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Course 424

Group Representations

Dr Timothy Murphy

Sample Paper

Attempt 6 questions. (If you attempt more, only the best 6 will
be counted.) All questions carry the same number of marks.
Unless otherwise stated, all groups are compact (or finite), and
all representations are of finite degree over C.

. What is meant by saying that a group representation « is (a) simple,
(b) semisimple?
Prove that every representation of a finite group is semisimple.

Give an example of a representation of an infinite group that is not
semisimple.

Answer:

(a) The representation o of G in'V is said to be simple if no subspace
U C V is stable under G except for U =0,V . (The subspace U is
said to be stable under G if

geGuel = gquel.)

(b) The representation o of G in 'V is said to be semisimple if it can
be expressed as a sum of simple representations:

=01+ -+ 0opn.



(c)

(d)

This is equivalent to the condition that each stable subspace U C V
has a stable complement W :

V=UaW

Suppose « is a representation of the finite group G in the vector
space V. Let
P(u,v)

be a positive-definite hermitian form on V. Define the hermitian

form @Q on'V by

1
Qu,v) = m Z H(gu, gv).
geG
Then Q is positive-definite (as a sum of positive-definite forms).
Moreover @ is invariant under G, ie

Q(gu, gv) = Q(u, v)
forall g € G,u,v € V. For

Q(hu, hv) = Z H(ghu, ghv)

geqG

1
iref
1
=-—N'H
|G‘Z (gu, gv)

geG

- Q(u’ U),

since gh runs over G as g does.

Now suppose U 1is a stable subspace of V. Then
Ut ={veV:Qu,v)=0VuecU}

15 a stable complement to U.

Thus every stable subspace has a stable complement, ie the repre-
sentation is semisimple.

The representation « of Z: of degree 2 over C given by

'_)1n
"o 1

18 not semisimple.



For the representation is not simple, since it leaves stable the 1-
dimensional subspace (€), where

().

If a were semisimple, say o = 3+ =y, where 3, are of degree 1,
then a(n) would be diagonalisable for all n.

Since a(n) has eigenvalues 1,1, this implies that
an) =1
for all n, which is not the case.

2. Draw up the character table for ;.

Determine also the representation-ring for Sy, ie express the product
af3 of each pair of simple representations as a sum of simple represen-
tations.

Draw up the character table for the subgroup A4 of even permutations.

Answer:

(a) Sy has 5 classes, corresponding to the types 1*,1%2,13,22, 4. Thus
Sy has 5 simple representations.

FEach symmetric group S, (for n > 2) has just 2 1-dimensional
representations, the trivial representation 1 and the parity repre-
sentation €.

Let Sy = Perm(()X), where X = {a,b,c,d}. The action of Sy on

X defines a 4-dimensional representation p of Sy, with character

x(9) = {r € X : gv = x}|

In other words x(g) is just the number of 1-cycles in g.

So now we can start our character table (where the second line
gives the number of elements in the class):

14 122 13 22 4
(1) (6) () (3) (6)
11 1 1 1 1
el -1 1 1 41
pl4 2 1 0 o0




Now

1
I(p.p) = 5;(1-16+6-4+8-1) =2.

It follows that p has just 2 simple parts. Since

1
I(1,p) = 5;(1-4+6-2+48-1) =1,

It follows that
p=1+a,
where a is a simple 3-dimensional representation, with character
gien by
x(9) = xo(g) — L.

The representation ea s also simple, and is not equal to o since
it has a different character. So now we have 4 simple characters
of Sy, as follows:

14 122 13 22 4
(1) () (8) (3) (6)
11 1 1 1 1
el1 -1 1 1 -1
3
3

«Q 1 0 -1 -1
€Q -1 0 -1 1

To find the 5th simple representation, we can consider o®. This
has character
14 122 13 22 4
(1) (6) (8) (3) (6)
19 1 0 1 1

We have
1
I(1,0%) = 57(9+6+3+6) = 1,
1
I(€,0*) = —(9—6+3—6)=0
(e.0%) = 579 6+3-6) =0,
1
I(a,0?) = —(27T+6-3—-6) =1
1 1
I(ea,0?) = ﬂm— 6—3+6)=1I(c*a% = ﬂ(81 +6+3+6) =4,

It follows that o has 4 simple parts, so that

=1+a+er+p,



where (8 is the 5th simple representation, with character given by

x5(9) = xa(9)? =1 — Xa(9) — €(9)Xa(9)-

This allows us to complete the character table:

14 12 13 22 4

(1) (6) (8) (3) (6)
11 1 1 1 1
ell1 -1 1 1 -1
a3 1 0 -1 -1
| 3 -1 0 -1 1
dBl2 0 -1 2 0

(b) We already know how to express o in terms of the 5 simple rep-
resentations. Fuvidently e = 3 since there is only 1 simple repre-
sentation of dimension 2. The character of af3 is given by

1 122 13 22 4
a6 0 0 —2 0

We have )
I{aB,apB) = ﬂ(SG +12) =2.

Thus af3 has just 2 simple parts. These must be o and ex to give
dimension 6:
af = a+ ea.

Also we have
I(B% %) = i(m + 8 +48) = 3.
Thus (B has 3 simple parts. So by dimension, we must have
B =1+e+p.

Now we can give the multiplication table for the representation-

Ting:
1 € 15} Q@ e
11 € I} Q@ e
el e 1 16} e Q@
6|1 B 0B 1+e+p o+ ex o+ ex
al|la edx a+tea 1+0+a+ea e+ 0+ a—+ e
ea|ea a atea e+f+atea 1+[B+a+en



(¢) Recall that an even class g C S, splits in A, if and only if no odd
element x € S,, commutes with g, in which case g splits into two
classes of equal size.

There are 3 even classes in Sy, : 1%, 22and31, containing 1, 3,8 ele-
ments, respectively. The first two cannot split, since they contain
an odd number of elements. The third class does split; for suppose
x commutes with g = (abc). Then

zga~ = (z(a), 2(b), x(c) = (a,b,0).
It follows from this that

z€{l,9,9°}.

In particular, x is even.

Thus the class 31 splits into two classes 31" and 31", each contain-
ing 4 elements.

3. Show that the number of simple representations of a finite group G is
equal to the number s of conjugacy classes in G.

Show also that if these representations are oy, ..., 0, then

dim? oy + - - - + dim® o, = |G].

Determine the degrees of the simple representations of Sg.

Answer:

(a)
(b)
(c)
(d) Se has 11 classes:
16, 214, 2212, 23 313, 321, 3%, 3%, 412, 51, 6.

Hence it has 11 simple representations over C.

It has 2 representations of degree 1: 1 and the parity representa-
tion €.

The natural representation py of degree 6 (by permutation of co-
ordinates) splits into two simple parts:

p1 =1+ o1,



where oy 1s of degree 5.
If « is a simple representation of odd degree, then

e # a.
For a transposition t has eigenvalues +1, since t> = 1. Hence

Xa(t) # 0.

But
Xea(t) = Xc(t)Xa(t) = —Xal(t).

Thus the simple representations of odd degree d divide into pairs
a, ea. So there are an even number of representations of degree
d.

In particular there are at least 2 simple representations of degree
5: 0 and eo.

We are going to draw up a partial character table for Sg, adding
rows as we gather more material.

16 214 2212 23 313 321 32 42 412 51 6
#11 15 45 15 40 120 40 90 90 144 120
;pm|6 4 2 0 3 1 0 2 0 1 0
oo|l5 3 1 -1 2 0 -1 1 -1 0 -1
pp|15 7 3 3 3 1 0 1 1 0 0
T4 6 2 2 2 0 -1 0 0 -1 -1
o9 3 1 3 0 0 0 -1 1 -1 0
ps|20 8 4 0 2 2 2 0 0 0 O
p119 7 3 -1 1 1 1 -1 -1 -1 -1
o35 1 1 -3 -1 1 2 -1 -1 0 0
2125 9 1 1 4 0 1 1 1 0 1
o124 8 0 0 3 -1 0 0 0 -1 0

Now consider the permutation representation ps arising from the
action of Sg on the 15 pairs of elements. Fuvidently

I(pg, 1) > 0,

since all the terms in the sum for this are > 0. Let T = py — 1.
Then

1
I(7,7) = 55 (196 + 540 + 180 + 60 + 160 + 40 + 144 + 120) = 2,



while

1
I(r,01) = =35 (70 + 270 + 90 — 30 + 160 + 40 + 120) = 1.

Thus

O9 =T — 01
18 simple.
So far we have 6 simple representations:

1,€,01,€01,09, €09,

of degrees 1,1,5,5,9,9.
Next consider the permutation representation ps arising from the
action of Sg on the 20 subsets of 3 elements. Evidently

I(p3, 1) >0,

since all the terms in the sum for this are > 0.

[Although not needed here, it is worth recalling that if p is a per-
mutation representation arising from the action of G on the set
X then I1(p,1) is equal to the number of orbits of the action.]

Let 0 = p3 — 1. Then

1
1(0,0) = %(361—|—735+405—|—15—|—40+120—|—40+90+90+144—|—120) = 3.

Thus 0 has 3 simple parts.
Now

1
1(8,01) = 75 (9543154135 415480 — 40 — 90 +90 +120) = 1,

while

1
1(0,02) = =5 (171 4 315 4 135 — 45+ 90 — 90 + 144) = 1.

It follows that
O3 = 6 — 01 — 02

s simple.

Now we have 8 simple representations:

17 €,01,€01,03,€03,02, €02,



of degrees 1,1,5,5,5,5,9,9.
We have 3 remaining simple representations. Suppose they are of
degrees a,b,c. Then

720=2-1"4+4-5"+2-9*+a>+ b+
e
a® + b* + ¢* = 456.
Now

456 = 0 mod 8.

If n is odd then n? = 1 mod 8. It follows that a,b,c are all even,
say
a=2d, b=2e, c=2f,

with
d*+ e+ f =114

Since
114 = 2 mod 8,

it follows that two of d,e, f are odd and one is divisible by 4. Let
us suppose these are d,e, f in that order. Then

fe{4,8}.

If f =4 then
P+e?=98 = d=e=7,

while if f =8 then
*+e =50 = d=e=5.
So the three remaining simple representations have degrees

8,14, 14 or 10, 10, 16.

Let
¢=o07—1.

Then

1
I(, ¢) = =5 (576 + 960 + 360 + 120 + 144) = 3.



Also ]
I(¢,01) = =—— (120 + 360 + 240) = 1,

720
while 1
I =—(21 144) = 1.
(¢, 09) 720( 6 + 360 + )
Thus

o4 =¢— 01— 09
1s a simple representation of degree 10.

We conclude that the 11 simple representations have degrees
1,1,5,5,5,5,9,9,10, 10, 16.

4. Determine the simple representations of SO(2).

Suppose H is a subgroup of the compact group G of finite index. Ex-
plain how a representation 3 of H induces a representation 3% of G.

Determine the simple representations of O(2).

Answer:

(a) Let
R(0) € SO(2)

denote rotation through angle 8. Then the map
R(6) — € : SO(2) — U(1)

is an isomorphism, allowing us to identify SO(2) with U(1).
This group is abelian; so every simple representation o (over C)
15 of degree 1; and since the group is compact

ima C U(1).
1e « 18 a homomorphism

u(l) —u(l).
For each n € 7Z the map

E(n):z— 2"

defines such a homomorphism. We claim that every representation

of U(1) is of this form.



(b)

(¢)

For suppose
a:U(1) - U(1)
is a representation of U(1) distinct from all the E(n).
Then
I(E,,a)=0

for alln, ie
1 2

a(e®)e™™? d = 0.

Cn

In other words, all the Fourier coefficients of a(e') vanish.

But this implies (from Fourier theory) that the function itself must
vanish, which is impossible since a(1) = 1.

Suppose 3 is a representation of H in the vector space U.

Ezpress G as a union of left H-cosets:
G=gHU---Ug.H

Set
V=gU&- - &g,
ie V' is the direct sum of r copies of U, labelled by ¢y, ..., g,.

We define the action of g € G on'V as follows. Suppose 1 <1 < r.
Then

99: = g;h
for some j € [1,r], h € H.
We set
9(giu) = g;(hu).
That defines the action of g on the summand g;U; and this is
extended to V' by linearity.

It is readily verified that this defines a representation of G in 'V,
and that the choice of different representatives gi,...,q, of the
cosets would lead to an equivalent representation.

Since SO(2) is a subgroup of index 2 in O(2), the representation
E(n) of SO(2) = U(1) induces a representation

o, = E(n)°®

of O(2) of degree 2.



Any element of O(2) \ SO(2) is a reflection T(l) in some line [
through the origin. These reflections are all conjugate, since

R(OT()R(-0) =T(),

where I' = R(6)1.
Also
TORO)T() = R(=0);
so the O(2)-conjugacy classes consist of pairs {R(£0)}, together
with the set of all reflections.

Explicitly, on taking e, Te as basis for the induced representation
(where T is any reflection) we see that «, is given by

R(6) (eg) 601-9), (1) ((1’ 3)

If n # 0 this representation is simple. For
a,|SO(2) = E(n) + E(—n).

It follows that the only proper subspaces stable under SO(2) are
(e), (T'e), and these are not stable under T

If n = 0 the representation splits into two parts:
Oy = 1+ €,

where

€(R(0)) =1, e(T(l) = -1,
ie €(S) = £1 according as S is proper or improper.
We claim that the simple representations of O(2) are precisely
these representations oy, for n # 0, together with the representa-
tions 1,€ of degree 1.

For suppose « is a simple representation of O(2) in the vector
space V. Then

alSO(2) = E(ny) +---+ E(n,),
te V' is the direct sum of 1-dimensional subspaces stable under
SO(2).
Let U = (e) be one such subspace. Then U carries some represen-

tation E(n), ie
R(#)e = e™e



for all 9.

Take any reflection T'. Then the subspace (e, Te) is stable under
the full group O(2). Since a is simple,

V = (e, Te),
If n # 0 then we see explicitly that
o= Q.

If n = 0 then SO(2) acts trivially on U. If Te = e then U is 1-
dimensional, and o = 1. If not, then the 1-dimensional subspace
(e — Te) carries the representation €, and so o = .

We conclude that these are the only simple representations of
0(2).
5. Prove that SU(2) has one simple representation of each dimension
0,1,2,....
Show that there exists a double covering © : SU(2) — SO(3).
Hence or otherwise determine the simple representations of SO(3).

Determine the representation-ring of SO(3), ie express the product of
each pair of simple representations as a sum of simple representations.

Determine the simple representations of O(3).
Answer:

(a) Suppose m € N, Let V(m) denote the space of homogeneous poly-

nomials P(z,w) in z,w. Thus V(m) is a vector space over C of

dimension m + 1, with basis 2™, 2™ tw, ... w™.

Suppose U € SU(2). Then U acts on z,w by

/!
()= () =0 (0)
w w w
This action in turn defines an action of SU(2) on V(m):

P(z,w) — P(Z,w).

We claim that the corresponding representation of SU(2) — which
we denote by Dy, o — 1s simple, and that these are the only simple
(finite-dimensional) representations of SU(2) over C.



To prove this, let
U(1) € SU(2)

be the subgroup formed by the diagonal matrices U(6). The action
of SU(2) on z,w restricts to the action

0, —i
7 Y
(z,w) — ("2, e " w)

of U(1). Thus in the action of U(1) on V(m),

m

ST s e(m72r)192m71ﬂ r

w Y
It follows that the restriction of Dy, /1 to U(1) is the representation
Dipo| UL) = E(m) + E(m = 2) + -+ + E(=m)

where E(m) is the representation

of U(1).

In particular, the character of Dy, is given by
Xm/Q(U) — emie + e(m—2)i0 T e—mi@

if U has eigenvalues e*¥.

Now suppose Dy, is not simple, say

(We know that D,y o is semisimple, since SU(2) is compact.) Let
a corresponding split of the representation space be

V(m) = W1 D WQ.

Since the simple parts of Dy,2| U(1) are distinct, the expression
of V(m) as a direct sum of U(1)-spaces,

18 unique.

It follows that W1 must be the direct sum of some of these spaces,
and Wy the direct sum of the others. In particular 2™ € Wy or
Zm e Wy, say 2™ € Wi.



Let
U= % G _11) € SU(2).

()

2™ 272 (5 )™,

Then

under U. Hence

Since this contains non-zero components in each subspace (z™"w'"),
it follows that
W1 = V(m),
ie the representation D/, of SU(2) in V(m) is simple.
To see that every simple (finite-dimensional) representation of

SU(2) is of this form, suppose « is such a representation. Con-
sider its restriction to U(1). Suppose

alU(l) =e.E(r)+e1E(r—1)+---+e_E(—r) (e €N).
Then a has character
X(U) = x(0) = e, + e, 1™V e om0

if U has eigenvalues e*?.

Since U(—0) ~ U(0) it follows that

and so

e
X(9> _ er(erie + e—rie) + 6T_1<6(T_1)i0 + 6—(r—1)i6) 4.

It is easy to see that this is expressible as a sum of the x;(6) with
integer (possibly negative) coefficients:

X(0) = aoxo(0) +aijax1/2(0)+- - -+asxs(0) (ao,arje, ..., as € Z).
Using the intertwining number,

I(a,a):ag—l—afﬂ%—---—irai



(since I1(D;, Dy) = 0). Since « is simple,
I(a,a) =1.

It follows that one of the coefficients a; is £1 and the rest are 0,
1€

x(0) = £x;(0)
for some half-integer j. But
x(0) = —x;(0) = I(o,D;) = —I1(D;,D;) = —1,

which is impossible. Hence

X(0) = x;(0),

and so (since a representation is determined up to equivalence by

its character)
a = Dj

(b) We can identify SU(2) with the group
Sp(l) ={q e H: |q| = 1}.

[If we regard H as a 2-dimensional vector space over C with basis
1,7:
(2,0) = 2 + wj,

then multiplication on the right by a quaternion defines a C-linear
map, ie an element of GL(2,C).

Suppose ¢ = a + bj € Sp(1). Then
¢ =q¢ =a-bj
and multiplication on the right by ¢~ gives the map

z+wj — (az + bw) + (=bz + aw)j,

()= (5 0) ()

lal* = lal® + [BI%,

e

Since



this establishes an isomorphism

i (2 1) ssoin) — 802

Now let V' denote the 3-dimensional real vector space of purely
1maginary quaternions

v=uxi+yj+ zk.

Euvidently
geV << ¢ = —q.

It follows that if ¢ € Sp(1), v € V then
(qug")" = qu'q" = —quq*st.

Hence
qug* = qug ' € V.

Thus each q € Sp(1) defines a linear map
O(q) :v—qug*: V =V,
giving a homomorphism
© : Sp(1) — GL(3,R).
If v eV then
lv| = vv* = 2% +y* + 22
Now
©(q)v]* = (qug*)(qua”)*
= quq“stqu*q“st
= quuvq”
= vv'qq"
= vv*

= [v]?,
since vv* € R. Thus ©(q) preserves the form x* + y* + 2%. Hence

O(g) € 0(3).



Since Sp(1) = S3 is connected, so is im O(q). Hence
O(q) € SO(3),
giving a homomorphism
O : Sp(1) — SO(3).

We have
ker© = {q € Sp(1) : qu = vg Vv € V'}.

Since any quaternion is expressible as QQ = tl+v, witht € R, v €
V. it follows that

ker© = {q € Sp(1) : ¢Q = Qq VQ € H}.
It is readily verified that
ZH=R={t1:teR}.

Hence

ker© = {£1}.

To see that © is surjective, ie im © = SO(3), we note that SO(3)
is generated by half-turns w(l) about an azis . But it is readily
verified that if v is a unit vector along | then

O(v) = m(v),

since ©(v) leaves l fized, and

v} = —vist = —1,
and so
O()? = 1.
Hence © defines a 2-fold covering of SO(3).
Suppose
0:G— H

1s a surjective homomorphism. Then a representation
a: H— GL(V)
of H in'V defines a representation

af : G — GL(V).



Furthermore, distinct representations of H give rise to distinct
representations of G; and the representation af is simple if and
only if o 1s simple, since a subspace U C V s stable under G if
and only if it is stable under H.

Conversely, a representation
B:G— GL(V)
arises from a representation of H in this way if and only if
ker 6 C ker «;

and if it does so arise, it is from a unique representation of H.

In the present case this shows that a representation of SO(3) arises
from a representation « of SU(2) if and only if

a(—I) =1.

Looking at the definition of D; by the action of of SU(2) on the
space of homogeneous polynomials f(z,w) of degree 2j, we see that

f(_Z’ _w) = (_1)2jf(zaw)'

Thus
Di(—1) =1 <= j is a half-integer.

We conclude that the simple representations of SO(3) are the rep-
resentations Dy, D1, Do, ... of degrees 1,3,5,....

(d)
6. Define the Lie algebra ZG of a linear group G, showing that it is
indeed a Lie algebra.

Determine the Lie algebras of SU(2) and SO(3), and show that they
are isomorphic.

Are the groups isomorphic?

Answer:

(a)

7. Define the exponential eX of a matrix X € Mat(n, k), where k =
R,C or H.



Determine eX in each of the following cases:

0 1 0 -1 11 1 1
()= (Va) =) - (an)
Show that if X has eigenvalues A, p then eX has eigenvalues e, et

Which of the above 4 matrices X are themselves expressible in the form
X = €Y for some real matrix Y? (Justify your answers in all cases.)

Answer:

(a) The exponention of a square matriz is defined by

1
X—T+ X+ ‘X2+ X3

21 3!
(b) i If
01
(1 o)
then
X% =1,
and so
1 1 1 1
X _ _
e _(1+2,+ + - )I+(1, T )X
= cosh(1)] + smh(l
_ (cosh1l sinhl
~ \sinh1l coshl
ii. If
()
then
X% =],
and so
1 1 1 1
X f— — — — s e e —_— — — . .
e —(1—2|—|—4! )I+(1‘ 3'4— )X
= cos(1)I +sin(1)X

_ (cosl —sinl
~ \sinl cosl



iii. If

1 1
X:(O 1>:1+Y,

where
01
= (o 0)
then
V2=0 = e =1+Y =X,
and so
P G 0
(e e
~\0 e
w. If
1 1
X:(—l 1>:I—Y,
where
0 -1
=1 9)
then

oY _ [cos 1 —sinl
- \sinl cosl
from above, and so

Y <ey)_1 _ ( cos 1 sml)

—sinl cosl

and

eX =ele™™

_ [ecosl esinl
~ \—sinl ecosl)’
(c) [Note that this part of the question only makes sense if k = R or C.
One does not in general speak of the eigenvalues or eigenvectors

of a matriz X over H, since the solutions of Xv = qu will not in

general form a subspace over H.J

Since X is the same whether we consider X as a real or complex

matriz, we may assume that X € Mat(n, C).



We know that in this case X can be triangulated, ie we can find

T such that
TXT™! = (A C)
0 p

TX'T™ = (Ar C”)

But then

0 u"

A /
Xp-1_ (€ C
Te T " = <0 e“)
Since Y and TY T~ have the same eigenvalues, it follows that eX
A pp
, Tt

for each r, and so

has eigenvalues e
(d) . From the last result,

det eX = et e*

— 6)\+u
— HirX
In particular,
dete’ >0
for all real Y.
Since
det X = —1
i this case,
X #£eY.

1. The map
T 4y = <:§ _xy) : C — Mat(2, R)

1s a homomorphism of R-algebras under which

2 X = € e,

=17

corresponds to the complexr number i.
But i = e* where z = 7/2i. Thus X = e¥ where

Y= <7r(}2 _78/2) '

The matriz



15. We saw that
X =¢¥

in this case.

iv. As in the second case, the matrix X corresponds to the com-
plex number ‘
1—i=+2e"™"
Thus 1 — i = e* where
z=1log2/2 —in/4.

Hence X = e¥, with

Y= (lig://f 107;/24/2) ‘

8. Show that the connected component G of a linear group G is given by
Go = {e*eX2... X} (X1, Xs,..., X, € ZG),

where r =1,2,....

Explain how a representation « of a linear group G defines a represen-
tation Za of ZG, and show that if G is connected then

La=2Lp = a=p.

Sketch the proof that if GG is simply connected then every representation
of ZG arises from a representation of G.

Answer:

(a) It is clear that Gy is closed under multiplication; and it is closed
under tnversion, Since

(eXl e eXT)_l — 6_X7" e

Hence Gy is a subgroup.

Also, Gy is connected, since

T(t)=e™ ... (0<t<1)

is a path connecting I to Xt ... eXr.



(b)

(¢)

Finally, Gy is open. For there exists an open subset U 3 0 in LG
which is mapped homeomorphically onto an open subset V = eV >

I in G; and

X

Xt eXrel

is an open neighbourhood of et --.eXr.

Since Gqg is an open subgroup, it is also closed; so Gy and its

complement are both open, and Gy is the connected component of
I in G.

We assume the following result:

Lemma 1 Suppose
F.G—H

s a continuous homomorphism of linear groups. Then there is a
unique Lie algebra homomorphism

f: 4G —ZXH
such that

F(eX) = /™
for all X € ZG.
Now suppose

a:G— GL(V)

1s a representation of G.

By the Lemma, this gives rise to a Lie algebra homomorphism
ZLa: LG — gl(V),

ie a representation of the Lie algebra LG in'V, such that

a(€X> — e,i”a(X)

for all X € ZG.

Suppose
La=2Lp=f

say; and suppose T' € G. Then



(d)

since Gy = G. Hence

Thus
a=f.

Suppose G, H are linear groups; and suppose the Lie algebra ho-
momorphism

4G —<LH
can be lifted to a homomorphism
F:G— H,
satisfying
F(eX) = efX

for all X € ZG.
If

X1 X =1

1s an ‘exponential relation’ in G, then
eI X1 el X = peX) e
= F(eX . er)
=1
in H. Thus

XX =1 = KX =

Conversely if this is so, ie every exponential relation in G maps to
a corresponding relation in H, then the required homomorphism
F: G — H can be defined as follows: given T' € G, suppose

T =¢eX...e%5,
Then we set
F(T) = ef XL e X

It follows at once from the hypothesis that F(T) is well-defined,
e independent of the ‘exponential product’ we choose for T, and
that F is a homomorphism with XL F = f.



i. This property always holds locally: if all the partial products

T =51, eX1eX2 oX1pX2eXs

lie in the logarithmic zone U then the corresponding relation
i H holds.
It is sufficient to prove this for ‘triangular relations’

eXe¥e? = 1.

This 1s established by showing that of X, Y, Z are small of size
d then the ‘discrepancy’

el XelYel? 1

is of order d3.

Since a triangle of size d can be split into n? triangles of size
d/n, it follows that the discrepancy of a triangle in U is in
fact 0.

1. Now suppose G is simply connected, ie every loop is homo-
topically trivial.
9. Define the Killing form K(X,Y") of a Lie algebra .Z.
Determine the Killing form of sl(2, R), and show that it is non-singular.

Show that if G is a compact linear group then the Killing form of G is
negative definite or indefinite.

Show conversely that if the Killing form a connected linear group G is
negative definite then G is compact. Is the condition of connectedness
necessary here?

Answer:
(a) The Killing form is the symmetric bilinear form
K(X,Y)=tr(ad XadY),
where ad X is the map
Z—[X,2]: L — Z.
(b) We have

s1(2,R) = {X € Mat(2,R) : tr X = 0}
= (H,E, F),



(c)

where

a6 5) =0 e- (D)

Thus
[H,E|=HE — EH =2FE,
[H,F)=HF — FH = —2F,
[E,F|=FEF —-FFE=H.
Now

adH(H)=[H,H| =0, adH(E)=[H E)=2E, adH(F)=[H, F|=-2F
adE(H) = [E,H] = —2E, adE(E)=[E,E]=0, adE(F)=[E, F]=H,
ad F(H)=[F,H] =2F, adF(E)=[F,E]=—H, adF(F)=[F,F]=0.

Thus ad H,ad E,ad F' take matriz forms

00 0 0 01 0 -1 0
adH— [0 2 0 |,adE—~ -2 0 0),adF— [0 0 O
00 -2 0 00 2 0 0
with respect to the basis H, E, I of sl(2,R).
Hence
K(H,H) = tr((ad H)?) = 8,
K(E,E) = tr((ad E)?) = 0,
K(F,F) = tr((ad F)?) =0,
K(H,E)=tr(ad Had E) = 0,
K(H,F)=tr(ad Had F) =0,
K(E,F)=tr(ad EFad F) =

Thus the Killing form (with respect to the basis H, E, F') is given
by the quadratic form

K(z,y,2) = K(zH + yE + zF,xH + yE + 2F) = 82" 4 8yz,

which is non-singular (but neither positive nor negative).
Suppose G is compact.
The adjoint representatiion of G in LG is given by

adg(X) = gXg .



(d)

Since G is compact, there is an positive-definite quadratic form
left invariant under this action. Choose coordinates so that this
form s

Then
adg € O(n).

This representation of G corresponds to the adjoint representation
of ZG:
ad X (Z2) =X, Z].

It follows that
ad X € o(n) = {S € Mat(n,R) : S + 5" = 0}.
But then ifad X = S
(ad X)* = -5’8,
and so
tr((ad X)?) = —tr(5'S) <0,
with equality only if S = 0.
We conclude that K(X,Y') is negative definite or indefinite.

If the Killing form K(X,Y) of a linear group G is negative-definite
then it does follow that G is compact. The proof is long, and the
following is more of an overview. [A complete proof can be found
in Chapter 12 of Part IV of my notes.]

We assume the following result:
Lemma 2 The Killing form of a compact group G s left invari-

ant by G:
K(adg(X),adg(Y)) = K(X,Y).

If the Killing form is negative-definite, we can choose coordinates
so that it takes the form

—(@it ).

Thus if we set
G1 =im Ad,

then
Gl C O(n) .



[In fact, since G is connected,
G1 C SO(n).]
Now

ker Ad = ZG,
the centre of G. This is discrete; for

L(ZG) = Z(LG) =0,
since

XeZG = adX =0
— K(X,Y)=0

for allY € LG, in which case the Killing form will be singular.
Thus

Ad: G — G1
1S @ covering.

A compactness argument shows that ZG is finitely-generated. If
it is finite we are done; it is easy to see that G is compact. If not
then ZG is an infinite discrete abelian subgroup; Thus

ZG=Tea7"

where T is finite and n > 0.
In particular, there is a non-trivial homomorphism

x: 242G — R.
We are going to show that this can be extended to a homomorphism

X : G —=R.

This will lead to a contradiction. For the kernel of the correspond-
ing Lie algebra homomorphism will be an (n—1)-dimensional sub-
space of LG, and it is easy to see that this subspace would in fact
be an ideal, whose complement with respect to the non-singular
Killing form would be a 1-dimensional ideal I C £ G. This would
necessarily be trivial, so that K(X,Y) =0 foral X € I, YinZG,
contradicting the assertion that K(X,Y) is negative-definite.



To construct the extension X, we note first that a standard com-
pactness arqgument shows we can find a compact subset C C G
such that

Ad(C) = G;.

Now let u(x) be a function on G with compact support such that
reC = u(zr) >0.

Set

Then
w(x) >0 and Z w(zx) =

for all x € G. (We can think of w(z) as a kind of weight on G,
allowing us to smooth out the given homomorphism x.)

Set
f@) =" wlzr)x(2).

2€Z2G

Suppose 2’ € ZG. As z runs over ZG, so does zz'. Hence

flx) =) w(z'z)x(=2)

z€ZG

- Z w(z2'z)(x(2) + x(2'))

z2€ZG
= f(Zz) + x (7).
In other words,
f(zz) = f(2) = x(2).
Thus if we define the function F: G x G — R by

F(r,y) = f(zy) — f(z),

then
F(zr,y) = F(z,y).

But that means we can regard F as a function on G1 X G, where
G1=G/ZG is compact. This allows us to integrate over Gy, and
set

X(g) = /G Flg1,9)



It is a straightforward matter to verify that this function X : G —
R s in fact a homomorphism extending x.

[This is a very complicated argument. Hopefully nothing as horrid
as this will be asked in the exam!]



