

Course 424 Group Representations I

Dr Timothy Murphy

G.M.B. Friday, 22 January 1993 14:00–16:00

Answer as many questions as you can; all carry the same number of marks.

Unless otherwise stated, all groups are finite, and all representations are finite-dimensional over \mathbb{C} .

1. Define a group representation. What is meant by saying that 2 representations α, β are equivalent? Determine all 2-dimensional representations of S_3 (up to equivalence) from first principles.

What is meant by saying that the representation α is *simple*? Determine all simple representations of S_3 from first principles.

2. What is meant by saying that the representation α is semisimple?

Prove that every finite-dimensional representation α of a finite group over $\mathbb C$ is semisimple.

Prove also that the simple parts of a semisimple representation are unique up to order.

Show that the natural n-dimensional representation of S_n in C^n (by permutation of coordinates) is the sum of 2 simple representations.

3. Define the *character* χ_{α} of a representation α , and show that it is a class function (constant on conjugacy classes).

Define the *intertwining number* $I(\alpha, \beta)$ of 2 representations α, β , and show that

$$I(\alpha, \beta) = \frac{1}{|G|} \sum_{g \in G} \overline{\chi_{\alpha}(g)} \chi_{\beta}(g).$$

Prove that a representation α is simple if and only if $I(\alpha, \alpha) = 1$.

Prove that every simple representation of an abelian group is 1-dimensional.

4. Explain how a representation β of a subgroup $H \subset G$ induces a representation β^G of G.

Show that

$$\frac{\bar{g}}{|G|}\chi_{\beta^G}(\bar{g}) = \sum_{\bar{h} \subset \bar{g}} \frac{\bar{h}}{|H|} \chi_{\beta}(\bar{h}).$$

Determine the characters of S_4 induced by each of the simple characters of S_3 , and so draw up the character table of S_4 .

5. Show that the number of simple representations of a finite group G is equal to the number s of conjugacy classes in G.

Show also that if these representations are $\sigma_1, \ldots, \sigma_s$ then

$$\dim^2 \sigma_1 + \dots + \dim^2 \sigma_s = |G|.$$

Determine the dimensions of the simple representations of S_5 , stating clearly any results you assume.

6. Define the representation $\alpha \times \beta$ of the product-group $G \times H$, where α is a representation of G, and β of H.

Show that $\alpha \times \beta$ is simple if and only if both α and β are simple; and show that every simple representation of $G \times H$ is of this form.

Show that D_6 (the symmetry group of a regular hexagon) is expressible as a product group

$$D_6 = C_2 \times S_3.$$

Let γ denote the 6-dimensional representation of D_6 defined by its action on the 6 vertices of the hexagon. Express γ in the form

$$\gamma = \alpha_1 \times \beta_1 + \dots + \alpha_r \times \beta_r,$$

where $\alpha_1, \ldots, \alpha_r$ are simple representations of C_2 , and $\beta_1, \ldots, \alpha_r$ are simple representations of S_3 .