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The security of many cryptographic techniques rests on:

1. The infeasibility of factorising large integers (Example: RSA, Rabin
Encryption)

2. The infeasibility of finding discrete logarithms (DL) (Example: RSA,
DSA Diffie-Hellman, etc.)

For example RSA relies on both these difficulties for safety: if e = public key,
n = modulus, secret key d = e−1 mod φ(n) and φ(n) can only be found
by factorising n; similarly if m = a plaintext message and c = cyphertext
then we know m = cd mod n so if an attacker knows m, d, n and can solve
the DL problem he can find d.

Chapter 9 looks at sophisticated techniques which an attacker may use
in these two cases; they are based on the use of a Factor Base. This module
looks at some simpler techniques (a selection from many).

8.1 Simple Factorisation

Factorisation of n.

1. Fermat’s method

Assume n is odd, otherwise divide by two. Seek for solutions x, y to
x2 − y2 = n. If we find one we have (x + y)(x − y) = n, so (x + y)
or (x − y) must have a common factor with n, and this can be found
using Euclid. (Note: a useless solution are is (x+ y) = n, (x− y) = 1)
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Example n = 35, x = 6, y = 1, (x+ y) = 7, (x− y) = 5

Fermat’s method starts seeking x, y with x = b
√
nc+1 = integral part of(

√
n)+

1 and y = 1 and runs as follows.
x = b

√
nc+ 1, y = 1

r=x2 − y2 − n
↓

(X) r = 0? Y es −→ x2 − y2 = n = (x+ y)(x− y) = possible solution
No
↓

r > 0? Y es −→ r=r-2y=1
No y=y+1
↓ ↓

r=r+2x+1 Go to (X)
x=x+1
↓

Go to(X)

An Example factorise 7313

x 86 86 86 86 86 86 86 86 86 86 87 87 87 87 87 87 87
y 1 2 3 4 5 6 7 8 9 10 10 11 12 13 14 15 16
r 82 79 74 67 58 47 34 19 2 -17 156 135 112 87 60 31 0

x = 87, y = 16, (x+ y) = 103, (x− y) = 71, 7313 = 103× 71

The process can be speeded up by noting that x, y can never be both
odd or both even since n is odd.

x =
√
n+ 1, y = 0 if x is odd, y = 1 if x is even.

r=x2 − y2 − n
↓

(X) r = 0? Y es −→ Success
No
↓

r > 0? No −→ r=r+2(x+y), x=x+1, y=y-1 Go to (X)
Y es
↓

r=r-4y-4
y=y+2
↓

Go to(X)

This cuts out half the number of steps.
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The method is efficient if n has a factor of approximately size
√
n.

Otherwise it is very slow.

2. The (p-1) Method of Factorisation

If pi is the ith prime and n is the integer to be factorised evaluate the
Highest Common Factor (HCF) of n and M =

∏
i pi mod n where the

product runs up to pk some large prime appropriate to the scale of the
problem (size of n) i.e. Find HCF (M, n). Rather than calculating∏
i pi which is slow we evaluate M = (aA − 1) mod n with A =

∏
j p

ej

j

with pj being successive primes and ej being powers ej ∼ K
ln pj

so that

all components p
ej

j are of size K (which is appropriate to the scale of the
problem). The idea is that A will be divisible by the LCM of (pi − 1),
giving M = (aA−1) divisible by some pi. See Theorem 1.10 in Chapter
3.

The range of the products
∏
pi determined by k and or K can be

determined by remembering that a random integer x has largest prime
factor xα with E(α) = 0.62, and second largest prime factor xβ with
E(β) = 0.26 approximately (see Knuth ACP Vol 24.5.4). An approach
could be to choose k, K so that all primes up to nβ are included in aA,
and then seek HCFs for aAp where p represents a succession of larger
primes, to extend past nα if necessary.

Typically one takes a = 2. Note that raising an integer to a power
mod n can be speeded up by successive squarings and by using tech-
niques such as Montgomery’s

(Trivial) Example ((p-1) method)
Factorise 1309

It is sufficient to find the second largest factor, so take 13090.26 ∼ 6,
with A = 23 × 32 × 5 say. Start off with

A = 22 × 3

222×3 = 4096 mod 1309=169
2A − 1 = 168 HCF(168, 1309)=7

So the solution is already found 1309 = 7×(11× 17)

If we progress further we get
A 22 × 3 23 × 3 23 × 32 2×3× 5 2× 5 3× 5 etc.

HCF (2A − 1, 1309) 7 17 17 11 11 7 etc.

3. Pollard’s Monte Carlo Method
The name (due to Pollard himself) arises because the method employs
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random integers mod n - and looks for a common factor between them
and n, not unlike the (p− 1) method.

To understand the method we need the results of the Birthday Paradox
(see appendix). Effectively this states that if we pick random integers
xi mod n we shall find an xj = xi with j > i where i = 1, 2, 3, ., ., .

for the first time when j ≈
√

πn
2

. (If n = 365, j ≈ 23.94)

We consider xi+1 = (x2
i −1)mod n as the pseudo-random sequence, and

n is to be factorised. Let xj, where j = t+ c, be the first xj to equal a
previous xi, and let i = t.

E(t+c) =
√

πn
2

by the Paradox

and E(t) =
√

πn
8

(half − way to t+ c)

After xt the series repeats with period c, xt+j = xt+c+j. Consider
(x2j − xj) and Qi =

∏
j=1,i(x2j − xj). Let r = lowest j such that

x2j − xj = 0 mod n then:

(a) If t = 0 then r = c

(b) If t > 0 then
r ≥ t
r=0 mod c
r <t+c

Exercise These constraints should be checked by the student.

Qi = 0 for i ≥ r.

Now consider p|n and imagine x′i = xi mod p. Let Q′i = Qi mod p. We
want to find p.

Q′i = 0 mod p for i≥ r′ with t′ ≤ r′ ≤ t′ + c′

Qi = Q′i +Kp for some K
But Q′i = 0 for i ≥ r′

Therefore look for HCF (Qi, n) and p should be found after
√

πp
2

steps.

Example n = 1073, x0 = 2, x1 = 3, 8, 63, 749, 894, 923, 1039, 82
Qi = (x2 − x1)× (x4 − x2)× (x6 − x3)× (x8 − x4)

= (5)×(741)× (860)× (406)
Partial products =

∏
Qi = 5, 486, 563, 29

HCF(29, 1073) = 29
We can see how this works by considering the x′i mod 29, x′i = 3, 8, 5, 24, 24

i.e. first repetition on the fifth step. Note:
√

π29
2

= 6.7.
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Clearly the Monte Carlo method is best for factorising an integer with
a smallish prime factor.

Simple DL Attacks
The Discrete Logarithm (DL) problem is, given n, y, α. Find x such
that y = αx mod n. Typically n is a prime p, because little extra
security is gained by having it otherwise.

4. The Order of the Group Attack

If θ(α) = rs the product of two integers r, s we know rs|(φ(n)) or
if n = p prime rs|(p − 1). We can form y1 = yr = (αr)x1 mod p =
αx1

1 mod p where x1 = x mod s, α1 = αr mod p.

If we can solve the reduced DL problem y1 = αx1
1 mod p for x1 then

we can try to solve also y2 = ys = (αs)x2 mod p = αx2
2 mod p with

x2 = x mod r and α2 = αs mod p for x2.

If we succeed we have
x = x1 mod s
x = x2 mod r

which can be solved for x by the Chinese Remainder Theorem (CRT).

Example 7 = 2x mod 113 what is x?
φ(113) = 112 = 7× 16
Order (2) = 7× 4 = 28 (Find by experiment)

(a) 74 = (24) or 28 = 16x mod 113
162 = 30, 163 = 28, therefore x = 3 mod 7

(b) 77 = (27)x mod 113 or 112 = 15x mod 113 therefore x = 2 mod 4
Using CRT x = 10 mod 28, 7 = 210 mod 113

Therefore, a secure DL usage must not have small factors such as r, s
of the Order of α mod p.

This can often be arranged. Choose α wisely, as in the Diffie-Hellman
technique.

However in other cases this is not so, for example in RSA encryption
where x = d the secret key exponent; and α = c cypher-text. y =
m plaintext. Again in RSA digital signatures α = H(m) hash of
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message for signing y = the signature. In such cases we want the
probability of θ(α) to be large. If the modulus is p then this can be
achieved by ensuring that (p − 1) has a large prime factor p′, so that
(p− 1) = p′r.

By doing this we assure that there is a high probability than θ(α) is
divisible by p′ because there exists a primitive β, say, mod p and an
arbitrary element m = βk mod p for some k.

Order (m) = k′ = (p−1)
HCF (k, (p−1))

See Chapter 3, Theorem 3.9

and the number of elements of Order k′ = φ(k′). If k is prime to
(p− 1) we have φ(p− 1) = φ(p′r) elements of order (p′r) and if k = r
we have k′ = p′ so φ(p′) elements of order (p′): In all φ(p′r) + φ(p′)
elements whose order is divisible by p′.

The proportion over all (p− 1) elements is (p′−1)(φ(r)+1)
p−1

and this is the

probability that Order (m), m being an arbitrary integer, is divisible
by p′. The larger p′ the larger the probability.

Example p = 23, (p− 1) = 22 = 2× 11
θ(α)|22, p′ = 11, r = 2

giving probability θ(α) divisible by n is (p′−1)(φ(r)+1)
p−1

= 10.2
22

= 10
11

Specifically elements of order 22 are 5, 10, 20, 17, 11, 21, 19, 15, 7, 14.
Specifically elements of order 11 are 2, 4, 8, 16, 9, 18, 13, 3, 6, 12.
i.e. 20 out of 22.

5. Shanks’ Method

This method of finding a digital logarithm is applicable after any sim-
plification of the problem has been achieved by , for instance, an order
of the group attack.

To solve y = αx mod n for x with y, α, n known. Suppose x = a
√
n+

b, a, b = 0,
√
n. Then y = αa

√
n.αb mod n or y(α−

√
n)a = αb mod n.

Tabulate y, yα−
√
n, yα−2

√
n, . . . yα−(

√
n−1)(

√
n) mod n and put the

results in ascending order in column A so that a match may be found
rapidly.

Then for b = 0 to
√
n evaluate αb and seek a match in column A. When

that occurs we have the solution
y α−a

√
n = αb mod n
x = a

√
n+ b
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Example The same problem as before
7 = 2x mod 113

Try x = 11a+b
So 7×2−11a = 2b

Now θ(2) = 28 so 211× 217 = 1 mod 113 and 2−11 = 217. But 214 = −1
therefore 217 = −8 = 2−11.

a 0 1 2 3 4 5 6 7 8 9 10
7× 2−11a 7 57 109 32 83 14 1 105 64 53 28

Sorting this we get

7× 2−11a 1 7 14 28 32 53 57 83 105 109
a 6 0 5 10 3 9 1 4 7 2

2b mod 113 for b = 0, 1, 2, to 11
gives 20 = 1 and we get a match immediately

a=1 b=0 gives
7 ×2−11×6 = 20 mod 113

so 7 = 266 mod 113
= 210 since 256 = 1

We can also see that b = 5 gives
2b = 32=2−11.3 × 7

or 25 = 2−33 × 7
238 = 7 mod 113

i.e. 210 = 7 again

Appendix X

Birthday Paradox

Let xi be a series of random integers 0 ≤ xi ≤ n, x1, x2, x3, . . . etc. Let
xj+1 be the first of the series which has the same value as a preceding integer:
[xj+1 = xi for some i < j and all xi for i ≤ j are distinct].

Let Pj = Probability that first repeat occurs at (j+1)
= jn × [ n!

(n−j)! ]×
1
nj

= jn × [Prob (no repeats for i ≤ j)]

Example n = 365, then Prob(no repeats for i ≤ j) = 1
365j × 365!

(365−j)! < 0.5
when j ≥ 23
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Let S =
∑n
k=0

nk

k!
. The expected value for j is

E(j)=
∑
j=1,n jPj = (n!)/(nn+1)

∑
1,n j

2 nn−j

(n−j)! = (n!)/(nn+1))
∑

(n− k)2 nk

k!

= (n!)/(nn+1))[n2S − 2n2(S − nn

n!
)) +

∑ k(k−1)nk

k!
+

∑
k n

k

k!
]

= (n!)/(nn+!)[2n2 nn

n!
− n2S + n2(S − nn−1

(n−1)!
− nn

n!
) + n(S − n2

n!
)]

= (n!)/(nn+1)[nS − nnn

n!
]

= (n!)/(nn)[S − nn

n!
]

We take
∑
i=0, n−1

nk

k!
= S-((nn)/(n!)) ≈(en)/(2) for largish n

Therefore E(j) = ((en)/(2)) ×((n!)/(nn))

= ((en)/(2)) ×((
√

2πn)/(en)) by Stirling’s Formula

Therefore E(j) =
√

πn
2

Example n = 365, E(j) = 23.9
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