

Course 424

Group Representations II

Dr Timothy Murphy

Walton Theatre Friday, 4 April 2003 11:15–12:45

Attempt 5 questions. (If you attempt more, only the best 5 will be counted.) All questions carry the same number of marks. All representations are finite-dimensional over \mathbb{C} , unless otherwise stated.

1. Define the representation $\alpha \times \beta$ of the product-group $G \times H$, where α is a representation of G, and β of H.

Show that if G and H are finite then $\alpha \times \beta$ is simple if and only if both α and β are simple; and show that every simple representation of $G \times H$ is of this form.

Show that D_6 (the symmetry group of a regular hexagon) is expressible as a product group

$$D_6 = C_2 \times S_3.$$

Let γ denote the 3-dimensional representation of D_6 defined by its action on the 3 diagonals of the hexagon. Express γ in the form

$$\gamma = \alpha_1 \times \beta_1 + \dots + \alpha_r \times \beta_r,$$

where $\alpha_1, \ldots, \alpha_r$ are simple representations of C_2 , and β_1, \ldots, β_r are simple representations of S_3 .

2. Prove that the only finite-dimensional division-algebras (or skew-fields) over \mathbb{R} are \mathbb{R}, \mathbb{C} and \mathbb{H} .

Show that the endomorphism-ring $\operatorname{End}(\beta)$ of a simple representation β over \mathbb{R} is a finite-dimensional division-algebra over \mathbb{R} ; and give examples of three such representations with $\operatorname{End}(\beta) = \mathbb{R}, \mathbb{C}, \mathbb{H}$.

3. Define a *measure* on a compact space. State carefully, and outline the main steps in the proof of, Haar's Theorem on the existence of an invariant measure on a compact group.

Prove that every representation of a compact group is semisimple.

4. Which of the following groups are (a) compact, (b) connected:

 $O(n), SO(n), U(n), SU(n), GL(n, \mathbb{R}),$ SL(n, \mathbb{R}), GL(n, \mathbb{C}), SL(n, \mathbb{C}), Sp(n), E(n)?

(Justify your answer in each case. E(n) is the group of isometries of *n*-dimensional Euclidean space.)

5. Prove that every simple representation of a compact *abelian* group is 1-dimensional.

Determine the simple representations of SO(2).

Determine the simple representations of O(2).

6. Determine the conjugacy classes in SU(2).

Prove that SU(2) has just one simple representation of each dimension $1, 2, \ldots$; and determine the character of this representation.

7. Determine the conjugacy classes in SO(3).

Prove that SO(3) has just one simple representation of each odd dimension $1, 3, 5, \ldots$; and determine the character of this representation.