
Chapter 7
Random Numbers

February 15, 2010

7

In the following random numbers and random sequences are treated as two
manifestations of the same thing. A series of random numbers strung to-
gether is considered to be a random sequence. A random sequence chopped
up into (fixed length?) blocks is considered to give rise to a series of random
numbers.

Random numbers are needed in cryptology as:

1. Keys for symmetric algorithms

2. Seeds for finding primes (example: RSA)

3. As sequences to help factorising (Pollard’s Monte Carlo Method)

4. In challenge/response mechanisms

5. Sequences for Vernam cyphers etc

We need to generate pseudo-random numbers. We need to be able to test a
sequence to see if it is “random” (example: cypher-text).

A random sequence of, say, N = 2n bits should have equal numbers of
0’s and 1’s. That is 2n−1 0’s and 2n−1 1’s. The standard deviation around
this mean is σ = 1

4N1/2 . i.e. Numbers of 0’s is equal to the number of 1’s =

2n−1 ± 0.25 ∗ 2
n
2 .

• A random sequence should also have no periodicity (zero autocorrela-
tion)

1

• A random sequence should also have a geometrical distribution of any
given pattern, example: k 0’s or k 1’s.

More specifically, if we define a run length of k 0’s as k 0’s followed by 1,
given a start 10 (so that a run length of 3 0’s is ...10001) then the expected
value of k, with Prob(runlength = k) = 2−k, is E(k) = 2.

If there are 2n(= N) bits then (provided k ≤ n− 2). Number of runs of
length k 0’s is 2n−2−k, number of runs of length k 1’s is 2n−2−k and number
of runs of length n 0’s or 1’s is 1. With, in all, 2n−2 runs of 0’s and 2n−2 runs
of 1’s.

Example n = 6, N = 64 = 26

We should have
32=25 0′s and 1′s
16=24 runs of 0′s of average length 1

runs of 1′s of average length 1
8 runs of single 0′s or 1′s
4 runs of two 0′s or 1′s
2 runs of three 0′s or 1′s
1 run of four 0′s or 1′s
1 run of six 0′s or 1′s

But these are expectation values. In reality, with really random, sequences
these figures will only be approximated.

Really random numbers and sequences cannot be rationally constructed.
We construct pseudo-random sequences.

For really random sequences we need a random seed and some random
perturbations of some regular pattern.

Random seeds are relatively easily provided - example: by measuring data
and intervals between key strokes input at a keyboard or perhaps from a phys-
ical source such as a quantum generator. Random perturbations are harder.
Perhaps a computer programme may read an independent fine-resolution
timer to get some “random” input - provided the programme itself contains
a certain fluidity in its progress.

(A pseudo-random sequence which adheres too closely to the supposed
ideal of the geometrical distribution of run length of 0’s and 1’s would be
rejected by a chi-square test!)

Some methods for generating pseudo-random sequences:

1. Maximum length sequence
One takes an (irreducible) primitive polynomial g(x) of degree t over
GF (2). One forms the linear Feed Back Shift Register (LFBSR)

2

where the connections correspond to the non-zero coefficients in g(x) =
gtx

t + gt−1x
t−1 + . . . + g1x + g0. The output stream is a Maximum

Length Sequence (MLS).

3

Example g(x) = x4 + x+ 1
Note that there are not four 0’s (0000) because the scheme is linear
and we would always have all zero’s. Otherwise we have a geometric
distribution. The register contains successively all possible non-zero
patterns.

4

Sequence shifted out → ↓
Content of register is as shifted 0001

0010
0100
1001
0011
0110
1101
1010
0101
1011
0111
1111
1110
1100
1000
.....
0001
= 000100110101111 | 00...

2. De Bruijn Sequences (Non-linear, allow “all-zeros”)
These are Hamiltonian paths (a path visiting every node once) in a state
diagram. We move from state to state designated by (xi xi+1 . . . xi+m−1).
The state has predecessor (0

1
xi xi+1. . . xi+m−2) and successor (xi+1 xi+2 . . . xi+m−1

0
1
)

(and an associate (xi xi+1 . . . x̄i+m−1)).

5

The sequence emitted is the (overlapping) sequence of state names
xi+m = f(xi, xi+1, . . . xi+m−1) to generate the Hamiltonian path. It
can be shown that f() ≡ xi + g(xi+1. . . xi+m−1) if the associate is to
be obtainable (and xi’s predecessor unambiguous).

Example

6

There are two Hamiltonian paths:

7

000
001
011
111
110
101
010
100

giving 00011101 | 00011101 | 000

and 000
001
010
101
011
111
110
100

giving 00010111 | 00010111 |

It can be shown that in an n-graph (binary) with n bits per state there
exist 22n−1−n Hamiltonian paths. (It can also be shown that Hn, a
Hamiltonian path in an n-graph, is equivalent to En−1, an Eulerian
path in an (n − 1)-graph. An Eulerian path visits every side (line)
once.)

In our example n = 3 so 22n−1−n = 2.

3. Linear Congruential Generator (LCG)
LCGs generate sequences of pseudo-random numbers mod m. The
general formula is xn+1 = (axn + c) mod m equivalently xn = anx0 +
c(an−1)

a−1
mod m. (a 6= 1, but = x0 + nc if a = 1).

The question is: What should the parameters a, c and m be? We
want the sequence of integers to go through the full range mod m, i.e.
0, 1, . . . m− 1 in some permuted order.

Since 0 is included, we may take x0 = 0 and have xn = anx0 +
c(an−1)

a−1
mod m. Since 1 is included we have 1 = cr − km for some

r = (an−1
a−1

), k. Therefore c and m must be co-prime.

We can choose m prime, but often the form of m is dictated by the
application. If m is not prime with a factor d, then we have

8

x′n = c′r′ mod d
x′n = xn mod d
c′ = c mod d

Thus there is an “inner” loop, which if m = 2t would show itself as
repetitive cycles of the least significant bits of xn! Not very random!
So avoid this.

It can be shown that the periodicity of xn = λ with λ = LCM(λi)
where m = Πpei

i and λi = periodicity mod pei
i . To get maximum

periodicity we require λi = pei
i . It can be shown that this is achieved if

(a− 1) is divisible by pi for all i:
Conclusion:

(a) c is relatively prime to m

(b) (a− 1) is divisible by all prime factors pi of m (special case when
pi = 2)

Example m = 45 = 32 ∗ 5
a = 16 so a− 1 = 15 = 3 ∗ 5
x0 = 0, x1 = 7, x2 = 29, x3 = 21, etc
0, 7, 29, 21, 28, 5, 42, 4, 26, 18, 25, 2, 39, 1, 23, 15, 22, 44, 36, 43, 20,
12, 19, 41, 33, 40, 17, 9, 16, 38, 30, 32, 14, 6, 13, 35, 27, 34, 11, 3, 10,
32, 24, 31, 8, (0).

4. Shuffling The pseudo-random sequence produced by for example an
LCG can be “shuffled” to randomise it. For example one can incor-
porate the date and time=d, which hopefully flicks over rapidly. One
uses a buffer b(i) i = 1, k holding LCG output. A possible scheme is
(with xi ≤ m the LCG output)
Initialise for i=1, k b(i)=xi

n=k+1
Loop : Set t=d mod k ←

j=t ⊕k ∗ xn

m
↑

Output b(j) ↑
Set b(j)=xn ↑

n=n+1 →
The output is a function of the next xn read and the time.

There are many other schemes and programs available for generating random
numbers. It is important that they generate numbers of at least 2048 bits if
they are to be useful cryptographically, and that their ‘seed’ and any other
external input cannot be guessed or generated by an attacker. For example,

9

with RSA an attacker might find it easier to generate the factors p, q of the
modulus n (by running a version of the victim’s key-generation program)
rather than trying to factorise n.

10

