Course 424

Group Representations II

Dr Timothy Murphy
EELTS3 Tuesday, 13 April 1999 16:00-17:30

Answer as many questions as you can; all carry the same number
of marks.
All representations are finite-dimensional over C.

. What is meant by a measure on a compact space X7 What is meant
by saying that a measure on a compact group G is invariant? Sketch
the proof that every compact group G carries such a measure. To what
extent is this measure unique?

Answer: A measure p on X is a continuous linear functional
p:C(X)—C,

where C(X) = C(X,R) is the space of real-valued continuous functions
on X with norm || f|| = sup |f(x)].

The compact group G acts on C(G) by

(9.f)(x) = fg~"x).

The measure [ 1s said to be invariant under G if

(g )nf)
forallg € G, f € C(G).
By an average F' of f € C(G) we mean a function of the form
F=XMgf+ X gf+ - +NgT,

where 0 < N\, <1, Y-\ =1and g1,92,...,9- € G.
If F is an average of [ then

(a) inf f <inf F <sup F < supf;
(b) If u is an invariant measure then pu(F) = p(f);

(¢c) An average of F' is an average of f.

Continued overleaf



If we set
var(f) = sup f —inf f

then
var(F') < var(f)

for any average F' of f. We shall establish a sequence of averages Fyy =
fy F1, Fy, ... (each an average of its predecessor) such that var(F;) — 0.
It follows that

F,—ceR,

ie F;(g) — ¢ for each g € G.

Suppose f € C(G). It is not hard to find an average F of f with
var(F') < var(f). Let

V={geG:flg)< %(supf+inff),

ie V' s the set of points where f is ‘below average’. Since G is compact,
we can find g1, ..., g, such that

G=gVu---UgV.

Consider the average

1
F=—(gf+-+9]f).
Suppose x € G. Then x € g;V for some 1, ie
glzeV.

Hence 1
(9:)(@) < 5(sup f +inf £),

and so

F(z) < =

1
sup f + 2—r(5upf + inf f)
1
=sup f — —sup f —inf f.
2r
Hence sup F' < supf and so

var(F') < var(f).

This allows us to construct a sequence of averages Fo = f, Fy, F5, . ..
such that

var(f) = var(F)o > var(F); > var(F)y > ---



But that is not sufficient to show that var(F'); — 0. For that we must
use the fact that any f € C(G) is uniformly continuous.

[T would accept this last remark as sufficient in the exam, and would
not insist on the detailed argument that follows./

In other words, given € > 0 we can find an open set U > e such that

vy el = |f(x) - fly)l <e

Since

(97'2) g™ y) =7y,
the same result also holds for the function gf. Hence the result holds
for any average F' of f.

Let V' be an open neighbourhood of e such that
VvV cu, Vi=V

(If V satisfies the first condition, then VNV =1 satisfies both conditions.)
Then
sVUyV £0 = [f(z) = fy)| <e

For if xv = yv’ then
rly = w' " el.

Since G is compact we can find g1, ..., g, Such that
G=gVu---UgV.

Suppose f attains its minimum inf f at z9 € ¢;V; and suppose x € g;V .
Then
g 'wo, gz €V

Hence
(95"2) " (g7 "w0) = (997 '2) w0 €T,
and so
£ (gig; ' 2) — f(zo)] <e.

In particular,
(95971 f)(z) <inf f + €.

Let F' be the average
1 _
F= 2 Z 959; lf-
Z?]

Then

r?—1

1.
= sup f + 5 (inf f +¢),

sup F' <



and so

r2—1
7"2

r? —1/2

< —2var(f)7

r

var(f) + ie

var(F) < p

if e < var(f)/2.

Moreover this result also holds for any average of f in place of f. It
follows that a succession of averages of this kind

FOquFl)"'an

will bring us to
1
var(F), < = var(f).

2
Now repeating the same argument with Fy, and so on, we will obtain a
sequence of successive averages Fo = f, Fy,... with
var(F); | 0.

It follows that
Fy—c

(the constant function with value c).

It remains to show that this limit value c is unique. For this we intro-
duce right averages

H(x) = Zujf(whj)

where 0 < p; < 1, > p; = 1. (Note that a right average of f is
in effect a left average of f, where f(a:) = f(z7'). In particular the
results we have established for left averages will hold equally well for
right averages.)

Given a left average and a right average of f, say

F(r) = Z)\if(gi_lx)> H(z) = Zujf(xhj),

we can form the joint average
J(x) = N f(g; " why).
2%

It 1s easy to see that

inf F' <infJ <supJ <supH,
sup F' > supJ > inf J > inf H.



But if now Hy = f, Hy, ... is a succession of right averages with H; — d
then it follows that
c=d.

In particular, any two convergent sequences of successive left averages
must tend to the same limit. We can therefore set

u(f) =c.

Thus u(f) is well-defined; and it is invariant since f and gf have the
same set of averages. Finally, if f =1 then var(f) =0, and f, f, f, ...
converges to 1, so that

p(l) = 1.

The invariant measure on G is unique up to a scalar multiple. In other
words, it is unique if we normalise the measure by specifying that

p(l) =1
(where 1 on the left denotes the constant function 1).
. Prove that every simple representation of a compact abelian group is
1-dimensional and unitary.
Determine the simple representations of SO(2).
Determine also the simple representations of O(2).

Answer: Suppose « is a simple representation of the compact abelian
group G in V.

Suppose g € G. Let A be an eigenvalue of g, and let E = E\ be the
corresponding eigenspace. We claim that E s stable under G. For
suppose h € G. Then

e€c E = g(he) = h(ge) = Ahe = he € E.
Since o 1s simple, it follows that E =V, ie gv = v for all v, or
g=Al.

Since this is true for all g € G, it follows that every subspace of V' s
stable under G. Since « is simple, this implies that dimV =1, ie « is
of degree 1.

Thus a simple representation of G is a homomorphism o : G — C*.
We must show that

a(g)l =1
forall g € G.

If |a(g)| > 1 then
la(g™)] = (lg])" — oo



This is a contradiction, since ima C C* is compact and so bounded.
On the other hand, if |a(g)| < 1 then |a(g~")| > 1. Hence |a(g)| = 1
for all g, ie o 1s unitary.

We can identify SO(2) with
U(l)={z€C: |z =1}
From above, a representation of U(1) is a homomorphism
a:U(l) - UQ1).
For each n € Z the map
E(n):z— 2"

defines such a homomorphism. We claim that every representation of
U(1) is of this form.

. Determine the conjugacy classes in SU(2); and prove that this group
has just one simple representation of each dimension.

Find the character of the representation D(j) of dimensions 2j + 1
(where j =0,3,1,3,...).

Determine the representation-ring of SU(2), ie express each product
D(i)D(j) as a sum of simple representations D(k).

Answer: We know that
(a) if U € SU(2) then U has eigenvalues
e (9 € R).
(b) if X,Y € GL(n, k) then
X ~Y = X.,Y have the same eigenvalues.

A fortiori, if U ~V € SU(2) then U,V have the same eigenval-

ues.

We shall show that the converse of the last result is also true, that is:
U ~ V in SU(2) if and only if U,V have the same eigenvalues e*%,
This is equivalent to proving that

ie we can find V € SU(2) such that

VUV = U(6).



To see this, let v be an e-eigenvalue of U. Normalise v, so that v:v =
1; and let w be a unit vector orthogonal to v, ie w*w = 1, v*w = 0.
Then the matrix

V = (vw) € Mat(2,C)

0
1 . € X
VUV = < 0 e_w)

But in a unitary matriz, the squares of the absolute values of each row
and column sum to 1. It follows that

s unitary; and

P 4z =1 = =0,
ie
VIV = U(h).
We only know that V € U(2), not that V € SU(2). However
VeUR) = |detV|=1 = detV =¢".

Thus '
V' = e 2V € SU(2)

and still
(VHtuv = U(@®).

To summarise: Since U(—6) ~ U(0) (by interchange of coordinates),
we have show that if

C(0) = {U € SU(2) : U has eigenvalues e}
then the conjugacy classes in SU(2) are

cl) (0<0<m).

Now suppose m € N, Let V(m) denote the space of homogeneous poly-

nomials P(z,w) in z,w. Thus V(m) is a vector space over C of di-

mension m + 1, with basis 2™, 2™ 1w, ... w™.

Suppose U € SU(2). Then U acts on z,w by

/
()= () =0 (2)
w w w
This action in turn defines an action of SU(2) on V(m):

P(z,w) — P(Z',w').



We claim that the corresponding representation of SU(2) — which we
denote by D,/ — is simple, and that these are the only simple (finite-
dimensional) representations of SU(2) over C.

To prove this, let
U(1) c SU(2)

be the subgroup formed by the diagonal matrices U(0). The action of

SU(2) on z,w restricts to the action
(z,w) — (2, "w)

of U(1). Thus in the action of U(1) on V(m),

m

ST e(m—Qr)zﬂzm—r r

w,

It follows that the restriction of Dy,)1 to U(1) is the representation
Dpo|U(1) = E(m) + E(m —2) 4 -+ + E(—m)

where E(m) is the representation

61’0 —s emi@

of U(1).

In particular, the character of Dy, s is given by
Xmy2(U) = €™ + ™20 4 ... - =m0

if U has eigenvalues e,

Now suppose D,y 2 is not simple, say

D'm/2 = O[—Fﬁ

(We know that D,/ is semisimple, since SU(2) is compact.) Let a
corresponding split of the representation space be

V(m) = W1 D WQ.

Since the simple parts of Dy,2|U(1) are distinct, the expression of
V(m) as a direct sum of U(1)-spaces,
V(im) =" @ " w) @ @ (w™)

1s unique. It follows that Wi must be the direct sum of some of these
spaces, and Wy the direct sum of the others. In particular 2™ € Wy or
2" e Wy, say 2™ € Wy. Let

U= % G _11) € SU(2).



Then
z '_)i zZ+w
W \/§ —z+w

2 272 (2 )™,

under U. Hence

Since this contains non-zero components in each subspace (z™~"w"), it
follows that
W1 = V(m),

ie the representation D, /o of SU(2) in V(m) is simple.

To see that every simple (finite-dimensional) representation of SU(2) is

of this form, suppose a 1s such a representation. Consider its restriction
to U(1). Suppose

alU(l) = e E(r)+e, 1 E(r—1)+-+e_.E(—r) (er,64-1,...,e_, € N).
Then « has character
x(U) =x(0) = e + €r—1€(T_1)i6 + i de_ e

if U has eigenvalues e .

Since U(—0) ~ U(0) it follows that

and so

1€
X(Q) _ 6,«(6”0 + 6—ri0) + eT_l(e(r—l)iB + e—(r—l)z’&) 4

It is easy to see that this is expressible as a sum of the x;(0) with integer
(possibly negative) coefficients:

X(Q) = aOXO(Q) + a1/2X1/2(9) +oeee CLSXS(Q) (a0a ay/2,...,0s € Z)'
Using the intertwining number,
I{a, @) :ag—kafﬂ—i-“-—i-a?
(since I1(D;, Dy) = 0). Since a is simple,

I{a,a) = 1.



It follows that one of the coefficients a; is £1 and the rest are 0, ie
X(0) = £x;(0)
for some half-integer j. But
x(0) = —x;(0) = I(o, D;) = —1(D;, D;) = —1,
which is impossible. Hence
x(0) = x;(0),

and so (since a representation is determined up to equivalence by its
character)

Finally, we show that
DjDy = Djyr + Djpp1 + -+ Djjg.
It 1s sufficient to prove the corresponding result for the characters
X5 (0)xk(0) = X1 (0) + X 1r-1(0) + -+ + X4 (6)-

We may suppose that j > k. We prove the result by induction on k.
If k = 0 the result is trivial, since xo(0) = 1. If k =1/2 then

X3 (0)x1/2(0) = (X7 4 2010 =250 (0 4 o=i0)
= (e(2j+1)i0 + 67(2j71)i9> 1 (e(gj,l)w n 67(2j+1)i9)
= Xj+1/2(0) + xj-1/2(0),

as required.
Suppose k > 1. Then

Y (0) = Y1 (6) + (7 1 k%),
Thus applying our inductive hypothesis,
Xi (0)Xk(0) = Xgr-1(0) + -+ -+ Xjorrr + x5 (0) (" + 7).
But
X (0) ("0 + eHi0) = (eme 1 Q2610 6—2ji0) (ekié’ i e—kw)
= Xi+k(0) + xJ — k(0),
giving the required result

Xi(O)xk(0) = Xjrk-1(6) + - + Xj-k+1 + Xj+x(0) + xJ — k(6)
= Xj+k(0) + -+ Xy



4. Show that there exists a surjective homomorphism
©:SU(2) — SO(3)

with finite kernel.
Hence or otherwise determine all simple representations of SO(3).
Determine also all simple representations of O(3).
Answer: The set of skew-hermitian 2 X 2 matrices
S = < ia. _b.+ ic) (a,b,c,d € R)
b+ic 1d

forms a 4-dimensional real vector space U. The group SU(2) acts on
this space by

(U,S) — U'SU = U*SU,
sincee

(U*SU)* = U*S*U = —U*SU.

The 3-dimensional subspace W C U formed by trace-free skew-hermitian
matrices
- 1 —y +z
T_(y+zz i ) (iL‘,y,ZER)
is stable under SU(2) since

tr(U*TU) = tr(U™'TU) = tr T = 0.

Thus W' carries a representation of SU(2) of degree 3, corresponding
to a homomorphism

©:SU(2) — GL(3,R).

Moreover, this homomorphism preserves the positive-definite quadratic
form
detT = 2% +¢* + 22

on W since

det(U*TU) = det(U*TU) = det T.

Hence
im® C O(3).

Finally, SU(2) = S3 is connected; and so therefore is its image. But
SO(3) is an open subgroup of O(3). Hence

im© C SO(3).



Thus our homomorphism takes the form
© :SU(2) — SO(3).

It remains to show that © has a finite kernel, and is surjective.

If
U cker®

then
UMTU =T

for all T € W. Fach S € U can be expressed in the form
S=T+pl,

where T € W and p = tr S/2. It follows that
U'SU =28

for all skew-hermitian S € U.

Hence

U 'HU = H

for all hermitian H, since H is hermitian if and only if S = 1H 1is
skew-hermitian.

It follows from this that
U'XU =X

for all X € Mat(2,C), since every X is expressible in the form
X=H+S,

with H = (X + X*)/2 hermitian and S = (X — X*)/2 skew-hermitian.
But it is a simple matter to see that the only such U are U = 1. Thus

ker© = {£1}.

To see that © is surjective, we note that if



e

1 0 0
OU#) =10 cos20 —sin20 | = R(Ox,20),
0 sin20 cos26

rotation about Ox through angle 260. In particular, im © contains all
rotations about Ox.

Now let

Thus

Writing P = R(Oy,/2),
P 'R(Ox,0)P = R(Oz,0).

Thus im © contains all rotations about Oz as well as Ox. But is is
easy to see that every rotation R € SO(3) is expressible as a product of
rotations about Ox and Oz. Hence

im© = SO(3),

1e © is surjective.
Thus
SO(3) = SU(2)/{+i}.

It follows that the representations of SO(3) are just the representations
a of SO(2) such that
a(=I)=1.

In particular, the simple representations of SO(3) are those simple rep-
resentations D; of SU(2) such that D;j(—I) = 1. But D; is defined by
the action of SU(2) on the polynomials

2 2j—1 2
P(z,w) = cpz™ + 1277w+ - - - + cpjw™.

It is clear that
P(_Zv _w) = P(Z,UJ)

for all P of degree 25 if and only if 25 is even, ie j is an integer.



Thus the simple representations of SO(3) are Do, D1, Ds, ... of degrees
1,3,5,....

Since
0O(3) =S0O(3) x Cs,

where Cy = {1}, the simple representations of O(3) are of the form
a X 3, where a is a simple representation of SO(3), and (3 is a simple
representation of Cy. Thus the simple representations of O(3) are D; x
1 and D; x €, where j € N and € is the representation —I — —1 of Cs.

. Explain the division of simple representations of a finite or compact
group G over C into real, essentially complex and quaternionic. Give
an example of each (justifying your answers).

Show that if « is a simple representation with character y then the

value of
/ x(g%) dg
a

determines which of these three types « falls into.

Answer: Suppose « is a simple representation of G over C. Then «
is said to be real if

a = fc

for some representation of G over R. If this is so then the character

Xa(9) = x5(9)

1s real. We say that o s quaternionic if its character is real, but it is
not real. Finally, we say that o s essentially complex if its character
s not real.

The trivial character 1 of any group is real, since it is the complexifi-
cation of the trivial character over R.

The 1-dimensional character 6 of the cyclic group Cs = (g) given by

0:g—w=e3

is essentially complex, since its character 6 is not real.

Consider the quaternion group
Qs = {£1, +i, 15, £k}.

We can regard the quaternions H as a 2-dimensional vector space over
C = (1,4). The action of Qs on H by multiplication on the left defines
a 2-dimensional representation o of Dg. We assert that this is a simple
quaternionic representation.



It 1s certainly simple, since otherwise H would have a 1-dimensional
subspace (q) stable under Dg, and therefore under H, since Dg spans
H. But that is impossible since

x=(xq")q

for any x € H. The simple representations of D, must have dimensions
1,1,1,1,2 (since > dim? = 8). It follows that

a =«

since there is only 1 2-dimensional simple representation. Hence X, S
real.

It remains to show that « is not real. Consider the J-dimensional rep-
resentation 3 of Dg over R, defined by the same action of Dy on H.
This is easily seen to be simple, by the argument above. It follows that
B¢ is either simple, or splits into 2 simple representations over C of
dimension 2. The only possibility is that

5@ = 2a.

Now if o were real, say
@ ="c
we would deduce that B = 2+ which is impossible, since 3 is simple.

Now suppose « is a simple representation of G in V. Then (a*)?* is
the representation arising from the action of G on the space of bilinear
forms on V.

But
af =a <= X, 1 real.

Thus

1 if a is real or quaternionic

0 if a is essentially complex

In other words, there is just 1 invariant bilinear form (up to a scalar
multiple) if « is real or quaternionic, and no such form if « is essen-
tially complex.

Now the space of bilinear forms splits into the direct sum of symmet-
ric (or quadratic) and skew-symmetric forms, since each bilinear form
B(u,v) can be expressed as

B(u,v) = % (B(u,v) + B(v,u)) + % (B(u,v) — B(v,u)),

where the first form is symmetric and the second skew-symmetric.



It follows that

(@) =0+,
where ¢ is the representation of G in the space of symmetric forms,
and 1 the representation in the space of skew-symmetric forms.

If « is essentially complex, there is no invariant symmetric or skew-
symmetric form. But if « is real or quaternionic, there must be just 1
invariant form, either symmetric or skew-symmetric. We shall see that
in fact there is an invariant symmetric form if and only if « is real.

Certainly if o is real, say o = P, where 3 is a representation in the
real vector space U, then we know that there is an invariant positive-
definite form on U, and this will give an invariant quadratic form on
V ="Uc.

Conversely, suppose a is a quaternionic simple representation on V.
Then B = ag is simple. For

(OéR)(C =a+ o

for any representation o over C. Thus if 3 = v+« then (with «
quaternionic)

20 = ¢ + e
and it will follow that

o =c = e
so that o s real.

Since 3 is simple, there is a unique invariant quadratic form P on
Vkr, and this form 1is positive-definite. But if there were an invariant
quadratic form Q) on 'V this would give an invariant quadratic form on
Vk, which would not be positive-definite, since we would have

Qiu, iu) = —Q(u).

Thus if a is quaternionic, then there is no invariant quadratic form on
V', and therefore there is an invariant skew-symmetric form.

It follows that we can determine which class « falls into by computing

1(1,6) and I(1,%).
To this end we compute the characters of ¢ and 1.

Suppose g € G. Then we can diagonalise g, ie we can find a basis
€1, ...,en of V consisting of eivenvectors, say

ge; = )\267,
The space of quadratic forms is spanned by the n(n + 1)/2 forms

vz (i <),



where x1,...,x, are the coordinates with respect to the basis eq, . . .

It follows that

i<j

= Z)\h Xa(QQ) = Z)\ZQ

Now

It follows that

) 1
Xphi(9) = 5 (Xa(9)” + Xalpha(g?)) -
We deduce from this that
-[ ) XCX + XOl )
= 3167 2 )

Since

it follows that

Putting all this together, we conclude that

ZXQ )—[(L?ﬂ)

gGG
1 if o is real,
= q —1 if a is quaternionic,

0 if o is essentially complex.

7671'



