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Answer as many questions as you can; all carry the same number
of marks.

In this exam, ‘Lie algebra’ means Lie algebra over R, and ‘rep-
resentation’ means finite-dimensional representation over C.

. Define the ezponential eX of a square matrix X.

X

Determine e* in each of the following cases:

) () ()
0 () -0

Which of these 6 matrices X are themselves expressible in the form
X = €Y, where Y is a real matrix? (Justify your answers in all cases.)

Answer: The exponential of a square matriz X is defined by

1 1
eX:]+X+5X2+§X3+---.

This series converges for all X € Mat(n, k) by comparison with the
series for elXI since || X™|| < || X"
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then, since 1,Y commute,

X Iy ecosl —esinl
et —ee = ) .
esinl ecosl
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where

e¥ is non-singular for all Y, since e

in this case, X # eY .

X has eigenvalues 1. Suppose X = e¥; and suppose Y has
eigenvalues \, . Then X has eigenvalues e*,e*. There are two
possibilities. Either \, u are complex conjugates, in which case the
same 1is true of e, e”; or else \, p are both real, in which case
et et > 0. In neither case can we get £1. Hence X # €Y.

YeY = 1. Since X is singular

By the isomorphism between the complex numbers z = x + iy and

the matrices
_ (T ¥
C(z) = (y . )

we see that

X =C(i)
Since '

i = e7rz/2,
while

it follows that X = ¥ with

(0 —7/2
Y= (7T/ 2 0 ) '
X has eigenvalues £1. Thus by the argument in case (b) above,

X #eY.



(e) We have
1 -1 ,
X = (1 . ) = C(1+1).
But
1 44 = \/2e™/4 = log2/24mi/4
Thus X = e¥ with

Y=X= (107%/24/ i 1o_g7T2//42) '

(f) X has eigenvalues —1,—1. Thus if X = e¥ (with Y real) then
Y must have eigenvalues +(2n + 1)mi for some integer n. In
particular, Y has distinct eigenvalues, and so is semisimple (di-
agonalisable over C).

But in that case X = e¥ would also be semisimple. That is im-
possible, since a diagonalisable matriz with eigenvalues —1, —1 1is
necessarily —I. Hence X # eV .

2. Define a linear group, and a Lie algebra; and define the Lie algebra ZG
of a linear group G, showing that it is indeed a Lie algebra.

Define the dimension of a linear group; and determine the dimensions
of each of the following groups:

0(n),SO(n), U(n), SU(n), GL(n, R), SL(n, R), GL(n, C), SL(n, C)?

Answer: A linear group is a closed subgroup G C GL(n,R) for some
n.

A Lie algebra is defined by giving

(a) a vector space L;

(b) a binary operation on L, ie a map
LxL—L: (X,)Y)—[X,Y]

satisfying the conditions

(a) The product [X,Y] is bilinear in X,Y;
(b) The product is skew-symmetric:

Y, X] = -[X,Y];



(¢) Jacobi’s identity is satisfied:
(X, Y], Z] +[[Y, 2], X] + [[Z2, X],Y] =0
forall XY, Z € L.

Suppose G C GL(n,R) is a linear group. Then its Lie algebra L = LG
15 defined to be

L ={X € Mat(n,R) : ¢'* € GVt € R}.

It follows at once from this definition that
XelL N\é R = ANX € L.

Thus to see that L is a vector subspace of Mat(n,R) we must show
that

XYel = X+YelL
Now

(eX/neY/n)n N 6X+Y

as n+— oo. (This can be seen by taking the logarithms of each side.) It
follows that
X, YelL = & eq.

On replacing X, Y by tX,tY we see that

XYel = 5V eq@

— X +Y el
Stmilarly
(eX/neY/ne—X/ne—Y/n) nt X1

as may be seen again on taking logarithms. It follows that

X YelL = X eq.
Toking tX in place of X, this implies that

XYel = MYeq
— [X,Y] € L.

Thus L is a Lie algebra.

The dimension of a linear group G is the dimension of the real vector
space LG:

dim G = dimp ZG.



(a) We have

(b)

(¢)

(d)

(¢)

o(n) ={X € Mat(n,R) : X' + X =0}

A skew symmetric matriz X is determined by giving the entries
above the diagonal. This determines the entries below the diago-
nal; while those on the diagonal are 0. Thus

n(n —1)

dim O(n) = dimo(n) = 5

We have
so(n) = {X € Mat(n,R) : X'+ X =0,tr X =0} = o(n),
since X'+ X =0 = tr X =0. Thus

n(n—l).

dim SO(n) = dimO(n) = 5

We have
u(n) = {X € Mat(n,C): X"+ X =0}

Again, the elements above the diagonal determine those below the
diagonal; while those on the diagonal are purely imaginary. Thus

n(n—1)
2

= n2.

dimU(n) =2 +n

We have

su(n) ={X € Mat(n,C) : X*+ X =0, tr X =0}

This gives one linear condition on the (purely imaginary) diagonal
elements. Thus

dimSU(n) = dimU(n) — 1 =n? — 1.
We have
gl(n,R) = Mat(n,R).

Thus
dim GL(n,R) = n®.



(f) We have
sl(n,R) = {X € Mat(n,R) : tr X = 0}.
This imposes one linear condition on X. Thus
dim SL(n, R) = dim GL(n,R) — 1 = n* — 1.
(9) We have
gl(n,C) = Mat(n,C).

Each of the n? complex entries takes 2 real values. Thus
dim GL(n, C) = 2n°.
(h) We have
sl(n,C) = {X € Mat(n,C) : tr X = 0}.

This imposes one complex linear condition on X, or 2 real linear
conditions. Thus

dim SL(n,C) = dim GL(n,C) — 1 = 2n? — 2.

3. Determine the Lie algebras of SU(2) and SO(3), and show that they
are isomomorphic.

Show that the 2 groups themselves are not isomorphic.

Answer: We have

u(2) = {X € Mat(2,C) : ¢ € U(2)Vt € R}
= {X : (") e = Ivt}
= {X: e =7 = vt}
—{X:X"=-X}
={X: X"+ X =0}.

Also
sl(2,C) = {X € Mat(2,C) : e € SL(2,C)vt € R}
= {X :dete'™ = 1vt}

= {X 'Y =1t}
={X :tr X =0}.



Since
SU(2) = U(2) NSL(2,C)

it follows that
su(2) = u(2)Nsl(2,C)
—{X:X*+X =0, trX =0}

The 8 matrices

=5 2= )= ()

form a basis for the vector space su(2).

We have
e, fl=ef — fe=—2g,
le, g] = eg — ge = 2f,
[f,9l = fg—gf =—2e
Thus

Sll(2) = <e7fvg : [e7f] = _297 [G,g] = Qfa [.fag] = _26>

We have
o(3) = {X € Mat(3,R) : ¢'* € O(3)vt € R}
= {X : ()X = vt}
= (X ™ =N = It}
={X: X' =-X}
—{X: X'+ X =0}.
Also

slI(3,R) = {X € Mat(3,R) : ¥ € SL(3,R)Vt € R}
= {X :dete'™ = 1vt}
= {X "N =1V}
={X :tr X = 0}.

Since

SO(3) = O(3) N SL(3,R)



it follows that

so(3) = o(3) Nsl(3,R)
:{X:X’—FX:O, tI‘XZO}
={X: X'+X =0}

since a skew-symmetric matriz necessarily has trace 0.

The 8 matrices

00 0 0 01 0 -1 0
v=100 -1, v=(0 oo|], w=[1 0 0
01 0 ~100 0 0 0

form a basis for the vector space so(3).

We have
[V,W]=U;

and so by cyclic permutation of indices (or coordinates)
WUl =V, [UV]=W.
Thus

so(3) = (U, V,W : [U, V] =W, [UW] = -V, [V,W] = U).

Finally, su(2) and so(3) are isomorphic under the correspondence
e =2U, f— =2V, g —2W.
However, the groups SU(2),SO(3) are not isomorphic, since

ZSU(2) = {1} while ZSO(3) = {I}.

. Define a representation of a Lie algebra; and show how each repre-
sentation « of a linear group G gives rise to a representation Z«a of

ZG.

Determine the Lie algebra of SL(2,R); and show that this Lie algebra
sl(2,R) has just 1 simple representation of each dimension 1,2,3,....

Answer: Suppose L is a real Lie algebra. A representation of L in the
complex vector space V' is defined by giving a map

LxV —=V: (X,v)— Xv



which is bilinear over R and which satisfies the condition

[X,Y]v=X(Yv) - Y(Xv)
forall X)Y € LyveV.

A representation of L in 'V is thus the same as a representation of the
complezification L¢c of L in V.

Suppose « is a representation of the linear group G, ie a homomorphism
a: G — GL(n,C).

Under the Lie correspondence this gives rise to a Lie algebra homomor-
phism

A=YZa:L=2LG— gln,C).
But now L acts on' V = C" by

Xv=A(X)v.
This defines a representation of L in V since
X, Yo = A([X, V)0

= [AX, AY v

= ((AX)(AY) — (AY)(AX))v
= X(Yv) —Y(Xv).

We have

sl(2,R) = {X € Mat(2,R) : e € SL(2,R)Vt € R}
= {X :dete'™ = 1Vt}
={X : " =1V}
={X :tr X = 0}.

The 8 matrices

1 0 01 0 0
i=(o ) e (0 0) 7= (0 0)
form a basis for the vector space sl(2,R).

We have
[H,E|=2F, [H F)=—-2F, |[E,F]=H.



Thus

sl(2,R) = (H,E,F : [H,E] = 2E,[H, F] = —2F,[V,W] = H).

Now suppose we have a simple representation of sl(2,R) on V. Suppose
v 15 an eigenvector of H with eigenvalue \:

Hv = M.

Now
[H, Elv = 2FEwv,

that s,
HFEv— FEHv =2Fwv.

In other words, since Hv = A\v,
H(Ev) = (A+2)Ewv,

ie Ev is an eigenvector of H with eigenvalue X + 2.

By the same arqgument E*v, E3v,... are all eigenvectors of H with
ergenvalues X\ + 4, X+ 6, ..., at least until they vanish.

This must happen at some point, since V' is finite-dimensional; say

E™ 1y =0,E"v #0.

Stmilarly we find that
Fv, F?, . ..

are also eigenvectors of H (until they vanish) with eigenvalues A—2, \—
4,.... Again we must have

F5tly =0, F*0 #0

for some s.

Now let us write eq for F*v, so that
Feqg=0;

and let us set



Then the e; are all eigenvectors of H. Let us set e; = 0 fori outside the
range [0,n — 1]. Suppose eq is a u-eigenvector. Then e; is a (p + 2i)-
egenvector. Let us suppose that there are n eigenvectors in the sequence,

e
€n—1 7é 0, E@nfl =0.

Now we show by induction that
Fe; = piei

for each i. The result holds for v = 0 with pyg = 0. Suppose it holds for
1=1,2,...,m. Then

Fe, .1 = FFEe,
— (BF — [B, Fl)en
= pmben_1— He,
= (pm — p— 2m)ey,.

This proves the result, and also shows that
Pit1 = pi — b — 21
for each i. It follows that
pi = —ip—i(i —1).

We must have p, = 0. Hence

w=mn-—1.

We conclude that the subspace
<60, e ,en_1>

is stable under s1(2,R), and so must be the whole of V.

Thus we have shown that there is at most 1 simple representation of
each dimension n, and we have determined this explicitly, if it exists.
In fact it is a straightforward matter to verify that the above actions of
H,E F on {ey,...,en_1) do indeed define a representation of sl(2,R);
so that this Lie algebra has exactly 1 simple representation of each
dimension.



5. Show that a compact connected abelian linear group of dimension n is
necessarily isomorphic to the torus T".

Answer: If G is a abelian linear group then £ G is trivial, ie [X,Y] =
0 for all XY € ZLG. For e Y € G commute for all t. If t is
sufficiently small we can take logs, and deduce that tX = log(e!™),tY =
log(e®Y) commute. Hence X,Y commute.

The map
0. %G -G

under which
X — X

1s a homomorphism, since

X 4+Y = XY = X,

For any linear group G, there exist open subsets U 20 in LG,V > 1
in G such that X — e~ defines a homeomorphism U — V.

It follows that im© C ZG is an open subgroup of G. Since G is
connected, im © = G. Thus
G = LG/ kerO.
Moreover, ker © is discrete, since U Nker ©® = {0}. Thus
G=R"/K,

where K is a discrete subgroup, and n = dim G.

Lemma: A discrete subgroup K C R™ is necessarily = 72 for some
d < n, ie we can find a Z-basis ki, ..., kq for K such that

K:{n1k1+---—|—ndk‘d:n1,...,ndGZ}.

Proof: Let k1 be one of the closest points to 0 in K \ {0}. Then let ko
be one of the closest points to the subspace (ki) in K \ (k1), let k3 be
one of the closest points to the subspace (ki, ko) in K\ (ki1,ks), and so
on.

Then ki, ko, ... are linearly independent. So the process must end after
d <n steps:
K = (ky,... kq).



Now suppose k € K, say
k= Xky+ -+ Aikq.
We show that \1, ..., \q € Z. Let
Ag =T +€,
where r € Z and |¢| < 1/2. Then
k—rkyg=Mki+ -+ Ag_1kg_1 + €kq

is closer to (ky,...,kq_1) than is kq. Hence e =0, ie Ay € Z.
Applying the same argument to

]i] - )\dkd - )\1]{71 ‘|— te + )\dflkdfl,

we deduce that A\g_1 € Z; and so successively A\g_a, ..., \1 € Z

Thus ky, ..., kq is a Z-basis for K. Ezxtend ky, ... kg to abasisky,... kg, eq,...

of R". Then

G=R"/K=R/ZL® - -OR/Z
~T!@R".

Since G is compact, n —d = 0, e

G=T".



