

Course 424 Group Representations I

Dr Timothy Murphy

Exam Hall Friday, 8 March 1991 15:00–17:00

Answer as many questions as you can; all carry the same number of marks.

Unless otherwise stated, all groups are finite, and all representations are finite-dimensional over \mathbb{C} .

1. Define a group representation. What is meant by saying that 2 representations α, β are equivalent? What is meant by saying that the representation α is simple?

Determine all simple representations of S_3 up to equivalence, from first principles.

2. What is meant by saying that the representation α is *semisimple*?

Prove that every finite-dimensional representation α of a finite group over $\mathbb C$ is semisimple.

Define the *character* χ_{α} of a representation α .

Define the *intertwining number* $I(\alpha, \beta)$ of 2 representations α, β . State and prove a formula expressing $I(\alpha, \beta)$ in terms of $\chi_{\alpha}, \chi_{\beta}$.

Show that the simple parts of a semisimple representation are unique up to order.

3. Explain how a representation β of a subgroup $H \subset G$ induces a representation β^G of G.

Show that

$$\frac{\bar{g}}{|G|}\chi_{\beta^G}(\bar{g}) = \sum_{\bar{h}\subset\bar{g}} \frac{\bar{h}}{|H|}\chi_{\beta}(\bar{h}).$$

Determine the characters of S_4 induced by the simple characters of S_3 , and so draw up the character table of S_4 .

4. Show that the number of simple representations of a finite group G is equal to the number s of conjugacy classes in G.

Show also that if these representations are $\sigma_1, \ldots, \sigma_s$ then

$$\dim^2 \sigma_1 + \dots + \dim^2 \sigma_s = |G|.$$

Determine the dimensions of the simple representations of S_5 , stating clearly any results you assume.

5. Draw up the character table of the alternating group A_4 (the subgroup of S_4 formed by even permutations).

Determine also the *representation ring* of A_4 , is express each product of simple representations of A_4 as a sum of simple representations.

6. Explain the division of simple representations (over \mathbb{C}) into *real*, *essentially complex* and *quaternionic*. Give an example of each (justifying your answers).

Show that if α is a simple representation with character χ then the value of

$$\sum_{g\in G}\chi(g^2)$$

determines which of these 3 types α falls into.