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Answer as many questions as you can; all carry the same number
of marks.
All representations are finite-dimensional over C.

1. What is meant by a measure on a compact space X? What is meant
by saying that a measure on a compact group G is invariant? Sketch
the proof that every compact group G carries such a measure. To what
extent is this measure unique?

Answer: A measure µ on X is a continuous linear functional

µ : C(X) → C,

where C(X) = C(X,R) is the space of real-valued continuous functions
on X with norm ‖f‖ = sup |f(x)|.
The compact group G acts on C(G) by

(gf)(x) = f(g−1x).

The measure µ is said to be invariant under G if

µ(gf)µ(f)

for all g ∈ G, f ∈ C(G).

By an average F of f ∈ C(G) we mean a function of the form

F = λ1g1f + λ2g2f + · · ·+ λrgrf,

where 0 ≤ λi ≤ 1,
∑
λi = 1 and g1, g2, . . . , gr ∈ G.

If F is an average of f then

(a) inf f ≤ inf F ≤ supF ≤ supf ;

(b) If µ is an invariant measure then µ(F ) = µ(f);

(c) An average of F is an average of f .

Continued overleaf



If we set
var(f) = sup f − inf f

then
var(F ) ≤ var(f)

for any average F of f . We shall establish a sequence of averages F0 =
f, F1, F2, . . . (each an average of its predecessor) such that var(Fi) → 0.
It follows that

Fi → c ∈ R,

ie Fi(g) → c for each g ∈ G.

Suppose f ∈ C(G). It is not hard to find an average F of f with
var(F ) < var(f). Let

V = {g ∈ G : f(g) <
1

2
(sup f + inf f),

ie V is the set of points where f is ‘below average’. Since G is compact,
we can find g1, . . . , gr such that

G = g1V ∪ · · · ∪ grV.

Consider the average

F =
1

r
(g1f + · · ·+ grf) .

Suppose x ∈ G. Then x ∈ giV for some i, ie

g−1
i x ∈ V.

Hence

(gif)(x) <
1

2
(sup f + inf f),

and so

F (x) <
r − 1

r
sup f +

1

2r
(sup f + inf f)

= sup f − 1

2r
sup f − inf f.

Hence supF < supf and so

var(F ) < var(f).

This allows us to construct a sequence of averages F0 = f, F1, F2, . . .
such that

var(f) = var(F )0 > var(F )1 > var(F )2 > · · · .



But that is not sufficient to show that var(F )i → 0. For that we must
use the fact that any f ∈ C(G) is uniformly continuous.

[I would accept this last remark as sufficient in the exam, and would
not insist on the detailed argument that follows.]

In other words, given ε > 0 we can find an open set U 3 e such that

x−1y ∈ U =⇒ |f(x)− f(y)| < ε.

Since
(g−1x)−1(g−1y) = x−1y,

the same result also holds for the function gf . Hence the result holds
for any average F of f .

Let V be an open neighbourhood of e such that

V V ⊂ U, V −1 = V.

(If V satisfies the first condition, then V ∩V −1 satisfies both conditions.)
Then

xV ∪ yV 6= ∅ =⇒ |f(x)− f(y)| < ε.

For if xv = yv′ then
x−1y = vv′

−1 ∈ U.

Since G is compact we can find g1, . . . , gr such that

G = g1V ∪ · · · ∪ grV.

Suppose f attains its minimum inf f at x0 ∈ giV ; and suppose x ∈ gjV .
Then

g−1
i x0, g

−1
j x ∈ V.

Hence (
g−1

j x
)−1 (

g−1
i x0

)
=

(
gig

−1
j x

)−1
x0 ∈ U,

and so
|f(gig

−1
j x)− f(x0)| < ε.

In particular,
(gjg

−1
i f)(x) < inf f + ε.

Let F be the average

F =
1

r2

∑
i,j

gjg
−1
i f.

Then

supF <
r2 − 1

r2
sup f +

1

r2
(inf f + ε),



and so

var(F ) <
r2 − 1

r2
var(f) +

1

r2
ε

<
r2 − 1/2

r2
var(f),

if ε < var(f)/2.

Moreover this result also holds for any average of f in place of f . It
follows that a succession of averages of this kind

F0 = f, F1, . . . , Fs

will bring us to

var(F )s <
1

2
var(f).

Now repeating the same argument with Fs, and so on, we will obtain a
sequence of successive averages F0 = f, F1, . . . with

var(F )i ↓ 0.

It follows that
Fi → c

(the constant function with value c).

It remains to show that this limit value c is unique. For this we intro-
duce right averages

H(x) =
∑

j

µjf(xhj)

where 0 ≤ µj ≤ 1,
∑
µj = 1. (Note that a right average of f is

in effect a left average of f̃ , where f̃(x) = f(x−1). In particular the
results we have established for left averages will hold equally well for
right averages.)

Given a left average and a right average of f , say

F (x) =
∑

λif(g−1
i x), H(x) =

∑
µjf(xhj),

we can form the joint average

J(x) =
∑
i,j

λiµjf(g−1
i xhj).

It is easy to see that

inf F ≤ inf J ≤ sup J ≤ supH,

supF ≥ sup J ≥ inf J ≥ infH.



But if now H0 = f,H1, . . . is a succession of right averages with Hi → d
then it follows that

c = d.

In particular, any two convergent sequences of successive left averages
must tend to the same limit. We can therefore set

µ(f) = c.

Thus µ(f) is well-defined; and it is invariant since f and gf have the
same set of averages. Finally, if f = 1 then var(f) = 0, and f, f, f, . . .
converges to 1, so that

µ(1) = 1.

The invariant measure on G is unique up to a scalar multiple. In other
words, it is unique if we normalise the measure by specifying that

µ(1) = 1

(where 1 on the left denotes the constant function 1).

2. Prove that every simple representation of a compact abelian group is
1-dimensional and unitary.

Determine the simple representations of SO(2).

Determine also the simple representations of O(2).

Answer: Suppose α is a simple representation of the compact abelian
group G in V .

Suppose g ∈ G. Let λ be an eigenvalue of g, and let E = Eλ be the
corresponding eigenspace. We claim that E is stable under G. For
suppose h ∈ G. Then

e ∈ E =⇒ g(he) = h(ge) = λhe =⇒ he ∈ E.

Since α is simple, it follows that E = V , ie gv = λv for all v, or
g = λI.

Since this is true for all g ∈ G, it follows that every subspace of V is
stable under G. Since α is simple, this implies that dimV = 1, ie α is
of degree 1.

Thus a simple representation of G is a homomorphism α : G → C∗.
We must show that

|α(g)| = 1

for all g ∈ G.

If |α(g)| > 1 then
|α(gn)| = (|g|)n →∞.



This is a contradiction, since imα ⊂ C∗ is compact and so bounded.
On the other hand, if |α(g)| < 1 then |α(g−1)| > 1. Hence |α(g)| = 1
for all g, ie α is unitary.

We can identify SO(2) with

U(1) = {z ∈ C : |z| = 1}.

From above, a representation of U(1) is a homomorphism

α : U(1) → U(1).

For each n ∈ Z the map

E(n) : z → zn

defines such a homomorphism. We claim that every representation of
U(1) is of this form.

3. Determine the conjugacy classes in SU(2); and prove that this group
has just one simple representation of each dimension.

Find the character of the representation D(j) of dimensions 2j + 1
(where j = 0, 1

2
, 1, 3

2
, . . . ).

Determine the representation-ring of SU(2), ie express each product
D(i)D(j) as a sum of simple representations D(k).

Answer: We know that

(a) if U ∈ SU(2) then U has eigenvalues

e±iθ (θ ∈ R).

(b) if X, Y ∈ GL(n, k) then

X ∼ Y =⇒ X,Y have the same eigenvalues.

A fortiori, if U ∼ V ∈ SU(2) then U, V have the same eigenval-
ues.

We shall show that the converse of the last result is also true, that is:
U ∼ V in SU(2) if and only if U, V have the same eigenvalues e±iθ,
This is equivalent to proving that

U ∼ U(θ) =

(
eiθ 0
0 e−iθ

)
,

ie we can find V ∈ SU(2) such that

V −1UV = U(θ).



To see this, let v be an eiθ-eigenvalue of U . Normalise v, so that v∗v =
1; and let w be a unit vector orthogonal to v, ie w∗w = 1, v∗w = 0.
Then the matrix

V = (vw) ∈ Mat(2,C)

is unitary; and

V −1UV =

(
eiθ x
0 e−iθ

)
But in a unitary matrix, the squares of the absolute values of each row
and column sum to 1. It follows that

|eiθ|2 + |x|2 = 1 =⇒ x = 0,

ie
V −1UV = U(θ).

We only know that V ∈ U(2), not that V ∈ SU(2). However

V ∈ U(2) =⇒ | detV | = 1 =⇒ detV = eiφ.

Thus
V ′ = e−iφ/2V ∈ SU(2)

and still
(V ′)−1UV = U(θ).

To summarise: Since U(−θ) ∼ U(θ) (by interchange of coordinates),
we have show that if

C(θ) = {U ∈ SU(2) : U has eigenvalues e±iθ}

then the conjugacy classes in SU(2) are

C(θ) (0 ≤ θ ≤ π).

Now suppose m ∈ N, Let V (m) denote the space of homogeneous poly-
nomials P (z, w) in z, w. Thus V (m) is a vector space over C of di-
mension m+ 1, with basis zm, zm−1w, . . . , wm.

Suppose U ∈ SU(2). Then U acts on z, w by(
z
w

)
7→

(
z′

w′

)
= U

(
z
w

)
.

This action in turn defines an action of SU(2) on V (m):

P (z, w) 7→ P (z′, w′).



We claim that the corresponding representation of SU(2) — which we
denote by Dm/2 — is simple, and that these are the only simple (finite-
dimensional) representations of SU(2) over C.

To prove this, let
U(1) ⊂ SU(2)

be the subgroup formed by the diagonal matrices U(θ). The action of
SU(2) on z, w restricts to the action

(z, w) 7→ (eiθz, e−iθw)

of U(1). Thus in the action of U(1) on V (m),

zm−rwr 7→ e(m−2r)iθzm−rwr,

It follows that the restriction of Dm/1 to U(1) is the representation

Dm/2|U(1) = E(m) + E(m− 2) + · · ·+ E(−m)

where E(m) is the representation

eiθ 7→ emiθ

of U(1).

In particular, the character of Dm/2 is given by

χm/2(U) = emiθ + e(m−2iθ + · · ·+ e−miθ

if U has eigenvalues e±iθ.

Now suppose Dm/2 is not simple, say

Dm/2 = α+ β.

(We know that Dm/2 is semisimple, since SU(2) is compact.) Let a
corresponding split of the representation space be

V (m) = W1 ⊕W2.

Since the simple parts of Dm/2|U(1) are distinct, the expression of
V (m) as a direct sum of U(1)-spaces,

V (m) = 〈zm〉 ⊕ 〈zm−1w〉 ⊕ · · · ⊕ 〈wm〉

is unique. It follows that W1 must be the direct sum of some of these
spaces, and W2 the direct sum of the others. In particular zm ∈ W1 or
zn ∈ W2, say zm ∈ W1. Let

U =
1√
2

(
1 −1
1 1

)
∈ SU(2).



Then (
z
w

)
7→ 1√

2

(
z + w
−z + w

)
under U . Hence

zm 7→ 2−m/2(z + w)m.

Since this contains non-zero components in each subspace 〈zm−rwr〉, it
follows that

W1 = V (m),

ie the representation Dm/2 of SU(2) in V (m) is simple.

To see that every simple (finite-dimensional) representation of SU(2) is
of this form, suppose α is such a representation. Consider its restriction
to U(1). Suppose

α|U(1) = erE(r)+er−1E(r−1)+· · ·+e−rE(−r) (er, er−1, . . . , e−r ∈ N).

Then α has character

χ(U) = χ(θ) = ere
riθ + er−1e

(r−1)iθ + · · ·+ e−re
−riθ

if U has eigenvalues e±iθ.

Since U(−θ) ∼ U(θ) it follows that

χ(−θ) = χ(θ),

and so

e−i = ei,

ie

χ(θ) = er(e
riθ + e−riθ) + er−1(e

(r−1)iθ + e−(r−1)iθ) + · · · .

It is easy to see that this is expressible as a sum of the χj(θ) with integer
(possibly negative) coefficients:

χ(θ) = a0χ0(θ) + a1/2χ1/2(θ) + · · ·+ asχs(θ) (a0, a1/2, . . . , as ∈ Z).

Using the intertwining number,

I(α, α) = a2
0 + a2

1/2 + · · ·+ a2
s

(since I(Dj, Dk) = 0). Since α is simple,

I(α, α) = 1.



It follows that one of the coefficients aj is ±1 and the rest are 0, ie

χ(θ) = ±χj(θ)

for some half-integer j. But

χ(θ) = −χj(θ) =⇒ I(α,Dj) = −I(Dj, Dj) = −1,

which is impossible. Hence

χ(θ) = χj(θ),

and so (since a representation is determined up to equivalence by its
character)

α = Dj.

Finally, we show that

DjDk = Dj+k +Dj+k−1 + · · ·+D|j−k|.

It is sufficient to prove the corresponding result for the characters

χj(θ)χk(θ) = χj+k(θ) + χj+k−1(θ) + · · ·+ χ|j−k|(θ).

We may suppose that j ≥ k. We prove the result by induction on k.

If k = 0 the result is trivial, since χ0(θ) = 1. If k = 1/2 then

χj(θ)χ1/2(θ) =
(
e2jiθ + e2(j−1)iθ + e−2jiθ

) (
eiθ + e−iθ

)
=

(
e(2j+1)iθ + e−(2j−1)iθ

)
+

(
e(2j−1)iθ + e−(2j+1)iθ

)
= χj+1/2(θ) + χj−1/2(θ),

as required.

Suppose k ≥ 1. Then

χk(θ) = χk−1(θ) + (ekiθ + e−kiθ).

Thus applying our inductive hypothesis,

χj(θ)χk(θ) = χj+k−1(θ) + · · ·+ χj−k+1 + χj(θ)(e
kiθ + e−kiθ).

But

χj(θ)(e
kiθ + e−kiθ) =

(
e2jiθ + e2(j−1)iθ + e−2jiθ

) (
ekiθ + e−kiθ

)
= χj+k(θ) + χj − k(θ),

giving the required result

χj(θ)χk(θ) = χj+k−1(θ) + · · ·+ χj−k+1 + χj+k(θ) + χj − k(θ)

= χj+k(θ) + · · ·+ χj−k.



4. Show that there exists a surjective homomorphism

Θ : SU(2) → SO(3)

with finite kernel.

Hence or otherwise determine all simple representations of SO(3).

Determine also all simple representations of O(3).

Answer: The set of skew-hermitian 2× 2 matrices

S =

(
ia −b+ ic

b+ ic id

)
(a, b, c, d ∈ R)

forms a 4-dimensional real vector space U . The group SU(2) acts on
this space by

(U, S) 7→ U−1SU = U∗SU,

since
(U∗SU)∗ = U∗S∗U = −U∗SU.

The 3-dimensional subspace W ⊂ U formed by trace-free skew-hermitian
matrices

T =

(
ix −y + iz

y + iz −ix

)
(x, y, z ∈ R)

is stable under SU(2) since

tr(U∗TU) = tr(U−1TU) = trT = 0.

Thus W carries a representation of SU(2) of degree 3, corresponding
to a homomorphism

Θ : SU(2) → GL(3,R).

Moreover, this homomorphism preserves the positive-definite quadratic
form

detT = x2 + y2 + z2

on W since
det(U∗TU) = det(U−1TU) = detT.

Hence
im Θ ⊂ O(3).

Finally, SU(2) ∼= S3 is connected; and so therefore is its image. But
SO(3) is an open subgroup of O(3). Hence

im Θ ⊂ SO(3).



Thus our homomorphism takes the form

Θ : SU(2) → SO(3).

It remains to show that Θ has a finite kernel, and is surjective.

If
U ∈ ker Θ

then
U−1TU = T

for all T ∈ W . Each S ∈ U can be expressed in the form

S = T + ρI,

where T ∈ W and ρ = trS/2. It follows that

U−1SU = S

for all skew-hermitian S ∈ U .

Hence
U−1HU = H

for all hermitian H, since H is hermitian if and only if S = iH is
skew-hermitian.

It follows from this that
U−1XU = X

for all X ∈ Mat(2,C), since every X is expressible in the form

X = H + S,

with H = (X +X∗)/2 hermitian and S = (X −X∗)/2 skew-hermitian.

But it is a simple matter to see that the only such U are U = ±I. Thus

ker Θ = {±I}.

To see that Θ is surjective, we note that if

U(θ) =

(
eiθ 0
0 e−iθ

)
then

U(θ)−1

(
ix −y + iz

y + iz −ix

)
U(θ) =

(
ix e−2iθ(−y + iz)

e2iθ(y + iz) −ix

)
,



ie

ΘU(θ) =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

 = R(Ox, 2θ),

rotation about Ox through angle 2θ. In particular, im Θ contains all
rotations about Ox.

Now let

U =
1√
2

(
1 −1
1 1

)
.

Then U ∈ SU(2) and

U−1

(
ix −y + iz

y + iz −ix

)
U =

(
iz −y − ix

y − ix −iz

)
.

Thus

α(U) =

 0 0 1
0 1 0
−1 0 0

 = R(Oy, π/2).

Writing P = R(Oy, π/2),

P−1R(Ox, θ)P = R(Oz, θ).

Thus im Θ contains all rotations about Oz as well as Ox. But is is
easy to see that every rotation R ∈ SO(3) is expressible as a product of
rotations about Ox and Oz. Hence

im Θ = SO(3),

ie Θ is surjective.

Thus
SO(3) = SU(2)/{±i}.

It follows that the representations of SO(3) are just the representations
α of SO(2) such that

α(−I) = I.

In particular, the simple representations of SO(3) are those simple rep-
resentations Dj of SU(2) such that Dj(−I) = I. But Dj is defined by
the action of SU(2) on the polynomials

P (z, w) = c0z
2j + c1z

2j−1w + · · ·+ c2jw
2j.

It is clear that
P (−z,−w) = P (z, w)

for all P of degree 2j if and only if 2j is even, ie j is an integer.



Thus the simple representations of SO(3) are D0, D1, D2, . . . of degrees
1, 3, 5, . . . .

Since
O(3) = SO(3)× C2,

where C2 = {±I}, the simple representations of O(3) are of the form
α× β, where α is a simple representation of SO(3), and β is a simple
representation of C2. Thus the simple representations of O(3) are Dj×
1 and Dj×ε, where j ∈ N and ε is the representation −I → −1 of C2.

5. Explain the division of simple representations of a finite or compact
group G over C into real, essentially complex and quaternionic. Give
an example of each (justifying your answers).

Show that if α is a simple representation with character χ then the
value of ∫

G

χ(g2) dg

determines which of these three types α falls into.

Answer: Suppose α is a simple representation of G over C. Then α
is said to be real if

α = βC

for some representation of G over R. If this is so then the character

χα(g) = χβ(g)

is real. We say that α is quaternionic if its character is real, but it is
not real. Finally, we say that α is essentially complex if its character
is not real.

The trivial character 1 of any group is real, since it is the complexifi-
cation of the trivial character over R.

The 1-dimensional character θ of the cyclic group C3 = 〈g〉 given by

θ : g 7→ ω = e2π/3

is essentially complex, since its character θ is not real.

Consider the quaternion group

Q8 = {±1,±i,±j,±k}.

We can regard the quaternions H as a 2-dimensional vector space over
C = 〈1, i〉. The action of Q8 on H by multiplication on the left defines
a 2-dimensional representation α of D8. We assert that this is a simple
quaternionic representation.



It is certainly simple, since otherwise H would have a 1-dimensional
subspace 〈q〉 stable under D8, and therefore under H, since D8 spans
H. But that is impossible since

x = (xq−1)q

for any x ∈ H. The simple representations of D4 must have dimensions
1, 1, 1, 1, 2 (since

∑
dim2

i = 8). It follows that

α∗ = α

since there is only 1 2-dimensional simple representation. Hence χα is
real.

It remains to show that α is not real. Consider the 4-dimensional rep-
resentation β of D8 over R, defined by the same action of D4 on H.
This is easily seen to be simple, by the argument above. It follows that
βC is either simple, or splits into 2 simple representations over C of
dimension 2. The only possibility is that

βC = 2α.

Now if α were real, say
α = γC

we would deduce that β = 2γ which is impossible, since β is simple.

Now suppose α is a simple representation of G in V . Then (α∗)2 is
the representation arising from the action of G on the space of bilinear
forms on V .

But
α∗ = α ⇐⇒ χα is real.

Thus

I(1, (α∗)2) = I(α, α∗) =

{
1 if α is real or quaternionic

0 if α is essentially complex
.

In other words, there is just 1 invariant bilinear form (up to a scalar
multiple) if α is real or quaternionic, and no such form if α is essen-
tially complex.

Now the space of bilinear forms splits into the direct sum of symmet-
ric (or quadratic) and skew-symmetric forms, since each bilinear form
B(u, v) can be expressed as

B(u, v) =
1

2
(B(u, v) +B(v, u)) +

1

2
(B(u, v)−B(v, u)) ,

where the first form is symmetric and the second skew-symmetric.



It follows that
(α∗)2 = φ+ ψ,

where φ is the representation of G in the space of symmetric forms,
and ψ the representation in the space of skew-symmetric forms.

If α is essentially complex, there is no invariant symmetric or skew-
symmetric form. But if α is real or quaternionic, there must be just 1
invariant form, either symmetric or skew-symmetric. We shall see that
in fact there is an invariant symmetric form if and only if α is real.

Certainly if α is real, say α = βC, where β is a representation in the
real vector space U , then we know that there is an invariant positive-
definite form on U , and this will give an invariant quadratic form on
V = UC.

Conversely, suppose α is a quaternionic simple representation on V .
Then β = αR is simple. For

(αR)C = α+ α∗

for any representation α over C. Thus if β = γ + γ′ then (with α
quaternionic)

2α = γC + γ′C,

and it will follow that
α = γC = γ′C,

so that α is real.

Since β is simple, there is a unique invariant quadratic form P on
VR, and this form is positive-definite. But if there were an invariant
quadratic form Q on V this would give an invariant quadratic form on
VR, which would not be positive-definite, since we would have

Q(iu, iu) = −Q(u).

Thus if α is quaternionic, then there is no invariant quadratic form on
V , and therefore there is an invariant skew-symmetric form.

It follows that we can determine which class α falls into by computing

I(1, φ) and I(1, ψ).

To this end we compute the characters of φ and ψ.

Suppose g ∈ G. Then we can diagonalise g, ie we can find a basis
e1, . . . , en of V consisting of eivenvectors, say

gei = λiei.

The space of quadratic forms is spanned by the n(n+ 1)/2 forms

xixj (i ≤ j),



where x1, . . . , xn are the coordinates with respect to the basis e1, . . . , en.
It follows that

χφ(g) =
∑

λ2
i +

∑
i<j

λiλj.

Now
χα(g) =

∑
λi, χα(g2) =

∑
λ2

i .

It follows that

χphi(g) =
1

2

(
χα(g)2 + χalpha(g

2)
)
.

We deduce from this that

I(1, φ) =
1

2‖G‖
∑
g∈G

(
χα(g)2 + χα(g2)

)
.

Since

I(1, φ) + I(1, ψ) = I(1, (α∗)2)

=
1

‖G‖
∑

g

χα(g−1)2

=
1

‖G‖
∑

g

χα(g)2,

it follows that

I(1, ψ) =
1

2‖G‖
∑
g∈G

(
χα(g)2 − χα(g2)

)
.

Putting all this together, we conclude that

1

‖G‖
∑
g∈G

χα(g2) = I(1, φ)− I(1, ψ)

=


1 if α is real,

−1 if α is quaternionic,

0 if α is essentially complex.


