
Chapter 5
Public Key Cryptology - Part II

February 15, 2010

5

The basic concepts of PKC become widely known in the later 1970’s and
many schemes involving its use have been developed since then. Most of
these were based on modular arithmetic (see Chapter 3) but some used other
techniques such as Lucas series and Elliptic Curves (see Chapter 10).

The central requirements for public key encryption and digital signatures
could both be met by RSA, but at the time there were three problems with
that approach.

1. The “authorities”, in particular the US government (and also the French)
considered encryption a state prerogative and wanted to ban the use
by the general public of such a powerful technique as RSA. This was
hardly possible, but the export of RSA technology from the USA was
banned - to the considerable loss of some US companies. RSA software
was developed in many other countries, including Ireland (Baltimore
Technologies) from the early 1980’s, and sold worldwide free from US
competition.

2. The size of the integers (512, 1024, 2048 bits) required for RSA to be
secure, and its inherent cubic complexity, made implementations in sili-
con technology difficult while software implementations were slow. The
invention of the sub-exponential techniques of factorising and solving
the DL problem (using factor bases (see Chapter 9)) led to a search for
other technologies, notably Elliptic Curves, immune to such attacks and
capable of providing equal security with smaller numbers, and hence
faster.

1

3. A craze for patenting algorithms, not least RSA itself, further led to
searches for other approaches to avoid these patents, and possibly es-
tablish new ones. It is questionable if such patents could stand up in
a court of law, but their existence (even granted to algorithms long
after they had entered the public domain) was a strong deterrent to
the use of established technology and a spur to new invention. (This
problem was highlighted later in the AES project, Chapter 2, for sym-
metric algorithms where participants were made to forswear all notins
of patents.)

Two strands of all this creative activity will be discussed in this module:

1. The digital signature standard, DSA and its relations

2. Variants of Diffie Hellman

5.1 DSA and Related Algorithms

Digital Signature algorithms have been developed which do not have a mode
in which they can be used for public key encryption. There are many ex-
amples such as Fiat-Shamir, and El Gamal (closely related to DSA). DSA
itself seems to have had an almost identical counterpart invented - and not
patented - in Germany.

The DSA algorithm is defined in the DS standard (FIPS 186) which
includes an associated Hash Function.

Users of a DSA implementation share a common prime modulus p, and
a base g. The order of g is q, with q a large prime dividing (p− 1).

A user has a secret key x and a public key y = gx mod p. To sign message
m, the signatory forms H(m), a hash of the message (that is a digest of the
message using a scrambling hash function, see Chapter 6, typically 160 bits
wide) and invents an exponent k < q. The signatory then forms

r = (gk mod p)mod q
s = k−1(H(m) + xr)mod q

(k−1 is formed mod q). The signature to m is then (r, s). In this scheme
k and x are hidden from discovery from r and y by the Discrete Logarithm
(DL) problem.

To verify the signature a person must also form H(m) from the message
and evaluate s−1 mod q. The he tests if

r = ((gs−1H(m) ∗ ys−1r)mod p)mod q

2

If he is using the correct public key y, and the message is unchanged this
equation will hold because

Right Hand Side = (gs−1(H(m)+xr)mod p)mod q
= gk mod p mod q = r

Note that the secrecy of k protects that of x, and vice versa, in the equations.
Note also that the same k should not be used twice by the same signatory.
(If the same k is used twice then his x could be found from)

s−1
1 (H(m1) + xr1) = s−1

2 (H(m2) + xr2)

because (r1, s1) and (r2, s2) and m1 and m2 are known.
Note also that both signatory and verifier have to perform (slow) modular

inversions for s−1 and k−1.
A more serious weakness is that a fraudster could invent any pair (r, s) -

or use somebody else’s signature to message m - and form y = (rsg−H(m))r−1

and issue it claiming y to be his public key and (r, s) his own signature to
m. It would pass the verification test and the fraudster could lay claim to
message m without ever having a secret key x. This attack would only work
if the fraudster’s “public key, y” was uncorroborated by anyone, for example
uncertified.

5.2 The Korean Digital Signature Algorithm (KDSA)

KDSA addresses this last problem by building the signatory’s certificate,
z, into the hash H(z|m), thus making the fraudster’s formation of y above
infeasible.

Other modifications include the avoidance of the need to find modular
inverses at every signing and verification; and the use of ⊕ (XOR) and also
the Hash, to foul up the arithmetic and block other inversions.

As before we have secret key x < q, but the public key y = gx−1
mod p.

To sign, the signatory invents k and forms

r = H(gk mod p) so that r < q
s = x(k-(r ⊕H(z|m)))mod q

(r, s) is the signature to m by the holder of the certificate z.
The verifier forms e = r⊕H(z|m), the assumption being that the signa-

tory’s certificate z accompanies message and signature.

Test: Is r = H(ys ∗ ge mod p)?

3

If the signature is correct and the message unchanged the
Right Hand Side = H(gx−1s+r⊕H(z|m)mod p)

H(gk mod p) = r

5.3 Variants of Williamson /Diffie-Hellman Shared Se-
cret

The original scheme is as follows: A, B share a modulus p (prime) and a
base α. Order(α) = q = large prime.

Objective: To establish a shared secret (SS)
A B

Invents x Invents y
Forms αx mod p and sends to B Forms αy mod p and sends to A

↘ ↙
↙ ↘

Forms (αy)x mod p Forms (αx)y mod p
SS=αxy

Note 1: A and B have no proof as to the other with whom they share
the secret.
Note 2: Suppose Order(α) = j ∗ k, then an intruder on the communication
link between A and B could turn αx into αxj, and αy into αyj so the shared
secret would be SS = αxyj. There would then be only k possible secrets,
which could be exhaustively tried by the intruder. Thus Order(α) must be
a large prime.

The following Japanese variants introduce the use of certified public keys
for A and B - i.e. certificates. They enable A and B to assure themselves as
to the identity of the other with whom they share SS.

5.4 MTI/CO

A has a certified public key αx mod p, x being A’s secret key. B has a certi-
fied public key αy mod p, y being B’s secret key. A then uses B’s certificate
and B uses A’s certificate - got either from some public data base, or sent by
its owner to the other, as follows:

4

A B
Gets αy Gets αx

Invents r Invents s
Forms αry and sends to B Forms αsx and sends to A

↘ ↙
↙ ↘

Forms ((αsx)x−1
)r mod p Forms ((αry)y−1

)s mod p
SS=αsr

Note 1: x−1, y−1 are found mod q q = Order(α) = large prime (as
above)
Note 2: A fraudster E could deceive B into believing that he (B) is talking
with E, when he is really talking with A, as follows:

E forms (αx)e mod p from A′s public key and get B to believe this is
really E ′s public key, then B would send αsxe supposedly to E but E gets it
routed to A. A sends αry to B, but E intervenes en route and turns it into
αrye which he sends on to B. Now A and B proceed as though nothing had
happened but the SS = αsre mod p, and whereas A knows he is talking to
B, B thinks he is talking to E.

This fraud is called “Unknown Key Share”. It could be used by E as
follows: E knows A is to send some secret to B. Using the fraud B receives
the secret but think it is from E. E can hopefully find out the secret from
B, because B will not be reluctant to discuss it with E, whom he thinks
knows the secret already. Typically SS is a symmetric key for a subsequent
exchange of information.

5.5 MTI/AO

A, B have certificate αx, αy as in MTI/CO. This time we suppose they send
these to the other together with αr, αs as follows:

A B
Has αx (Cert) Has αy (Cert)
Invents r Invents s

Forms αr and sends both to B Forms αs and sends both to A
↘ ↙
↙ ↘

Forms (αy)r.(αs)x Forms (αx)s(αr)y

SS=αxs+yr mod p

Note 1: Unknown key share is again possible if the fraudster E manages

5

to get a public key αex and impersonate A at the start, and also change αs

to αes in B’s transmission to A. As before A and B will end up sharing
SS = αexs+yr with A knowing he talks with B, but B thinking he talks with
E.
Note 2: “Unknown Key Share” is not possible if users check that other peo-
ple’s public keys are properly certified by a CA (or Certification Authority)
and the CA makes sure that all the owners who apply for their public keys
to be certified actually do own the corresponding secret key. (In the above
fraud E does not know (ex)).

In the above MTI/AO case there is no future-proofing. That is, should
secret key exponents x, y become revealed sometime in the future then the
SS can be reconstructed (and if it were itself a symmetric secret key, the
messages protected by it are now at risk) as long as a record of the exchanges
is available.

To counter this danger we use a third Canadian variant, MQV.

5.6 MQV

A has public key u = αx, secret key x.
B has public key v = αy, secret key y.

A B
Invents x′ Invents y′

Forms u′ = αx′ mod p Forms v′ = αy′ mod p
Send u, u′ to B Sends v, v′ to A

↘ ↙
↙ ↘

Forms r=u′x+ x′ Forms s=v′y + y′

Forms (vv′ .v′)r Forms (uu′ .u′)s

=(αv′y+y′)r =(αu′x+x′)s

SS=α(v′y+y′)(u′x+x′) mod p

Note 1: Unknown key share is not possible. Why?
Note 2: Future-proofing is assured because even if x, y are discovered, x′

and y′ are still secret and SS cannot be reconstructed without them.

5.7 Rabin Encryption (An example of non-RSA public
key encryption)

Beside digital signatures which do not offer public key encryption, there are
many other PKC techniques which do provide encryption. An example is

6

due to Rabin.
Rabin encryption relies on Quadratic Residues (QRs). A QR mod p

(prime) is an integer y = x2 mod p for some x. A Quadratic Non-Residue is
an integer which is not such a square.
Example mod 17

12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 8
62 = 2, 72 = 15, 82 = 13, 92 = 13, 102 = 15, 112 = 2, etcetra

QRs are 1, 2, 4, 8, 9, 13, 15, 16
QNRs are 3, 5, 6, 7, 10, 11, 12, 14

Note: 112 = 62 = (−11)2 of course etc.

Now if p is prime there exists a primitive α such that every element mod p
is a power of α, αi (see Chapter 3).

If β = (αi)2 for some i, so that β is a QR, then β
p−1
2 = α(p−1)i = 1 mod p.

Conversely if β = α2i+1 then β
p−1
2 = α(p−1)i ∗ α p−1

2 = 1 ∗ (−1) = −1 because
there is only one other square root of 1.

So β
p−1
2 = 1 implies β is a QR and β

p−1
2 = −1 implies β is a QNR.

If the modulus n is the product of two prime p, q then only a quarter
of the integers mod n are QRs, and each has four square roots - found by
finding the square roots mod p and mod q (two each) and putting them
together using the Chinese Remainder Theorem (CRT).

Rabin encryption uses n = p.q as modulus and encryption of message m
is c = m2 mod n.

Decryption is c
1
2 mod p = ± m mod p and c

1
2 mod q = ± m mod q

and m can be found using the CRT. Obviously the security is based on the
infeasibility of an attacker factorising n.

Note that if the solution mod p and mod q to c
1
2 are ±m1 and ±m2 re-

spectively our four solutions for m are formed by :

(m1, m2)→ m (m1, −m2)→ m′

(-m1, m2)→ −m′ (-m1, −m2)→ −m

Example mod 35 m = 13 m2 = 29
m2

1 mod 5 = 4 m1 = ±2 mod 5 = 2, 3
m2

2 mod 7 = 1 m2 = ±1 mod 7 = 1, 6
So CRT gives 2, 1→ 22, 2, 6→ 27, 3, 6→ 13, 3, 1→ 8
222 = 132 = 272 = 82 = 29 mod 35

7

Note: (222 = 272 mod 35)→ (22−27)(22+27) = 0 mod 35 or (−5)(49) =
0 mod 35 or (−5)(14) = 0 mod 35. That is if we know the four square roots
we can factorise the modulus.

For Rabin decryption the four square roots must not be revealed to out-
siders (remembering that an attacker who encrypts m already knows two of
the square roots). Therefore the intended recipient must be able to select the
correct square root of c easily without revealing the others. One method is to
attach to m some check sum which is validated on decryption and if correct
then m (and not −m, m′ or −m′) is produced by the validation procedure..

If p = 4k + 3 for some k, c2 = cp+1 = c4k+4 = mod p. So c
1
2 = ck+1.

Example p = 23, c = 2, c
1
2 = 25+1 = ±18 mod 23 = 18, 5

But if p = 4k + 1 a more sophisticated method is needed to extract square
roots mod p.

5.8 Extracting Square Roots mod p

To find a′ such that (a′)2 = a mod p where a, p given. (Assuming a is a QR

i.e. a
p−1
2 = +1).

a′ is a solution to

xp+1 = a mod p (0.1)

i.e. (x
p+1
2 − a′)(x p+1

2 + a′) mod p has roots a′ and −a′.
Consider f(x) = x2 − bx + a over GF(p) with f(x) irreducible. i.e.

w2 = (b2 − 4a) is a QNR in GF(p) so (w2)
p−1
2 = −1→ wp = −w.

The roots of f(x) are α = r + sw and β = r − sw with r = b
2
, s = 1

2
.

Now α is a root of equation ?? because

αp = (r + sw)p = rp + spwp mod p
= r-sw = β

Therefore αp+1 = αβ = a from f(x)
Therefore α satisfies equation ??.

Similarly β is a root of equation ?? because

8

βp = (r − sw)p = rp − spwp mod p
= r+sw = α

Therefore βp+1 = αβ = a from f(x)
Therefore β satisfies equation ??.

Therefore f(x)|(xp+1 − a) so f(x)|(x p+1
2 − a′)(x

p+1
2 + a′). But f(x) is ir-

reducible, therefore f(x)|(x p+1
2 − a′) or f(x)|(x p+1

2 + a′). Therefore to find a′,

divide x
p+1
2 by f(a) and look at the remainder.

Example Find 2
1
2 mod 17

Consider (x18 − 2) mod 17. 2
1
2 is a root.

Form f(x) = x2 − bx+ 2. f(x) = x2 − x+ 2

Because : w2 = b2 − 8 is a QNR
Try b=1. w2 = -7 = 10

10
p−1
2 = 108 = ?

108 = -1 mod 17
Therefore w is a QNR

So take b = 1. Divide into x
p+1
2 = x9. (x2 − x + 2)/x9 = (x7 + x6 −

x5 − 3x4 − x3 + 5x2 + 7x− 3) with remainder 6 mod 17.
So a′ = 6 (or(−6)). Check 62 = 36 = 2 mod 17

9

