∈ C,

and
αn+1 = −a1α

n − · · · − anα ∈ 〈α, α2, . . . , αn〉 ⊂ C,

since αn ∈ C. Continuing in this way,

αn+i ∈ C

for all i. Hence
B = C

is finitely-generated. J

Now suppose α, β ∈ Z̄. Let

B = 〈1, α, α2, . . . 〉, C = 〈1, β, β2, . . . 〉

Then B, C are finitely-generated, by the Lemma.
Let

BC = 〈bc : b ∈ B, c ∈ C〉

be the abelian group spanned by the elements bc. (Thus the general element
of BC is of the form b1c1 + · · · brcr.)

Then BC is finitely-generated; if B, C is generated by b1, . . . , bm, c1, . . . , cn,
respectively, then BC is generated by the mn elements bicj.

Furthermore,

(α + β)BC ⊂ BC, (αβ)BC ⊂ BC.

Hence
α + β, αβ ∈ Z̄,

by the Lemma J

A variant of this Lemma, analagous to Proposition 1 for algebraic num-
bers, is often useful.

Proposition 1.6. The number α ∈ C is an algebraic integer if and only if
there exists a finitely-generated (but non-zero) abelian group

B ⊂ C

such that
αB ⊂ B.
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Proof I. If α is an algebraic integer then we can take

B = 〈1, α, α2, . . . 〉

by the previous Lemma.
Conversely, suppose B has rank r, so that

B ∼= Zr.

Choose v ∈ V, v 6= 0. Then the d + 1 elements

v, αv, . . . , αdv

are linearly dependent, and so (as before) α satisfies an equation of degree
≤ d. J

Theorem 1.4. Z̄ is integrally closed, ie if α ∈ C satisfies an equation

xn + a1x
n−1 + · · ·+ an = 0

with ai ∈ Z̄ then α ∈ Z̄.

Proof I. For i = 1, . . . , n let Bi be a finitely-generated (but non-zero) abelian
groups such that

aiBi ⊂ Bi;

and let
B0 = 〈1, α, . . . , αn−1〉.

Set
B = B0B1 · · ·Bn−1,

ie the abelian group spanned by the products

αib1 · · · bn−1,

with bi ∈ Bi.
Then it follows exactly as in the proof of Proposition 1.2 that

αB ⊂ B,

and so
α ∈ Z̄

by Proposition 1.6. J



Chapter 2

Number fields and number
rings

2.1 Number fields

Suppose k is a subfield of C. Then 1 ∈ k, from which it follows that k
contains all rational numbers:

Q ⊂ k ⊂ C.

We can consider k as a vector space over Q. In effect we ‘forget’ about
the product αβ unless α ∈ Q.

Definition 2.1. An algebraic number field (or just number field) is a subfield
k ⊂ C which is of finite dimension as a vector space over Q.

This dimension is called the degree of the number field:

deg k = dimQ k.

Proposition 2.1. If k is a number field then each α ∈ k is an algebraic
number of degree ≤ deg k.

Proof I. Consider the d + 1 elements

1, α, . . . , αd.

where d = deg k. These elements must be linearly dependent over Q, say

a0 + a1α + · · ·+ adα
d = 0,

with ai ∈ Q. Thus α satisfies an equation of degree ≤ d over Q. J

2–1
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It follows that any number field k is sandwiched between Q and Q̄:

Q ⊂ k ⊂ Q̄.

Proposition 2.2. Suppose α is an algebraic number of degree d. Then the
elements

β = f(α),

where f(x) ∈ Q[x], form a number field k of degree d, with basis

1, α, . . . , αd−1.

Proof I. It is clear that k is closed under addition and multiplication.
To see that it is closed under inversion, suppose β ∈ k, β 6= 0. Consider

the map
θ : γ 7→ βγ : k → k.

This is a linear map over Q. Moreover it is injective since

θ(γ) = 0 =⇒ βγ = 0 =⇒ γ = 0.

But a linear transformation φ : V → V of a finite-dimensional vector space
V is surjective if and only if it is injective. Thus θ : k → k is surjective; and
in particular

βγ = 1

for some γ ∈ k, ie
β−1 ∈ k.

Suppose β = f(α), where f(x) ∈ Q[x]. Divide f(x) by the minimal
polynomial m(x) of α, say

f(x) = m(x)q(x) + r(x),

where
deg r(x) ≤ d = deg m(x).

Then
β = f(α) = r(α)

Thus
β = c0 + c1α + · · ·+ cd−1α

d−1.

Hence the d elements 1, α, . . . , αd−1 span k; and they are linearly independent
since otherwise α would satisfy an equation of degree < d. So these elements
form a basis for k; and consequently deg k = d. J
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It is evident that this is the smallest number field containing α, since such
a field must contain all numbers of the form f(α).

Definition 2.2. We say that the field k is generated by α, and denote it by
Q(α).

A number field of the form k = Q(α) is sometimes said to be simple,
although the Theorem below makes this definition somewhat superfluous.

But first we note that the notion of extending Q to the number field Q(α)
applies equally with any number field k in place of Q.

Proposition 2.3. Suppose k is a number field of degree d; and suppose
β ∈ Q̄. Then β satisfies an equation m(x) ∈ k[x] of minimal degree e, and
the numbers γ = f(β), with f(x) ∈ k[x], form a number field K of degree

deg K = de.

Proof I. The only part that is any different from the case k = Q is the last
statement, that deg K = de.

Lemma 3. Suppose k = Q(α). Then the de elements

αiβj (0 ≤ i < d, 0 ≤ j < e)

form a basis for K over Q.

Proof I Each element γ ∈ K is uniquely expressible in the form

γ = α0 + α1β + · · ·+ αe−1β
e−1,

with αi ∈ k = Q(α).
But each αi is uniquely expressible as a polynomial fi(α), where fi(x) ∈

Q[x] is of degree < d. It follows that γ is uniquely expressible as a linear
combination of the de elements αiβj. J

J

Corollary 2.1. If k ⊂ K is a subfield of the number field K, then k is a
number field, and

deg k | deg K.

Theorem 2.1. Every number field k is simple, ie

k = Q(α)

for some α ∈ k.
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Proof I. This is a little tricky.
First of all, we can certainly obtain K by adjoining a finite number of

elements, say
K = Q(α1, . . . , αr),

since each adjunction (assuming αi+1 /∈ Q(α1, . . . , αi)) wll increase the de-
gree.

It is sufficient therefore to show that

Q(α, β) = Q(θ).

Suppose the minimal polynomials of α, β are f(x), g(x); and suppose the
roots of f(x), g(x) are

α = α1, α2, . . . , αd and β = β1, β2, . . . , βe,

respectively. Note that the αi are distinct, as are the βj, since f(x), g(x) are
irreducible.

Let
θ = cα + β,

where c ∈ Q is chosen so that the de elements

cαi + βj

are distinct. This is certainly possible, since we only have to avoid a finite
number of values of c.

Now α satisfies the polynomial equations

f(x) = 0, g(θ − cx) = 0,

where the second equation is over the field K = Q(θ)
But α is the only common root (in C) of these two polynomials. For any

root of the first equation is αi, for some i; and if this is a root of the second
polynomial then

βj = θ − cαi,

so that
θ = cαi + βj = cα + β.

But from our choice of c, this is only possible if i = j = 1.
It follows that

gcd(f(x), g(θ − cx)) = x− α,

where the gcd is computed over K = Q(θ).
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But we know that when we compute a gcd, eg with the Euclidean algo-
rithm, we end up with a polynomial in the field we started in.

We conclude that
α ∈ K = Q(θ).

It follows that
β = θ − cα ∈ K

also.
Hence

α, β ∈ K,

and so
Q(α, β) ⊂ K.

On the other hand
θ = cα + β ∈ Q(α, β)

and so
K ⊂ Q(α, β).

We conclude that
Q(α, β) = K = Q(θ).

J

2.2 Number rings

Definition 2.3. To each number field k = Q(α) we associate the ring

A = k ∩ Z̄,

ie A consists of the algebraic integers in k.
We say that A is a number ring of degree d, where d = deg Q(α).

Given a ring A ⊂ C we can form the field of fractions k of A, consisting
of the numbers of the form

c =
a

b
,

where a, b ∈ A with b 6= 0.

Proposition 2.4. If A is the number ring associated to the number field k,

A = k ∩ Z̄,

then k is the field of fractions of A.
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Proof I. This is almost trivial. If α ∈ k then

β = nα ∈ Z̄

for some n ∈ N, n > 0. Hence

α =
β

n
is in the field of fractions of A. J

2.3 Conjugates, norms and spurs

We suppose in this Section that k is a number field.
Suppose β ∈ k. Let µβ denote the map

γ 7→ βγ : k → k.

This is a linear map over Q.

Definition 2.4. We set

S(β) = tr µβ,

N (β) = det µβ.

We call S(β), N (β) the spur and norm of β ∈ k.

Evidently,
S(β), N (β) ∈ Q.

The following results are immediate.

Proposition 2.5. 1. S(β + γ) = S(β) + S(γ);

2. N (βγ) = N (β)N (γ);

3. if c ∈ k then S(c) = dc, N (c) = cd.

There is an alternative way of looking at the spur and norm, in terms of
conjugates.

If k,K are two fields then any ring homomorphism

θ : k → K

is necessarily injective; for if c ∈ k is non-zero then

c ∈ ker θ =⇒ f(c) = 0

=⇒ f(1) = f(cc−1) = f(c)f(c−1) = 0,
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while f(1) = 1 by definition.
Suppose k is a number field, and K = C. We may say that θ defines an

embedding of k in C. We want to see in how many ways the number field
k = Q(α) can be embedded in C.

Suppose m(x) is the minimal polynomial of α. Let the roots of m(x) be
α1 = α, α2, . . . , αd, so that

m(x) = (x− α1)(x− α2) · · · (x− αn).

Note that the roots are distinct, since m(x) is irreducible. For if there was a
multiple root it would also be a root of m′(x), and then

f(x) = gcd(m(x), m′(x))

would be a non-trivial factor of m(x).

Proposition 2.6. Suppose k = Q(α) is a number field of degree d, Then
there are just d ring homomorphisms

σi : k → C,

given by
σi : f(α) 7→ f(αi) (f(x) ∈ Q[x])

for i = 1, . . . , d.

Proof I. If α 7→ α′ then

m(α) = 0 =⇒ m(α′) = 0.

Hence
α′ = αi

for some i; and so
f(α) 7→ f(αi).

This map is well-defined, since

f(α) = g(α) =⇒ m(x) | f(x)− g(x)

=⇒ f(αi) = g(αi);

and it is evident that it is a ring-homomorphism. J

In other words, there are just d = deg k embeddings of the number field
k in C.

Note that this result is independent of the choice of generator α; it is a
property of the field k itself.
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Definition 2.5. If
σ1, . . . , σd : k → C

are the d embeddings of k in C then the conjugates of β ∈ k are the d
elements

σi(β) (1 ≤ i ≤ d).

The following result follows at once from our concrete construction of the
embeddings of k = Q(α) above.

Proposition 2.7. The d conjugates of β = f(α) are the elements

σi(β) = f(αi) (1 ≤ i ≤ d).

Theorem 2.2. We have

1. S(β) = β1 + · · ·+ βd;

2. N (β) = β1 · · · βd.

Proof I. This is a little tricky.
First consider the case of α. The matrix of the linear map

µα : k → k

with respect to the basis 1, α, . . . , αd−1 is

M =


0 0 · · · 0 −ad

1 0 · · · 0 −ad−1
...

...
...

0 0 · · · 1 −a1

 .

Thus

S(α) = tr M = −a1,

N (α) = det M = ad.

On the other hand, the characteristic polynomial of M is

χM(x) = det(xI −M) = xn + a1x
d−1 + · · ·+ ad,

ie

χM(x) = m(x),
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the minimal polynomial — as we might have expected, since it is clear that
M satisfies m(M) = 0, and we know that M satisfies its characteristic poly-
nomial. Since m(x) is irreducible, it follows that the two must be the same.

But the roots of m(x) are the conjugates α1 = α, α2, . . . , αd.
It follows that these are the eigenvectors of M ; and so

S(α) = tr M = α1 + · · ·+ αd,

N (α) = det M = α1 · · ·αd.

Now consider a general element β = f(α) of k. The matrix of the linear
map µβ : k → k with respect to the same basis 1, α, . . . , αd−1 is just p(M);
and we know that the eigenvalues of p(M) are p(αi). It follows that

S(β) = tr µβ

= tr p(M)

= p(α1) + · · ·+ p(αd)

= β1 + · · ·+ βd;

and similarly

N (β) = det µβ

= det p(M)

= p(α1) · · · p(αd)

= β1 · · · βd.

J

2.4 The discriminant

Recall that the disciminant of a monic polynomial

f(x) = xn + a1x
n−1 + · · ·+ an = (x− α1)(x− α2) · · · (x− α1),

with roots α1, . . . , αn, is defined by

D(f) =
∏
i<j

(αi − αj)
2

= ±
∏
i6=j

(αi − αj),
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where the sign (which doesn’t really concern us) is

(−1)(n−1)+(n−2)+···+1 = (−1)n(n−1)/2 =

+1 if n ≡ 0, 1 mod 4

−1 if n ≡ 2, 3 mod 4.

Evidently the discriminant D = 0 if and only if f(x) has a double root, ie
αi = αj for some i 6= j.

The formula for the discriminant can be re-written in several ways. First
note that

f ′(αi) = (αi − α1) · · · (αi − αi−1)(αi − αi+1)(αi − αn),

and so

D = ±f ′(α1) · · · f ′(αn)

= ±N f ′(α)

(with the same sign as before), where we have written α = α1.
Secondly, recall that the Vandermonde matrix

X =


αn−1

1 αn−1
2 · · · αn−1

n

αn−2
1 αn−2

2 · · · αn−2
n

...
...

...
1 1 · · · 1


has determinant

det X =
∏
i<j

(αi − αj).

Hence

D(f) = (det X)2

= det X ′X

= det Y,

where

Yij = αi
1α

j
1 + · · ·+ αi

nα
j
n

= S(αi+j).

Now suppose we have a number field

k = Q(α),

where α has minimal polynomial m(x) of degree d. Then 1, α, . . . , αd−1 forms
a basis for the vector space Q(α) over Q. This suggests the following defini-
tion.
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Definition 2.6. Suppose β1, . . . , βd is a basis for Q(α) over Q. Then we
define the discriminant of the extension with respect to this basis to be

D(β1, . . . , βd) = det X,

where
Xij = S(βiβj).

If we choose another basis γ1, . . . , γd then

γi =
∑
j

Tijβj,

where T is an invertible d× d matrix; and it follows that

D(γ1, . . . , γd) = (det T )2D(β1, . . . , βd).

Thus the discriminant is defined up to a square factor ρ2 where ρ ∈ Q×).
In particular, since

D(β1, . . . , βd) = ρ2D(1, α, . . . , αd−1) = ±D(m(x)),

and m(x) is separable, ie does not have repeated roots, the discriminant of a
number field (with respect to any basis) is non-zero.

Now consider the number ring

A = Q(α) ∩ Z̄.

Proposition 2.8. If β1, . . . , βn ∈ A then

D(β1, . . . , βn) ∈ Z.

Proof I. This follows at once from the fact that

S(βiβj) ∈ Z.

J

Theorem 2.3. If k = Q(α) is a number field of degree d then the number
ring A = k ∩ Z̄ is a free abelian group of rank d:

A ∼= Zd.

Proof I. Let β1, . . . , βd ∈ A be a basis for Q(α) over Q. (We can certainly
find such a basis, since given β ∈ k we can always find non-zero n ∈ Z such
that nβ ∈ A.) Let

D = D(β1, . . . , βd).
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Lemma 4. If α ∈ A then

α =
z1β1 + · · ·+ zdβd

D
,

where z1, . . . , zd ∈ Z.

Proof I Let
σi : Q(α) → Q(αi) (1 ≤ i ≤ d)

denote the d injective isomorphisms (or embeddings) Q(α) → C, given by

σi(f(α)) = f(αi) (f(x) ∈ Q[x]).

Suppose γ ∈ A. Then

γ = c1β1 + · · ·+ cdβd,

with ci ∈ Q. Hence

S(γβi) = S(β1βi)c1 + · · ·+ S(βdβi)xd

for i = 1, . . . , d.
We can regard these as d linear equations for c1, . . . , cd. The matrix of

the equations is
Dij = S(βiβj)

with determinant
D = D(β1, . . . , βd).

Moreover all the traces (or spurs) S(·) are in Z. It follows (eg from Cramer’s
rule for solving linear equations) that the ci are all of the form

ci =
zi

D

with zi ∈ Z. J

It follows from the Lemma that the abelian group A is sandwiched be-
tween two free abelian groups of rank d:

〈β1, . . . , βd〉 ⊂ A ⊂ 〈β1/D. . . . , βd/D〉.

But this implies, from the Structure Theory of Finitely-Generated Abelian
Groups, that A itself is also a free abelian group of rank d. J
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Proposition 2.9. Any two bases α1, . . . , αd, β1, . . . , βd of a number ring have
the same disciminant:

D(α1, . . . , αd) = D(β1, . . . , βd).

Proof I. Since the elements of each basis can be expressed in terms of the
other, there are d× d matrices T, U such that

αi =
∑
j

Tijβj, βi =
∑

i

Uijαj.

It follows that

TU = I =⇒ det T det U = 1

=⇒ det T = det U = ±1.

The result follows, since

D(α1, . . . , αd) = det(T )2D(β1, . . . , βd).

J

Definition 2.7. The discriminant D = D(A) of a number ring is the dis-
criminant of a basis for A (as an abelian group).

The discriminant D(A) is an important invariant of A.

Examples:

1. Consider the quadratic field Q(
√

m), where m ∈ Z is square-free.

Suppose first that m 6≡ 1 mod 4. Then

A = Z[
√

m].

The numbers 1,
√

m form a basis for A. Hence

D(A) =

(
S(1) S(

√
m

S(
√

m S(m)

)

=

(
2 0
0 2m

)
= 4m.
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2. Now suppose m ≡ 1 mod 4. In that case the integers are the numbers

a + b
1 +

√
m

2
(a, b ∈ Z).

Thus

D(A) =

(
S(1) S((1 +

√
m)/2)

S((1 +
√

m)/2) S((m + 1)/4 +
√

m/2)

)

=

(
2 1
1 (m + 1)/2

)
= m.



Chapter 3

Quadratic number fields
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Chapter 4

Ideal Theory

4.1 Ideals

We shall assume throughout this Chapter that A is a commutative ring with 1.

Definition 4.1. An ideal in A is a non-empty subset a ⊂ A such that

1. a, b ∈ a =⇒ a + b ∈ a;

2. a ∈ A, b ∈ a =⇒ ab ∈ a.

There is an intimate connection between ideals and quotient-rings. In
fact the two concepts are more or less interchangeable.

Note that a ring A has an underlying structure as an additive group, if we
‘forget’ about multiplication; and if a ⊂ A is an ideal, then a is a subgroup of
A. We assume that the notion of a quotient-group is familiar. The following
result is readily verified.

Proposition 4.1. Suppose a ⊂ A is an ideal. Then there is a natural ring-
structure on the quotient-group A/a, with

ab = āb̄.

Thus we may speak of the quotient-ring A/a.
Recall that a ring-homomorphism

f : A → B

is a map such that

1. f(a + b) = f(a) + f(b);

4–1
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2. f(ab) = f(a)f(b);

3. f(1) = 1.

Proposition 4.2. Suppose
f : A → B

is a ring-homomrphism. Then

ker f = {a ∈ A; f(a) = 0}

is an ideal in A; and
im f ∼= A/ ker f.

Conversely, if a ⊂ A is an ideal, then the map a 7→ ā defines a surjective
homomorphism

A → A/a,

with kernel a.

Proof I. The First Isomorphism Theorem for groups establishes an isomor-
phism

im f ∼= A/ ker f

of additive groups; and it is a straightforward matter to verify that this
isomorphism preserves multiplication. J

Proposition 4.3. If a, b ⊂ A are ideals then so are

1. a ∪ b;

2. a + b = {a + b, a ∈ a, b ∈ b};

3. ab = {a1b1 + · · · arbr, a1 . . . , ar ∈ a, b1 . . . , br ∈ b};

4. (a : b) = {a ∈ A : ab ⊂ a}.

These are all immediate. Note that we must allow sums in the definition
of the product; an element of ab is not necessarily of the form ab.

4.2 Principal ideals

Definition 4.2. We denote the ideal generated by a1, . . . , ar ∈ A by

(a1, . . . , ar) = {a1u1 + · · ·+ arur : u1, . . . , ur ∈ A}.

An ideal (a) generated by a single element is said to be principal.
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Remark. Observe that
(0) = {0}, (1) = A.

Proposition 4.4. If a, b ∈ A then

(a) = (b) ⇐⇒ b = εa

for some unit ε ∈ A.

Definition 4.3. We say that A is a principal ideal domain if every ideal
a ∈ A is principal.

The abbreviation PID is often used for ‘principal ideal domain’.

Proposition 4.5. Z is a principal ideal domain.

Proof I. Suppose a ⊂ Z is an ideal. If a = (0) the result is immediate.
If not, suppose n ∈ a, n 6= 0. We may suppose that n > 0, since

n ∈ a =⇒ −n = (−1)n ∈ a.

Let d be the smallest integer > 0 in a. Then

a = (d).

For suppose n ∈ a. Divide n by d, say

n = dq + r,

where 0 ≤ r < d. Then
r = n + (−q)d ∈ a

since n, d ∈ a. Hence r = 0, by the minimality of d. Thus

n = dq ∈ (d),

and so
a = (d).

J

Proposition 4.6. If k is a field, then the ring k[x] (of polynomials in one
variable over k) is a principal ideal domain.
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Proof I. The proof is almost identical to that for Z.
Suppose a ⊂ k[x] is an ideal. If a = (0) the result is immediate. Other-

wise, let m(x) be the monic polynomial of lowest degree in a. Then

a = (m(x)).

For suppose f(x) ∈ k[x]. Divide f(x) by m(x), say

f(x) = m(x)q(x) + r(x),

where 0 ≤ deg r(x) < deg m(x). Then

r(x) = f(x)− q(x)m(x) ∈ a.

Hence r(x) = 0, by the minimality of m(x). Thus

f(x) = m(x)q(x) ∈ (m(x)),

and so
a = (m(x)).

J

4.3 Prime ideals

Definition 4.4. The ideal p ⊂ A is said to be prime if p 6= (1) and

ab ∈ p =⇒ a ∈ p or b ∈ p.

Proposition 4.7. The principal ideal (a) is prime if and only if the element
a is prime.

Proof I. Suppose (a) is a prime ideal, Then

a | bc =⇒ bc ∈ (a)

=⇒ b ∈ (a) or c ∈ (a)

=⇒ a | b or a | c.

Conversely, if the element a is prime then

bc ∈ (a) =⇒ a | bc
=⇒ a | b or a | c
=⇒ b ∈ (a) or c ∈ (a).

J
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Proposition 4.8. The ideal p ∈ A is prime if and only if the quotient-ring
A/p is an integral domain.

Proof I. Let ā denote the image of a ∈ A in A/p. Then

ā b̄ = 0 ⇐⇒ ab = 0

⇐⇒ ab ∈ p

⇐⇒ a ∈ p or b ∈ p

⇐⇒ ā = 0 or b̄ = 0.

J

There is one very important case in which we know an ideal is prime.

Definition 4.5. The ideal m ∈ A is said to be maximal if m 6= A and

m ⊂ a ⊂ A =⇒ a = m or a = A

for any ideal a.

Proposition 4.9. An ideal m ⊂ A is maximal if and only if the quotient-ring
A/m is a field.

Proof I. A ring A is a field if and only if the only ideals in A are (0) and
(1).

The ideals in A/m are in one-one correspondence with the ideals a ⊃ m

in A.
Thus A/m is a field if and only if the only ideals a such that

m ⊂ a ⊂ A

are m and A itself, ie if m is maximal. J

Corollary 4.1. A maximal ideal is necessarily prime.

This follows at once from the Proposition; but it is easy to see directly.
Suppose m is maximal, and suppose ab ∈ m but a /∈ m. Then

(m, a) = A = (1).

Thus we can find m ∈ m, c ∈ A such that

m + ac = 1.
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But now, multiplying by b,

b = mb + (ab)c ∈ p,

showing that m is prime.
We shall see that in the case of a number ring A: every prime ideal except

(0) is maximal.
And our main aim. of course, is to prove Dedekind’s Theorem, that every

non-zero ideal a in a number ring A is uniquely expressible as a product of
prime ideals

a = p1 . . . pr.

4.4 Co-prime ideals

Definition 4.6. The ideals a, b ⊂ A are said to be co-prime if

a + b = (1) = A.

Proposition 4.10. If the ideals a, b ⊂ A are co-prime then

a ∩ b = ab.

Proof I. It is evident that
ab ⊂ a ∩ b;

that is true for any two ideals.
By definition, there are elements a ∈ a, b ∈ b such that

a + b = 1.

Suppose
x ∈ a ∩ b.

Then
x = x(a + b) = xa + xb ∈ ab;

for xa ∈ ab since a ∈ a, x ∈ b, and similarly xb ∈ ab. J

Proposition 4.11. 1. if a is coprime to b then ae is coprime to bf for
any e, f ∈ N;

2. If a is coprime to b1, . . . , br then it is coprime to b1 · · · br.
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Proof I. 1. Suppose
a + b = 1.

Then
(a + b)e+f = 1.

The terms in the binomial expansion all lie either in ae or in bf .

2. Suppose
ai + bi = 1,

with a1, . . . , ar ∈ a, bi ∈ bi. Multiplying these equations together we
obtain 2r terms, all of which lie in a except for b1 · · · br ∈ b1 · · · br.

J

Corollary 4.2. Suppose the ideals a1, . . . , ar are mutually co-prime. Then

ae1
1 ∩ ae1

2 ∩ · · · ∩ aer
r = ae1

1 ae1
2 · · · aer

r ,

for any exponents e1, e2, . . . , er ∈ N.

Note that distinct maximal ideals p, q are necessarily co-prime. Thus if
p1, . . . , pr are maximal then

pe1
1 ∩ pe1

2 ∩ · · · ∩ per
r = pe1

1 pe1
2 · · · per

r .

The following result might be called the Chinese Remainder Theorem for
ideals.

Theorem 4.1. Suppose a, b ⊂ A are co-prime ideals; and suppose r, s ∈ A.
Then there exists a ∈ A such that

a ≡ r mod a

a ≡ s mod b.

Moreover, b ∈ A is a second solution to these two congruences if and only if

a ≡ b mod ab.

Proof I. Since a + b = (1) we can find u ∈ A, v ∈ B such that

u + v = 1.

Note that

v

≡ 0 mod a,

≡ 1 mod b,
u

≡ 1 mod a,

≡ 0 mod b.
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It follows that

rv + su

≡ r mod a,

≡ s mod b.

Conversely, suppose a, b are two solutions to the two congruences, Then

a− b ∈ a ∩ b = ab,

ie

a ≡ b mod ab.

J

The result can be expressed equivalently in terms of quotient-rings, as
follows.

Suppose a, b ⊂ A are two ideals (not necessarily co-prime). Then the
homomorphisms

A → A/a, A → A/b

combine in a homomorphism

Θ : A → A/a× A/b.

Since
ker Θ = a ∩ b,

this gives an injective homomorphism

Φ : A/(a ∩ b) → A/a× A/b.

Now suppose a, b are co-prime. Then a∩ b = ab; and by Theorem 4.1, Θ
and so Φ are surjective.

Hence Φ is bijective, ie an isomorphism:

A/(ab) ∼= A/a× A/b.

4.5 Noetherian rings

Definition 4.7. The ring A is said to be noetherian if every ideal a ∈ A is
finitely-generated.

All the commutative rings we meet will be noetherian. In fact, virtually
all commutative rings one is likely to meet in mathematics are noetherian.
(There is perhaps an analogy with locally compact spaces in topology.)

There is an alternative way of defining the property of noetherian-ness.
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Proposition 4.12. The ring A is noetherian if and only if its ideals satisfy
the increasing chain condition, ie every increasing sequence of ideals

a0 ⊂ a1 ⊂ a2 ⊂ · · ·

is stationary, that is
an = an+1 = an+2 = · · ·

for some n.

Proof I. It is easy to see that the union

a =
⋃
i

ai

of an increasing sequence of ideals is itself an ideal.
Suppose A is noetherian. Then this ideal is finitely-generated, say by

a1, . . . , ar. Each of these elements lies in one of the ai. Hence all of them lie
in an for some n; and then

an = an+1 = an+2 = · · ·

Conversely, suppose the ideals in A satisfy the increasing chain condition;
and suppose a ∈ A is an ideal. Choose any element a1 ∈ a. If a = (a1) we
are done; if not choose an element a2 ∈ a \ (a1). If a = (a1, a2) we are done;
if not choose an element a3 ∈ a \ (a1, a2).

Continuing in this way, we obtain an increasing sequence of ideals

(a1) ⊂ (a1, a2) ⊂ (a1, a2, a3) ⊂ · · · .

By the increasing chain condition, this process must stop, ie

a = (a1, . . . , ar)

at some stage. J

Proposition 4.13. Every number ring

A = Q[α] ∩ Z̄

is noetherian.

Proof I. By Proposition /refD3,

A ∼= Zd
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as an additive group, where

d = deg Q(α) = dimQ Q[α].

But from the Structure Theory of Finitely Generated Abelian Groups,
every subgroup of a finitely-generated abelian group of rank r is also finitely-
generated, of rank ≤ r.

It follows that every ideal a ∈ A is finitely-generated as an abelian group
by ≤ d elements. A fortiori it is generated by ≤ d elements as an ideal. J

We shall see later that in fact each ideal in a number-ring A is generated
by at most 2 elements.

Theorem 4.2. Suppose A is a noetherian integral domain. Then A is a
Unique Factorisation Domain if and only if it is a Principal Ideal Domain.

Proof I.

Lemma 5. Each element a ∈ A is expressible as a product of irreducibles

a = p1p2 · · · pr.

Proof I If a is not irreducible, then it factorises

a = a1a2,

where neither a1 nor a2 are units. Note that

(a) ⊂ (a1), (a) ⊂ (a2),

with both inclusions proper; for if (a) = (a1), say, then a = εa1 where ε is a
unit, and then it follows (since A is an integral domain) that a2 = ε.

If now a1, a2 are both irreducible then we are done. If not then one, say
a1 factorises:

a1 = a11a11.

Continuing in this way, if all the factorisations end then we are done.
If not, then one (at least) of a1, a2 must factorise indefinitely. Suppose it

is a1. Then one of the factors a11, a12 must factorise indefinitely. Suppose it
is a11.

If this continues indefinitely then we obtain a strictly increasing sequence
of ideals

(a1) ⊂ (a11) ⊂ · · · ,

contrary to the supposition that A is noetherian.
Hence the factorisation must end, giving an expression for a as a product

of irreducibles. J
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Now suppose A is a UFD. We have to show that every ideal a ⊂ A is prin-
cipal. It is sufficient to prove this for ideals (a, b) generated by two elements;
for every ideal is finitely generated, and this will allow us to repeatedly reduce
the number of generators by one:

a = (a1, . . . , ar) = (b, a3, . . . , ar) = (c, a4, . . . , ar) = · · · .

Express a, b as products of irreducibles, say

a = ε
∏

pei
i , b = η

∏
pfi

i ,

where we include all inequivalent irreducibles pi, with ei, fi = 0 for all but a
finite number of i.

Let
d =

∏
p

min(ei,fi)
i .

Then
d | a, b;

and
e | a, b =⇒ e | d,

as one may see on expressing e as a product of irreducibles.
It follows that

(a, b) = (d);

for if
c = ua + vb ∈ (a, b)

then
p

min(ei,fi)
i | c,

and so d | c, ie
c ∈ (d).

Conversely, suppose A is a PID. If p is irreducible, then p is prime. For
suppose

p | ab.

Let
(p, a) = (d).

Then
p = cd.

Since p is irreducible, either c or d is a unit.
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If c is a unit then d ∼ p, and so

p | a.

If d is a unit, then
(p, a) = (1),

ie there exists u, v such that

up + va = 1.

Multiplying by b,
b = (ub)p + v(ab).

Since p | ab it follows that
p | b.

Now the uniqueness of factorisation follows in the usual way, eg by in-
duction on the minimal number, r say, of irreducibles in an expression for
a ∈ A. Thus if

a = εp1 . . . pr = ηq1 . . . qs.

then p1 | qi for some i, and so
p1 ∼ qi,

since qi is irreducible. Now, on dividing both sides by p1, the problem is
reduced to a number expressible as a product of < r irreducibles. J

4.6 Fractional ideals

It is convenient, and satisfying, to extend the notion of ideals from a number
ring A to the corresponding number field Q(α), ie the field of fractions of A.

We suppose in this Section that A is an integral domain with field of
fractions k.

Definition 4.8. A non-empty subset c ⊂ k is said to be a fractional ideal if

c = ca

for some ideal a ⊂ A, and some c ∈ k×.

Evidently a non-zero ideal a ⊂ A is a fractional ideal; the notion extends
the concept of an ideal.

Most of our results on fractional ideals follow immediately from the cor-
responding result for ordinary ideals, and will be given without proof.
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Proposition 4.14. If c, d ⊂ k are fractional ideals then so is

cd = {c1d1 + · · ·+ crdr : c1, . . . , cr ∈ c, d1, . . . , dr ∈ d}.

Definition 4.9. If c ⊂ k is a fractional ideal then we set

c−1 = {c ∈ k× : cc ⊂ a}.

Proposition 4.15. If c is a fractional ideal then so is c−1.

If c is a fractional ideal then by definition

c c−1 ⊂ A.

Definition 4.10. The fractional ideal c ⊂ k is said to be invertible if

c c−1 = A.

Proposition 4.16. The invertible fractional ideals in k form a group.

Proposition 4.17. If the fractional ideal c is invertible then so is cc for any
c ∈ k×.

Proposition 4.18. The fractional ideal c is invertible if and only if there is
a fractional ideal d such that

cd = (c) = cA

for some c ∈ k×.

Remark. The notation (c) for cA is somewhat ambiguous, but unlikely to
cause confusion in this context.

Proposition 4.19. If A is a number-ring, then every fractional ideal is in-
vertible.

Proof I. It is sufficient to show that every non-zero ideal a ∈ A is invertible.

Lemma 6. If a ⊂ A is a proper ideal (ie a 6= (0), (1)) then

a−1 6⊂ A.

Proof I Since a ⊂ p for some maximal ideal p, and

p−1 ⊂ a−1,

it is sufficient to prove the result for a maximal ideal p.
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Choose a ∈ p, a 6= 0. By Proposition ??, we can find maximal ideals
p = p1, p2, . . . , pr such that

pe1
1 · · · per

r ⊂ (a).

Let us suppose that this is a minimal expression of this form, ie with
minimal e1 + · · ·+ er. Since a ∈ p, p must be among the primes on the left,
say p = p1.

But now
pe1−1

1 · · · per
r 6⊂ (a).

J

J



Chapter 5

Dedekind’s Theorem

We suppose throughout this Chapter that A is an integral domain, with
field of fractions k. Of course we are interested primarily in the case of a
number-ring A and its field of fractions k = Q(α).

Definition 5.1. A integral domain A is said to be a Dedekind domain if
every non-zero ideal a ∈ A is expressible as a product of prime ideals:

a = p1 · · · pr.

5.1 Fractional ideals

Definition 5.2. A subset a ∈ k is said to be a fractional ideal if ca is an
ideal in A for c ∈ k×.

Proposition 5.1. If a, b ∈ k are fractional ideals then so is

ab = {a1b1 + · · · arbr : a1, . . . , ar ∈ a, b1, . . . , br ∈ b}.

Proof I. If aa, bb are ideals in A, then so is

(ab)(ab).

J

Proposition 5.2. If c ∈ k× then

(c) = cA

is a fractional ideal.

5–1
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Proof I. This follows at once, since

c−1(c) = A.

J

Definition 5.3. The fractional ideal a is said to be invertible if there is a
fractional ideal b such that

ab = (1) = A.

Proposition 5.3. If the fractional ideal a is invertible if and only if

ab = (c)

for some fractional ideal b and some c ∈ k×.

Proof I. If a is invertible then

ab = (1)

for some fractional ideal b.
Conversely, if

ab = (c)

then
a(c−1b) = (1).

J

Proposition 5.4. If the fractional ideal a is invertible then it is finitely-
generated.

Proof I. Suppose
ab = (1).

Then
a1b1 + · · ·+ arbr = 1

for some elements a1, . . . , ar ∈ A, b1, . . . , br ∈ B.
If follows that a1, . . . , ar generate a:

a = a1A + · · ·+ arA.

For suppose a ∈ a. Then

a = a(a1b1 + · · ·+ arbr)

= (ab1)a1 + · · ·+ (abr)ar.

Since abi ∈ A this establishes the result. J
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Definition 5.4. If a ⊂ k is a fractional ideal we set

a−1 = {x ∈ k : xa ⊂ A}.

Proposition 5.5. If a ⊂ k is a non-zero fractional ideal then so is a−1.

Proof I. Suppose c ∈ a, c 6= 0. Then

xa ⊂ A =⇒ xc ∈ A.

with d ∈ A.
ca−1 ⊂ A.

It is readily verified that

c, d ∈ a−1 =⇒ c + d ∈ a−1,

a ∈ A, c ∈ a−1 =⇒ ac ∈ a−1.

If follows that ca−1 is an ideal in A, and so a−1 is a fractional ideal. J

Proposition 5.6. The non-zero fractional ideal a ⊂ k is invertible if and
only if

aa−1 = (1) = A.

Proof I. Suppose
ab = A.

Then
b ⊂ a−1

from the definition of a−1.
Hence

aa−1 ⊃ ab = A.

But
aa−1 ⊂ A,

again from the definition of a−1. Hence

aa−1 = A.

J

Proposition 5.7. The integral domain A is a Dedekind domain if and only
if every non-zero fractional ideal is invertible.
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Proof I. Suppose first that A is a Dedekind domain. It is sufficient to show
that any non-zero ideal a ⊂ A is invertible; for then

(ca)−1 = c−1a−1.

Choose any a ∈ a, a 6= 0. Then

(a) ⊂ a.

It follows on expressing both (a) and a as products of prime ideals that

(a) = ab,

where b ⊂ A is an ideal. Hence a is invertible, by Proposition 5.3.
Conversely, suppose every non-zero fractional ideal is invertible. Then

every ideal is finitely-generated by Proposition 5.4. Hence A is a noetherian
ring.

Now suppose a ⊂ A is an ideal. We show first that a is a product of
prime ideals.

If a is prime there is nothing to prove. Otherwise, by Proposition ??, we
can find a maximal (and therefore prime) ideal p1 such that

a ⊂ p1.

Then
a ⊂ p−1

1 a.

Moreover, this inclusion is strict; for otherwise, on multiplying each side by
a−1,

A = p−1
1 ,

so that
p−1

1 p1 = p1,

contradicting the invertibility of p1.
If p−1

1 a is prime, say
p−1

1 a = p2,

then
a = p1p2,

on multiplying each side by p1.
If not, we can find a maximal (and therefore prime) ideal p2 such that

p−1
1 a ⊂ p2.
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Again,
p−1

1 a ⊂ p−1
2 p−1

1 a,

with strict inclusion.
If the ideal on the right is prime, say

p−1
2 p−1

1 a = p3,

then
a = p1p2p3.

If not, then we continue as before.
Since A is noetherian, this process must end, yielding an expression

a = p1 · · · pr.

Finally, to prove uniqueness we argue by induction on the minimal number
r of primes in an expression

a = p1 · · · pr.

Suppose we have a second expression

a = q1 · · · qs,

where s ≥ r. Then
q1 · · · qs ⊂ p1,

and so
qi ⊂ p1

for some i.
But then

p−1
1 qi ⊂ p−1

1 p1 = A,

ie
b = p−1

1 qi

is either the whole of A, or an ideal in A, which can be expressed as a product
of prime ideals, say

b = q′1 · · · q′t
(where the product will be empty if b = A).

Thus
p−1

1 a = p2 · · · pr = q1 · · · qi−1qi+1 · · · qsq
′
1 · · · q′t.

But now, applying the inductive hypothesis, we must have t = 0, and the qj

(for j 6= i) must be p2, . . . , pr in some order. On multiplying by p1 we deduce
that the expression for a is unique (up to order). J
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In the course of this proof we have established two further results.

Proposition 5.8. Every Dedekind domain is noetherian.

Proposition 5.9. In a Dedekind domain, every non-zero prime ideal is max-
imal.

Proof I. This follows because we obtained an expression for a as a product
of maximal ideals. J

Theorem 5.1. Each number ring A is a Dedekind domain.

Proof I. J



Chapter 6

Dedekind’s Theorem

6.1 Dedekind domains

Our aim in this Chapter is to show that every number ring is a Dedekind
domain, according to the following definition.

Definition 6.1. The integral domain A is said to be a Dedekind domain if
every non-zero ideal a ⊂ A is uniquely expressible (up to order) as a product
of prime ideals:

a = pe1
1 · · · per

r .

6.2 Ideals in number rings

We suppose in the rest of this Chapter that A is a number ring, ie

A = Q(α) ∩ Z̄

where Q(α) is a finite extension of Q.

Proposition 6.1. Every non-zero ideal a ⊂ A contains a rational integer
n > 0.

Proof I. Take any non-zero element α ∈ a. Since α ∈ Z̄, it satisfies a
minimal equation of the form

αd + a1α
d−1 + · · ·+ ad = 0,

with ai ∈ Z. Then
ad = −α(αd−1 + · · · ad−1) ∈ a;

and ad 6= 0, since otherwise α would satisfy an equation of lower degree. J

6–1
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Proposition 6.2. If a ⊂ A is a non-zero ideal in the number ring A then
the quotient-ring A/a is finite.

Proof I. We have to show that there are only a finite number of residue
classes modulo a.

We know that, as an abelian group,

A ∼= Zd,

where
d = deg Q(α).

Let e1, . . . , ed be a basis for this abelian group, ie each element a ∈ A is
uniquely expressible in the form

a = z1e1 + · · ·+ zded,

with zi ∈ Z. By the last Proposition, there is a natural integer n > 0 in a.
Let ri ∈ {0, 1, . . . , n− 1} be the remainder when zi is divided by n, say

zi = nqi + ri.

Then

a = n(q1e1 + · · ·+ qded) + (r1e1 + · · ·+ rded)

≡ r1e1 + · · ·+ rded mod a

since n ∈ a.
Thus each a ∈ A is congruent moda to at least one of the nd elements

r1e1 + · · ·+ rded (0 ≤ ri < n);

and so
#(A/a) ≤ nd.

J

Definition 6.2. We call
N (a) = #(A/a)

the norm of the ideal a. By convention we also set

N ((0)) = 0.

Proposition 6.3. If a, b ⊂ A are ideals with a ⊂ b then

N (a) = N (b) ⇐⇒ a = b.
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Proof I. This is trivial. If N (a) = N (b) then

x ≡ y mod b =⇒ x ≡ y mod a.

Thus

b ∈ b =⇒ b ≡ 0 mod b

=⇒ b ≡ 0 mod a

=⇒ b ∈ a.

J

Corollary 6.1. If a 6= (0) then N (a) ≥ 1; and

N (a) = 1 ⇐⇒ a = (1) = A.

6.3 Dedekind’s Theorem

Proposition 6.4. Every non-zero prime ideal p in a number ring A is max-
imal.

Proof I. If p is prime then A/p is an integral domain, by Proposition ??.
Also A/p is finite, by Proposition ??.

Lemma 7. A finite integral domain A is a field.

Proof I Suppose a ∈ A, a 6= 0. Consider the sequence

a, a2, a3, · · · .

There must be a repeat (since A is finite), say

an+r = an,

where r > 0. Then
an(ar − 1) = 0.

Hence
ar = 1,

since an = 0 =⇒ a = 0. Thus a has an inverse

a−1 = ar−1.

Hence A is a field. J
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It follows from the Lemma that A/p is field, and so p is maximal, by
Proposition ??. J

Theorem 6.1. Every number ring A is a Dedekind domain, ie each non-zero
ideal a ⊂ A is uniquely expressible (up to order) as a product of prime ideals:

a = p1 · · · pr.

Proof I. Suppose a 6= (0).

Lemma 8. There are only a finite number of ideals b ⊃ a; and in particular
there are only a finite number of maximal ideals

p1, . . . , pr ⊃ a.

Proof I There is a one-one correspondence between ideals b ⊃ a and ideals
in the quotient-ring A/a. But this ring is finite; so it only has a finite number
of subsets, let alone ideals. J

Lemma 9. We can find a product of maximal ideals

p1 · · · pr ⊂ a.

Proof I We argue by induction on N (a).
If a is prime then it is maximal by Proposition 6.4 and there is nothing

to prove.
If a is not prime then by definition there exist u, v ∈ A such that

uv ∈ a but u, v /∈ a.

Thus
a = (a + (u)) (a + (v)) .

with both a + (u), a + (b) strictly larger than a.
By the inductive hypothesis we can find prime ideals

p1 . . . pr ⊂ a + (u), q1 . . . qs ⊂ a + (v),

and then
p1 . . . prq1 . . . qs ⊂ a.

J

Recall that if a ⊂ A is a non-zero ideal then

a−1 = {c ∈ k : c a ⊂ A} ⊃ A.
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Lemma 10. If p ⊂ A is a prime ideal then

p−1 6= A,

ie p−1 is strictly greater than A.

Proof I Choose a ∈ p, a 6= 0. By Lemma 9 we can find a product of
maximal ideals

p1 · · · pr ⊂ (a) ⊂ p,

where we may assume that r is minimal.
Then some

pi ⊂ p,

by Proposition ??. Thus
p = pi,

since pi is maximal. Let us re-order the pi (if necessary) so that p = p1.
Choose

b ∈ p2 · · · pr, b /∈ p1p2 · · · pr = (a).

(This is possible, since p2 · · · pr 6⊂ (a) by the minimality of r.)
Then

b p ⊂ pp2 · · · pr ⊂ (a).

Thus
b

a
p ⊂ A,

and so

c =
b

a
∈ p−1,

while
c /∈ A

since b /∈ (a). J

Lemma 11. Every maximal ideal p ⊂ A is invertible:

p−1p = A.

Proof I Since A ⊂ p−1,
p ⊂ p−1p ⊂ A.

Since p is maximal, it follows that

p−1p = p or A.
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In the latter case p is invertible.
If not then

p−1p = p.

Suppose c ∈ p−1. Then
c p = p.

But as an abelian group, p is a finitely-generated subgroup of C. It follows
therefore from our criterion for an algebraic integer (Proposition ??) that

c ∈ Z̄,

ie

c ∈ Q(α) ∩ Z̄ = A.

Since this is true for all c ∈ p−1,

p−1 ⊂ A,

contrary to the last Lemma.
We conclude that p must be invertible. J

Lemma 12. Every non-zero ideal a ⊂ A is expressible as a product of prime
ideals:

a = p1 · · · pr.

Proof I We argue by induction on N (a).
We know by Lemma 9 that we can find prime ideals p1, . . . , pr such that

p1 · · · pr ⊂ a,

where we may assume that r is minimal.
Multiplying by p−1

1 (and using the fact that p1 is invertible),

p2 · · · pr ⊂ p−1a.

But p−1a is strictly larger than a, by the minimality of r.
Thus by our inductive hypothesis,

p−1
1 a = q1 · · · qs,

where the qj are prime. Hence

a = p1(p
−1
1 a) = p1q1 · · · qs.

J
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Lemma 13. The expression of a non-zero ideal

a = p1 · · · pr

as a product of prime ideals is unique up to order.

Proof I We argue by induction on the minimal r in such an expression.
Suppose

a = p1 · · · pr = q1 · · · qs.

Then
q1 · · · qs ⊂ p1 =⇒ qj ⊂ p1

for some j.
Since qj is maximal (by Proposition 6.4) it follows that

qj = p1.

We may assume, on re-ordering the qj if necessary, that

q1 = p1.

But now
p−1

1 a = p2 · · · pr = q2 · · · qs,

and the result follows from the inductive hypothesis. J

That concludes the proof of Dedekind’s Theorem; we have shown that
each non-zero ideal is uniquely expressible (up to order) as a product of
prime ideals:

a = pe1
1 · · · per

r .

J

6.4 First consequences

We continue to assume that A is a number ring, with field of fractions k.

Proposition 6.5. Suppose a, b ⊂ A are ideals. Then

a ⊂ b ⇐⇒ a = bc

for some ideal c ⊂ A.
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Proof I. It is clear that
bc ⊂ b.

Conversely, suppose
b = p1 · · · pr.

We argue by induction on r
The result is trivial if r = 0, ie a = A.
If r ≥ 1 then on multiplying by p−1

1 ,

p−1
1 a ⊂ p−1

1 b = p2 · · · pr.

Hence, by the inductive hypothesis,

p−1a = p−1bc

for some ideal c, and so, on multiplying by p1,

a = bc.

J

We may say that b divides a if a ⊂ b, and write

b | a ⇐⇒ a ⊂ b.

Similarly, we can extend the notation pe || n for exact division by a
rational prime p, by writing (for a non-zero prime ideal p)

pe || a if pe | a but pe+1 - a.

We can express any non-zero ideal in the form

a =
∏
i

pei
i ,

where the product extends over all non-zero prime ideals pi, with the under-
standing that ei ∈ N, with ei = 0 for all but a finite number of ei. (We may
say that ei is almost always 0.)

Proposition 6.6. Suppose a, b ⊂ A are non-zero ideals, with

a =
∏

pei
i , b =

∏
pfi

i .

Then
a + b =

∏
p

min(ei,fi)
i .
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Proof I. Suppose
a + b =

∏
pgi

i .

Then
a, b ⊂ a + b =⇒ gi ≤ ei, fi =⇒ gi ≤ min(ei, fi).

On the other hand, suppose ei ≤ fi. We can find

a ∈ a \ api.

Then
pei

i || (a).

Since a ∈ a + b, it follows that

pei
i || a + b.

Thus
gi = ei = min(ei, fi).

J

In view of this result, it is natural to write

gcd(a, b) = a + b.

Proposition 6.7. Every ideal a ⊂ A is generated by at most 2 elements:

a = (a, b).

Proof I. If a = (0) the result is trivial. Otherwise choose any non-zero a ∈ a.
By Proposition 6.5, a | (a); say

a = (a) pe1
1 · · · per

r ,

where p1, . . . , pr are distinct prime ideals.
We only have to choose b to “avoid” this finite set of ideals.

Lemma 14. We can find b ∈ a such that

b = (a) qf1
1 · · · qfs

s ,

where none of the qj’s is equal to any of the pi’s.
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Proof I For each i, choose

bi ∈ ap1 · · · pi−1pi+1 · · · pr \ ap1 · · · pr.

(This is possible, by the uniqueness part of Dedekind’s Theorem.) Thus

bj ∈ api ⇐⇒ j 6= i.

Set
b = b1 + · · ·+ br.

Since all the bj except bi are in api, while bi is not, it follows that

b /∈ api

for each i.
Thus (b) is of the form specified in the Lemma; no additional powers of

the pi’s occur in it apart from those in a. J

Let b be as in the Lemma. Suppose p is a non-zero prime ideal, and
suppose

pe || a, pf || (a), pg || (b).

Then f, g ≥ e, and we have chosen b so that if f > e then g = e. Thus

e = min(f, g).

Since this is true for all p,

(a, b) = (a) + (b) = gcd ((a), (b)) = a.

J

Dedekind’s Theorem extends at once to fractional ideals.

Proposition 6.8. Every non-zero fractional ideal a ⊂ k can be expressed
uniquely in the form

a =
∏
i

pei
i ,

where ei ∈ Z, with ei = 0 for all but a finite number of ei.

Proof I. By definition,

a =
a

b
b

where a.b ∈ A and b ⊂ A is an ‘ordinary’ ideal.
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Lemma 15. Every non-zero ideal a ⊂ A is invertible; if

a = p1 · · · pr

then
a−1 = p−1

1 · · · p−1
r .

Proof I This follows at once from the fact that

p1 · · · pr p−1
1 · · · p−1

r = (1).

J

The result follows from the Lemma, since

a =
r

s
b

= (s)−1(rb).

(We leave the uniqueness of the expression as a — very simple — exercise.)
J

6.5 Prime ideals and rational primes

Proposition 6.9. Each non-zero prime ideal p contains exactly one rational
prime p.

Proof I. We know that there is a non-zero rational integer n ∈ p, by Propo-
sition DT?. We may assume that n > 0 since n ∈ p =⇒ −n ∈ p. By the
Fundamental Theorem of Arithmetic,

n = pe1
1 · · · per

r ,

where p1, . . . , pr are rational primes Hence

pi ∈ p

by the definition of a prime ideal.
Suppose there are two distinct rational primes

p, q ∈ p.

Then gcd(p, q) = 1, and so we can find u, v ∈ Z such that

up + vq = 1.

But then
p, q ∈ p =⇒ 1 ∈ p,

contrary to the definition of a prime ideal. J

We may say that the prime ideal p belongs to p.



Appendix A

Continued fractions

A.1 Finite continued fractions

Definition A.1. We write

[a0, a1, . . . , aN ]

for the finite continued fraction

α = a0 +
1

a1 +
1

a2 +
1

· · ·+
1

aN

We call an the nth quotient of α, and we call

xn = [a0, a1, . . . , an]

the nth convergent to α (for 0 ≤ n ≤ N). Finally, for 0 ≤ n, N we call

αn = [an, . . . , aN ]

the nth remainder for α

Example. The continued fraction

[2, 1, 3, 2] = 2 +
1

1 +
1

3 +
1

2

1–1
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represents the rational number

2 +
1

1 +
2

7

= 2 +
7

9

=
25

9
.

Although we are mainly interested in the case where

ai ∈ Z, a1, a2, . . . , an ≥ 1

(when we shall speak of α as a simple finite continued fraction), we also need
to consider α as a rational function of a0, a1, . . . , an. Thus

[a0] = a0,

[a0, a1] = a0 +
1

a1

=
a0a1 + 1

a1

,

etc.

Proposition A.1. For 0 ≤ n < N ,

[a0, . . . , aN ] = [a0, . . . , an−1, αn].

Proof I. This is what we get if we end the computation at

α = a0 +
1

a1 +
1

a2 +
1

· · ·+
1

αn

J

Proposition A.2. The nth convergent

xn =
pn

qn

,

where pn, qn are defined by the recursion relations

pn = anpn−1 + pn−2,

qn = anqn−1 + qn−2,

with the initial conditions

p0 = a0, q0 = 1

p1 = a0a1 + 1, q1 = a1.
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Proof I. We argue by induction on n. We have

xn+1 = [a0, . . . , an, an+1]

=

[
a0, . . . , an +

1

an+1

]

=
(an + 1

an+1
)pn−1 + pn−2

(an + 1
an+1

)qn−1 + qn−2

=
(anan+1 + 1)pn−1 + an+1pn−2

(anan+1 + 1)qn−1 + an+1qn−2

=
an+1(anpn−1 + pn−2) + pn−1

an+1(anqn−1 + qn−2) + qn−1

=
an+1pn + pn−1

an+1qn + qn−1

.

J

Proposition A.3. For n ≥ 0,

pn+1qn − qn+1pn = (−1)n,

ie

xn+1 − xn =
(−1)n

qn+1qn

.

Proof I. Substituting for pn+1, qn+1,

pn+1qn − qn+1pn = (an+1pn + pn−1)qn − (an+1qn + qn−1)pn

= pn−1qn − qn−1pn

= −(pnqn−1 − qnpn−1).

Thus by repetition (or induction on n),

pn+1qn − qn+1pn = (−1)n(p1q0 − q1p0)

= (−1)n((a1a0 + 1)− a1a0)

= (−1)n.

J

Corollary A.1. If α is a simple continued fraction, ie ai ∈ Z with a1, . . . , aN ≥
1, then pn, qn ∈ Z and

gcd(pn, qn) = 1
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with qn ≥ 1; in other words, the fraction

xn =
pn

qn

is in its lowest terms.

Proof I. Since
pnqn−1 − qnpn−1 = (−1)n−1,

any common factor of pn, qn would also divide (−1)n−1; while it follows by
induction from

qn+1 = an+1qn + qn−1

that qn ≥ 1. J

Example. Continuing the previous example, the successive convergents to
[2, 1, 3, 2] are

2 =
2

1
,

[2, 1] =
3

1
,

[2, 1, 3] =
11

4
.

[2, 1, 3, 2] =
25

9
.

Thus

(p0, q0) = (2, 1), (p1, q1) = (3, 1), (p2, q2) = (11, 4), (p3, q3) = (25, 9).

There is an intimate relation between the continued fraction for x = p
q

and the Euclidean Algorithm for the numbers p, q. In fact the successive
quotients in the algorithm are precisely the numbers ai in the continued
fraction.

Example. Suppose x = 23
17

. Then the Euclidean Algorithm for the numbers
23, 17 runs as follows:

23 = 1 · 17 + 6,

17 = 2 · 6 + 5,

6 = 1 · 5 + 1,

5 = 5 · 1.
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This corresponds to the continued fraction expression

23

17
= [1, 2, 1, 5] = 1 +

1

2 +
1

1 +
1

5

.

Proposition A.4. Each rational number

x =
p

q
∈ Q

can be expressed in just two ways as a continued fraction

x = [a0, a1, . . . , an] (a0 ∈ Z, a1, . . . , an ∈ N \ {0}),

one with last quotient an = 1, and one with last quotient an > 1. as a finite
continued fraction

Proof I. Note that if an > 1 then

[a0, . . . , an−1, an] = [a0, . . . , an−1, an − 1, 1].

As we have just seen, the euclidean algorithm yields a continued fraction
for p/q, with final convergent an > 1 (unless p/q ∈ Z).

It remains to show that there is just one continued fraction for p/q with
final quotient an > 1. We argue by induction on the length n + 1 of the
shortest continued fraction for x.

Suppose
x = [a0, . . . , an] = [a′0, . . . , a

′
n′ ].

Since
a0 ≤ [a0, a1, . . . , an] < a0 + 1,

we must have
a0 = [x] = a′0.

Thus

x = a0 +
1

α1

= a0 +
1

α′1
,

where
α = [a1, . . . , an], α′ = [a′1, . . . , a

′
n′ ].

Hence
α = α′,

and the result follows by induction. J
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Proposition A.5. The even convergents x0, x2, x4, . . . to

α = [a0, . . . , an]

are monotonically increasing, while the odd convergents x1, x3, x5, . . . are
monotonically decreasing. Moreover, every even convergent is less then every
odd convergent, and α is sandwiched between the even and odd convergents:

x0 < x2 < x4 < · · · < α < · · · < x5 < x3 < x1.

Proof I. By Proposition A.3,

xn − xn−1 =
(−1)n−1

qnqn−1

, xn−1 − xn−2 =
(−1)n

qn−1qn−2

.

Thus

xn − xn−2 =
(−1)n

qn−1

(
1

qn−2

− 1

qn

)
= (−1)nεn,

where εn > 0 since the qn are increasing (as qn+1 = an+1qn+qn−1 ≥ qn+qn−1).
It follows that xn is increasing for even n, and decreasing for odd n.

Also if n is even then

xn+1 − xn =
1

qn+1qn

> 0,

ie

xn+1 > xn.

It follows that
x2r < x2s+1

for all r, s.
Finally, the last convergent

α =
pn

qn

is in the middle of the chain, whether n is even or odd. J
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A.2 Infinite continued fractions

So far we have been considering finite continued fractions, representing ra-
tional numbers. But it is easy now to pass to the infinite case.

Proposition A.6. Suppose

a0, a1, a2, . . .

is an infinite sequence of integers, with a1, a2, · · · > 0. Then the sequence

xn = [a0, . . . , an]

converges as n → infty.

Proof I. It follows from the finite case that the even convergents x2r are
increasing, and

x2r < x1.

Hence the even convergents converge, say

x2r → l.

Similarly the odd convergents converge, say

x2s+1 → L.

Also, since

|xn+1 − xn| =
1

qn+1qn

→ 0

it follows that
L = l,

ie the sequence xn converges. J

Definition A.2. We write

α = [a0, a1, . . . ]

if
xn = [a0, . . . , an] → α

as n →∞.

Thus the infinite continued fraction [a0, a1, . . . ] is said to have value α.
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Proposition A.7. The value of an infinite continued fraction [a0, a1, . . . ]
is an irrational number α ∈ R; and every irrational α ∈ R has a unique
expression as an infinite continued fraction.

Proof I. Observe that we can carry out the Euclidean Algorithm — perhaps
we should call it the Continued Fraction Algorithm — for any α ∈ R. Thus
we set

a0 = [α],

a1 =
[

1

α− a0

]
,

etc. If α is irrational, this process will never end, and we will obtain an
infinite sequence

[a0, a1, . . . ].

By Proposition A.5, the even convergents x2r and the odd convergents
x2s+1 will converge to the same limit, α′ say.

We don’t really need the following Lemma to see that α′ = α, but we
shall find the result useful later.

Lemma 16. Let
f(x) = [a0, . . . , an, x].

If n is even then f(x) is strictly increasing for x ≥ 1; while if n is odd then
f(x) is strictly decreasing for x ≥ 1.

Proof I We argue by induction on n. By Proposition A.1,

f(x) = a0 +
1

g(x)
,

where
g(x) = α1 = [a1, . . . , an].

If n is even then by the inductive hypothesis g(x) is decreasing for x ≥ 1, and
so f(x) is increasing. Similarly, if n is odd then by the inductive hypothesis
g(x) is increasing for x ≥ 1, and so f(x) is decreasing. J

If follows from this Lemma that

xn = [a0, . . . , an] ≤ α = [a0. . . . , αn],

if n is odd, while

xn = [a0, . . . , an] ≥ α = [a0. . . . , αn],
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if n is even.
Thus both α, α′ are both sandwiched between the odd convergents and

the even convergents, and so

α = α′,

ie

α = [a0, a1, . . . ].

To see that the continued fraction for irrational α ∈ R is unique, we argue
by induction, our hypothesis being that if

α = [a0, a1, . . . ] = [a′0, a
′
1, . . . ]

then ai = a′i for i = 0, 1, . . . , n.
This holds trivially for n = 0 since

a0 = [α].

Now suppose

α = [a0, . . . , an, an+1, . . . ] = [a0, . . . , an, a
′
n+1, . . . ].

By Proposition A.1,

α = a0 +
1

α1

= a0 +
1

α′1
,

where

α1 = [a1, . . . , an, an+1, . . . ], α′1 = [a1, . . . , an, a
′
n+1, . . . ].

Since
α1 = α′1

it follows from the inductive hypothesis that

an+1 = a′n+1.

J

Thus each irrational number has a unique expression as a continued frac-
tion while each rational number, as we have seen, has two such expressions.
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A.3 Diophantine approximation

Diophantine approximation is the study of rational approximations to real
numbers. The successive convergents to α are very good approximants.

Proposition A.8. The convergents pn/qn to α all satisfy

|α− pn

qn

| < 1

q2
n

.

Proof I. Since α lies between xn and xn+1,

|α− xn| < |xn+1 − xn|

=
1

qn+1qn

<
1

q2
n

.

J

Remarks:

1. Since
qn+1 ≥ an+1qn + qn−1,

we actually we have the stronger result

|α− pn

qn

| < 1

an+1q2
n

.

2. One can establish the Proposition without using continued fractions by
an argument due to Kronecker. Given N > 0, divide the interval [0, 1)
into N equal sub-intervals:

[0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N ].

Let {x} denote the fractional part of x ∈ R:

{x} = x− [x].

Consider the N + 1 fractional parts

{0α}, {1α}, . . . , {Nα}.
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Two of these, say {rα}, {sα} (where we may assume that r < s) must
lie in the same sub-interval. But then

|{rα} − {sα}| < 1

N
.

ie

|(r − s)α− [rα]− [sα]| < 1

N
,

ie

|qα− p| < 1

N
,

where
q = r − s ≤ N, p ∈ Z.

Thus

|qα− p| < 1

q
,

ie

|α− p

q
| < 1/q2,

Proposition A.9. Of two successive convergents pn/qn to α one at least will
satisfy

|α− pn

qn

| < 1

2q2
n

.

Proof I. Suppose to the contrary,

|α− pn

qn

| < 1

2q2
n

, |α− pn+1

qn+1

| < 1

2q2
n+1

.

Since α lies between the two convergents,

|pn+1

qn+1

− pn

qn

| < 1

2q2
n+1

+
1

2q2
n

.

But

|pn+1

qn+1

− pn

qn

| = 1

qn+1qn

.
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Thus

1

2q2
n+1

+
1

2q2
n

<
1

qn+1qn

,

ie

q2
n+1 + q2

n < 2qn+1qn,

ie

(qn+1 − qn)2 < 0,

which is impossible. J

Proposition A.10. If

|α− p

q
| < 1

2q2

then p/q is a convergent to α.

Proof I. Let the continued fraction for p/q be

p

q
= [a0, . . . , an],

where we choose n even or odd according as

α >
p

q
or α <

p

q
.

Let the last 2 convergents to the continued fraction be

pn−1

qn−1

,
pn

qn

=
p

q
.

(Our choice of n means that α lies on the same side of p/q as the penultimate
convergent pn−1/qn−1.)

Consider the function

f(x) = [a0, . . . , an, x] =
pnx + pn−1

qnx + qn−1

.

This has an inverse of the same form; to be precise,

f−1(x) = (−1)n−1 qn−1x− qn

pn−1x− pn

.
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(More accurately, f(x) defines a bijective map from the real projective line
R ∪ {∞} to itself.)

In particular, there is exactly one θ ∈ R such that

α = f(θ) =
pnθ + pn−1

qnθ + qn−1

.

If we can show that
θ > 1,

with continued fraction
θ = [b0, b1, . . . ]

then it will follow from Proposition A.1 that

α = [a0, . . . , b1, b1, . . . ],

implying in particular that
p

q
=

pn

qn

is a convergent to α.
Since

α− p

q
=

pnθ + qn

qnθ + qn−1

− pn

qn

=
(−1)n−1

qn(qnθ + qn−1

,

it follows that

0 ≤ 1

qn(qnθ + qn−1

<
1

2q2
n

,

ie

qnθ + qn−1 > 2qn,

from which it follows that
θ > 1,

which as we have seen establishes the result. J
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A.4 Quadratic surds

Examples:

1. Let us compute the continued fraction for
√

2. We have
√

2 = 1 + (
√

2− 1),

1√
2− 1

=

√
2 + 1

(
√

2 + 1)(
√

2− 1)
=
√

2 + 1

1√
2− 1

= 2 + (
√

2− 1),

and so on. Thus √
2 = [1, 2, 2, . . . ] = [1, 2̇],

where the dotted number indicates recurrence.

2. Let us compute the continued fraction for
√

3 similarly.

√
3 = 1 + (

√
3− 1),

1√
3− 1

=

√
3 + 1

2

= 1 +

√
3− 1

2
,

2√
3− 1

=
√

3 + 1

= 2 + (
√

3− 1).

1√
3− 1

= 1 +

√
3− 1

2
,

and so on. Thus
√

3 = [1, 1, 2, 1, 2, 1, . . . ] = [1, 1̇, 2̇],

with a cycle of length 2.

Recall that a quadratic surd is a real number of the form

α = x + y
√

d,

where d > 1 is a non-square: d 6= m2.
In other words, a quadratic surd is an irrational element of a real quadratic

field.
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Theorem A.1. The continued fraction for α ∈ R is periodic if and only if
α is a quadratic surd.

Proof I. Suppose first the continued fraction for α is periodic, say

α = [a0, . . . , an, ċ0, . . . , ˙cm].

By Proposition A.1,

α =
pnβ + pn−1

qnβ + qn−1

,

where β is purely periodic:

β = [ċ0, . . . , ˙cm].

By Proposition A.1,

β =
Pmβ + Pm−1

Qmβ + Qm−1

,

where Pi/Qi are the convergents to β. Thus β is a root of

Qmx2 + (Qm−1 − Pm)x− Pm−1 = 0.

Hence β is a quadratic surd.
It follows at once that α is also a quadratic surd, in the same quadratic

field. (It cannot be rational, or the continued fraction would be finite.)
The converse is more difficult. Suppose

α = [a0, a1, . . . ]

satisfies the quadratic equation

ax2 + 2bx + c = 0.

By Proposition A.1,

α =
αnpn−1 + pn−2

αnpn−1 + pn−2

,

where
αn = [an, an+1, . . . ].

Thus αn satisfies the quadratic equation

Ax2 + 2Bx + C,



A.4. QUADRATIC SURDS 1–16

where

A = ap2
n−1 + 2bpn−1qn−1 + cq2

n−1,

B = apn−1pn−2 + b(pn−1qn−2 + qn−1pn−2) + cqn−1qn−2,

C = ap2
n−2 + 2bpn−2qn−2 + cq2

n−2.

We shall show that A, B, C are bounded. It will follow that some triple
(A, B, C) must be repeated an infinity of times, from which it will follow that
there is a repeat

αm+r = αm,

and it will follow from this that αm, and so α, is a quadratic surd.
To see that A is bounded, note that

A

q2
n

= ar2 + 2br + c,

where
r =

pn−1

qn−1

.

Since aα2 + 2bα + c = 0.

ar2 + 2br + c = a(α2 − r2) + 2b(α− r)

= (α− r)(a(α + r) + 2b).

Since

|α− r| < 1

q2
n

it follows that

|α + r| = |2α− (α− r)|

< 2|α|+ 1

q2
n

< 2|α|+ 1.

Hence

|ar2 + 2br + c| < a(2α + 1) + 2|b|
q2
n

.

Thus
|A| < 2a(|α|+ 1) + 2|b|.

By exactly the same argument (with n− 1 in place of n),

|C| < 2a(|α|+ 1) + 2|b|.
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We could prove that B is bounded in much the same way, using the fact
that

B

qn−1qn−2

= ars + b(r + s) + c

where r = pn−1/qn−1, s = pn−2/qn−2 are both close to α.
Alternatively, one can verify by a straightforward (if lengthy) computa-

tion — which is left to the student — that

B2 − AC = b2 − ac.

This is not a surprising result since

α = [a0, a1, . . . ] ∈ Q(
√

b2 − ac), αn = [an, an+1, . . . ] ∈ Q(
√

B2 − AC),

while we know they lie in the same quadratic field.
In any case, A, B, C are bounded, and so some triple (A, B, C) must occur

an infinity of times. In particular,

αn = αn+m

for some n, m with m > 0. But then, if αn = [b0, b1, . . . ],

αn = αn+m =
p′m−1αn + p′m−2

q′m−1αn + q′m−2

,

where the p′, q′ are convergents to αn. Thus αn is a quadratic surd; and so
therefore is

α =
pn−1αn + pn−2

qn−1αn + qn−2

.

J

A.5 Pell’s Equation

Proposition A.11. Suppose the integer d > 1 is not a perfect square. If
x, y > 0 is a solution to Pell’s Equation

x2 − dy2 = ±1

then x/y is a convergent to
√

d.

Proof I. Since
x2 − dy2 = (x + y

√
d)(x− y

√
d),
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it follows that

|
√

d− x

y
| = 1

x2

1√
d + x

y

But

√
d +

x

y
≥ 2

√
d− |

√
d− x

y
|

= 2
√

d− |x− y
√

d|
x

= 2
√

d− 1

x(|x +
√

d)|

=≥ 2
√

d− 1√
d
.

But

2
√

d− 1√
d

> 2

for d ≥ 2. Hence

|
√

d− x

y
| < 1

y2
;

and so x/y is a convergent to
√

d, by Proposition A.10. J



Appendix B

P -adic numbers

B.1 Valuations

Definition B.1. A valuation on a field k is a map

x 7→ ‖x‖ : k → R

such that

1. ‖x‖ ≥ 0 and ‖x‖ = 0 ⇐⇒ x = 0;

2. ‖x + y‖ ≤ ‖x‖+ ‖y‖;

3. ‖xy‖ = ‖x‖‖y‖;

4. ‖x‖ 6= 1 for some x 6= 0.

We sometimes use the term valued field for a field k together with a
valuation ‖·‖ on k.

Proposition B.1. 1. ‖1‖ = 1;

2. ‖−1‖ = 1;

3. ‖−x‖ = ‖x‖.

Proof I. 1. This follows from 12 = 1;

2. Similarly, this follows from (−1)2 = 1;

3. ‖−x‖ = ‖−1‖‖x‖‖x‖.
J

2–1
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Examples:

1. The absolute value |x| defines valuations on Q, R and C.

2. Suppose k is a field. Recall that k(x) denotes the field of rational
functions

f(x) =
u(x)

v(x)
,

where u(x), v(x) ∈ k[x] are polynomials.

If f(x) is not identically zero then we can write

f(x) = xn r(x)

s(x)
,

where r(0), s(0) 6= 0 (ie x - r(x), s(x)).

It is readily verifed that

‖f(x)‖ = 2−n

defines a valuation on k(x).

Thus ‖f(x)‖ is determined by the order of the pole (or zero) at x = 0.

The choice of 2 was arbitrary. We could equally well have set ‖f(x)‖ =
e−n. We shall return to this point (or place) shortly.

More generally, for any a ∈ k we can define a norm ‖f(x)‖a on k(x) by
setting

‖f(x)‖a = 2−n

if n is the order of the pole (or zero) at x = a.

3. We can define another norm on k(x) by setting

‖u(x)/v(x)‖∞ = deg u(x)− deg v(x).

We can think of this as the ‘norm at infinity’ since

‖f(x)‖∞ = ‖f(1/x)‖0.

Each non-zero rational
r =

n

d

can be written as
r = pe u

v
,
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where p - u, v. We may say that

pe || r.

Recall that if p is a prime and n ∈ Z then we write

pe || n if pe | n but pe+1 - n.

We can extend this to Q by setting

pe || r =
n

d
if r = pe u

v
(p - u, v).

Definition B.2. Let p be a prime. Suppose r ∈ Q, r 6= 0. If

pe || r

then we set
‖x‖p = p−e.

We call ‖·‖p the p-adic valuation on Q.

Proposition B.2. The p-adic valuation is indeed a valuation of Q.

Proof I. If
pe || r, pf || s

then
pe+f || rs

while
pmin(e.f) | r + s.

J

We sometimes denote the absolute valuation on Q by

‖x‖∞ = |x|.

However, the p-adic valuations ‖x‖p differ in one important way from the
absolute valuation ‖x‖∞; they satisfy a much stronger triangle inequality.

Proposition B.3. If r, s ∈ Q then

‖r + s‖ ≤ max(‖r‖, ‖s‖)
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Proof I. Suppose

‖r‖p = e, ‖s‖p = f,

ie

p−e || r, p−f || s.

Then
pmin(−e,−f) = p−max(e,f) | r + s,

and so
‖r + s‖p ≤ max(e, f).

J

Definition B.3. The valuation ‖x‖ is said to be non-archimedean if

‖x + y‖ ≤ max(‖x‖, ‖y‖)

for all x, y. If this is not so the valuation is said to be archimedean.

Evidently the p-adic valuation on Q is non-archimedean, while the abso-
lute value is archimedean.

The term “ultrametric” is sometimes used for a non-archimedean valua-
tion.

For any field k. there is a unique ring-homomorphism

Z → k

If n ∈ Z we write n ∈ k for the image of n under this homomorphism.

Proposition B.4. The valuation ‖·‖ on k is archimedean if and only if

‖n‖ > 1

for some n ∈ Z.

Proof I. We have to show that if

‖n‖ ≤ 1

for all n ∈ Z then the valuation is non-archimedean.
Suppose x, y ∈ k. Then

(x + y)n = xn + c1x
n−1y + · · ·+ yn,
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where

ci =

(
n

i

)
∈ Z =⇒ ‖ci‖ ≤ 1.

Thus

‖x + y‖n = ‖(x + y)n‖
= ‖xn + c1x

n−1y + · · ·+ yn‖
≤ ‖xn‖+ ‖xn−1y‖+ · · ·+ ‖yn‖
= ‖x‖n + ‖x‖n−1‖y‖+ · · ·+ ‖y‖n

≤ (n + 1) max(‖x‖, ‖y‖)n.

Hence
‖x + y‖ ≤ (n + 1)1/n max(‖x‖, ‖y‖).

Since (n + 1)1/n → 1 as n →∞ (as one can see by taking logarithms),

‖x + y‖ ≤ max(‖x‖, ‖y‖).

J

Corollary B.1. A valuation on a number field k restricts to a valuation on
Q; and the valuation is archimedean or non-archimedean according as the
restriction is archimedean or non-archimedean.

Proof I. All is immediate, except perhaps that a valuation on k might be-
come trivial on Q, ie ‖c‖ = 1 for all c ∈ Q.

Suppose that is so. Then the valuation on k must be non-archimedean.
Suppose ‖α‖ 6= 1 for α ∈ k, α 6= 0. Taking α−1 in place of α, if necessary,
we may assume that ‖α‖ > 1.

Since α is an algebraic number it satisfies some equation

αn + c1α
n−1 + · · ·+ cn = 0,

with ci ∈ Q. Since ‖ci‖ = 1,

‖α‖n = ‖c1α
n−1 + · · ·+ cn‖

≤ max(‖α‖n−1, ‖α‖n−1, . . . , 1)

= ‖α‖n−1,

whence
‖α‖ ≤ 1,

contrary to assumption. J
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B.2 Places

A valuation on k defines a metric

d(x, y) = ‖x− y‖;

and this in turn defines a topology on k.

Definition B.4. Two valuations on k are said to be equivalent if they define
the same topology.

An equivalence class of valuations is called a place.

Proposition B.5. The valuations ‖·‖1, ‖·‖2 are equivalent if and only if

‖x‖2 = ‖x‖ρ
1

for some ρ > 0.

Proof I. It is evident the valuations will be equivalent if they satisfy such a
relation.

Conversely, suppose the valuations are equivalent. With any valuation,

xn → 0 ⇐⇒ ‖x‖ < 1.

Thus, since the topologies are the same,

‖x‖1 < 1 ⇐⇒ ‖x‖2 < 1.

Hence, taking x/y in place of x,

‖x‖1 < ‖y‖1 ⇐⇒ ‖x‖2 < ‖y‖2.

We have to show, in effect, that

log‖x‖1

log‖x‖2

is constant, ie
log‖x‖1

log‖y‖1

=
log‖x‖2

log‖y‖2

for all x, y 6= 0.
It is sufficient to prove this when ‖x‖1, ‖y‖1 > 1. Take a high power xn,

and suppose
‖y‖m

1 ≤ ‖x‖n
1 ≤ ‖y‖m+1

1 .
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Then
‖y‖m

2 ≤ ‖x‖n
2 ≤ ‖y‖m+1

2 .

Taking logs,
m

n
≤ log‖x‖1

log‖y‖1

,
log‖x‖2

log‖y‖2

≤ m + 1

n

Since this is true for arbitrarily large n,

log‖x‖1

log‖y‖1

=
log‖x‖2

log‖y‖2

,

as required. J

Note that we do not assert that if ‖x‖ is a valuation on k then so is ‖x‖ρ.
This is true if 0 < ρ < 1, but is not true in general; for example, |x|2 does
not satisfy the triangle inequality in R. All we are saying is that if we have
two equivalent valuations then they must be related in this way.

B.3 Places in Q
Theorem B.1. A valuation on Q is equivalent either to a p-adic valuations
‖·‖p or to the absolute valuation |·|.

Proof I. Suppose first that ‖·‖ is a non-archimedean valuation on Q, so that

‖n‖ ≤ 1

for all n ∈ Z.
We must have ‖n‖ < 1 for some n 6= 0; for otherwise we would have

‖x‖ = 1 for all non-zero x = m/n. Let

n = ±pe1
1 · · · pen

n .

Then ‖pi‖ < 1 for some i.
Set p = pi; and suppose q is another prime. Then we can find u, v ∈ Z

such that
up + vq = 1.

It follows that ‖q‖ = 1, since otherwise ‖1‖ < 1.
But now we see that ‖n‖ depends only on the power pe of p dividing n:

‖n‖ = ‖p‖e;

from which it follows that ‖·‖ is equivalent to the p-adic valuation ‖·‖p.
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Now suppose ‖·‖ is archimedean. We want to show that

‖x‖ = |x|ρ

for some ρ.
It is sufficient to prove this for all a ∈ N. This is equivalent to showing

that
‖a‖
‖b‖

=
|a|
|b|

for all integers a, b > 1.
Take a high power bf of b; and suppose

ae ≤ bf < ae+1.

Then

e log a ≤ f log b < (e + 1) log a

ie

e

f
≤ log b

log a
≤ e + 1

f
.

Now let us express bf to base a, say

bf = ae + c1a
e−1 + · · ·+ cr,

where
0 ≤ ci < a (1 ≤ i ≤ r).

It follows that

‖b‖f ≤ ‖a‖e + ‖c1‖‖a‖e−1 + · · ·+ ‖cr‖
≤ C

(
‖a‖e + ‖a‖e−1 + ...1

)
,

where
C = max(‖1‖, ‖2‖, . . . , ‖r − 1‖).

If ‖a‖ ≤ 1 this gives
‖b‖f ≤ C(e + 1).

Thus
‖b‖ ≤

(
C(e + 1)1/f

)
As f →∞,

≤
(
C(e + 1)1/f

)
→ 1,
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since

e ≤ log b

log a
f.

It follows that
‖b‖ ≤ 1.

Since this is true for all b, the valuation is non-archimedean, contrary to
hypothesis. We conclude that

‖a‖ > 1

for all a > 1.
Now the inequality above yields

‖b‖f ≤ C(e + 1)‖a‖e

ie

f log‖b‖ ≤ e log‖a‖+ log C(e + 1).

Thus

log‖b‖
log‖a‖

≤ e

f
+

log C(e + 1)

f log‖a‖

≤ log b

log a
+

log C(e + 1)

f log‖a‖
.

As before, the last term → 0 as f →∞. Hence

log‖b‖
log‖a‖

≤ log b

log a
.

Similarly,
log‖a‖
log‖b‖

≤ log a

log b
.

Thus
log‖b‖
log‖a‖

=
log b

log a
,

as required. J

We have shown, accordingly, that there is a place in Q corresponding to
each prime p, together with a place corresponding to the absolute valuation,
which we denote by∞. In general, the places in a number field corresponding
to archimedean valuations are said to be infinite.
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B.4 P -adic numbers

The reals R can be constructed from the rationals Q by completing the latter
with respect to the valuation |x|. In this construction each Cauchy sequence

{xi ∈ Q : |xi − xj| → 0 as i, j →∞}

defines a real number, with 2 sequences defining the same number if |xi−yi| →
0.

(There are 2 very different ways of constructing R from Q: by completing
Q, as above; or alternatively, by the use of Dedekind sections. In this each
real number corresponds to a partition of Q into 2 subsets L, R where

l ∈ L, r ∈ R =⇒ l < r.

The construction by completion is much more general, since it applies to
any metric space; while the alternative construction uses the fact that Q is
an ordered field. John Conway, in On Numbers and Games, has generalized
Dedekind sections to give an extraordinary construction of rationals, reals
and infinite and infinitesimal numbers, starting ‘from nothing’. Knuth has
given a popular account of Conway numbers in Surreal Numbers.)

We can complete Q with respect to the p-adic valuation in just the same
way. The resulting field is called the field of p-adic numbers, and is denoted
by Qp. We can identify x ∈ Q with the Cauchy sequence (x, x, x, . . . ). Thus

Q ⊂ Qp.

To bring out the parallel with the reals, we sometimes write

R = Q∞.

The numbers x ∈ Qp with ‖x‖p ≤ 1 are called p-adic integers. The p-adic
integers form a ring, denoted by Zp. For if x, y ∈ Zp then by property (3)
above,

‖x + y‖p ≤ max(‖x‖p, ‖y‖p) ≤ 1,

and so x + y ∈ Zp. Similarly, by property (1),

‖xy‖p = ‖x‖p‖y‖p ≤ 1,

and so xy ∈ Zp.
Evidently

Z ⊂ Zp.
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More generally,

x =
m

n
∈ Zp

if p - n. (We sometimes say that a rational number x of this form is p-
integral.) In other words,

Q ∩ Zp = {m

n
: p - n}.

Evidently the p-integral numbers form a sub-ring of Q.
The p-adic numbers are in many ways simpler than real numbers, as the

following result suggests.

Proposition B.6. The series ∑
an

in Qp converges if and only if

an → 0 as n →∞.

Proposition B.7. Each element x ∈ Zp is uniquely expressible in the form

x = c0 + c1p + c2p
2 + · · ·

with ci ∈ {0, 1, . . . , p− 1}.
More generally, each element x ∈ Qp is uniquely expressible in the form

x = c−ip
−i + c−i+1p

−i+1 + · · ·+ c0 + c1p + · · · (0 ≤ ci < p).

We can think of this as the p-adic analogue of the decimal expansion of
a real number x ∈ R.

Suppose for example p = 3. Let us express 1/2 ∈ Q3 in standard form.
The first step is to determine if

1

2
≡ 0, 1 or 2 mod 3.

In fact 22 ≡ 1 mod 3; and so

1

2
≡ 2 mod 3.

Next

1

3

(
1

2
− 2

)
= −1

2
≡ 1 mod 3
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ie

1

2
− 2 ≡ 1 · 3 mod 32.

Thus

1

2
≡ 2 + 1 · 3 mod 32

For the next step,

1

3

(
−1

2
− 1

)
= −1

2
≡ 1 mod 3

giving

1

2
≡ 2 + 1 · 3 + 1 · 32 mod 33

It is clear that this pattern will be repeated indefinitely. Thus

1

2
= 2 + 3 + 32 + 33 + · · · .

To check this,

2 + 3 + 32 + · · · = 1 + (1 + 3 + 32 + · · · )

= 1 +
1

1− 3

= 1− 1

2

=
1

2
.

As another illustration, let us expand 3/5 ∈ Q7. We have

3

5
≡ 2 mod 7

1

7

(
3

5
− 2

)
= −1

5
≡ 4 mod 7

1

7

(
−1

5
− 4

)
= −3

5
≡ 5 mod 7

1

7

(
−3

5
− 5

)
= −4

5
≡ 2 mod 7

1

7

(
−4

5
− 2

)
= −2

5
≡ 1 mod 7

1

7

(
−2

5
− 1

)
= −1

5
≡ 4 mod 7
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We have entered a loop; and so (in Q7)

3

5
= 2 + 4 · 7 + 5 · 72 + 2 · 73 + 1 · 74 + 4 · 75 + 5 · 76 + · · ·

Checking,

1 +
(
1 + 4 · 7 + 5 · 72 + 2 · 7

) 1

1− 74
= 1− 960

2400

= 1− 2

5

=
3

5
.

It is not difficult to see that a number x ∈ Qp has a recurring p-adic
expansion if and only if it is rational (as is true of decimals).

Let x ∈ Zp. Suppose ‖x‖p = 1. Then

x = c + yp,

where 0 < c < p and y ∈ Zp. Suppose first that c = 1, ie

x = 1 + yp.

Then x is invertible in Zp, with

x−1 = 1− yp + y2p2 − y3p3 + · · · .

Even if c 6= 1 we can find d such that

dc ≡ 1 mod p.

Then

dx ≡ dc ≡ 1 mod p,

say

dx = 1 + py,

and so x is again invertible in Zp, with

x−1 = d
(
1− yp + y2p2 − · · ·

)
.

Thus the elements x ∈ Zp with ‖x‖p = 1 are all units in Zp, ie they have
inverses in Zp; and all such units are of this form. These units form the
multiplicative group

Z×
p = {x ∈ Zp : ‖x‖p = 1}.
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B.5 The product formula

Proposition B.8. Suppose α ∈ Q, α 6= 0. Then

‖α‖p = 1

for almost all places p, ie for all but a finite number of p; and∏
p

‖α‖p = 1,

where the product extends over all the places in Q.
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