
Chapter 4
Public Key Cryptology - Part I

February 15, 2010

4

The concept of public key cryptology (PKC) emerged in the early 1970’s in
the British Government’s communications center CESG, Cheltenham. (See
J.H.Ellis “The Possibility of Secure Non-Secret Digital Encryption”, CESG
Report, January 1970).

The idea was that a person A would have two keys, a secret (private) key
KAS and a public key KAP . Anyone wishing to send a message m secretly to
A would encrypt it withKAP . Nobody, except A, could decrypt it - withKAS.

Encryption m −→ E(KAP ; m) = cypher-text = c
Decryption D(KAS; c) = m

The earliest practical implementation of this idea is due to Clifford Cocks
(CESG Report, 20th November 1973). It was as follows:

A′s public key, KAP = p.q = n, the product of two primes. (p, q−1) and
(q, p − 1) are co-primes. The factors p and q are secret, so the secret key
KAS = p and q. Clearly this secrecy rest on the infeasibility of factorising n,
assumed to be very large.

To encrypt m the sender forms c=mn mod n. To decrypt the receiver,
holder of the secret factors, forms

m1 = cp
′
mod q

m2 = cq
′
mod p

where p.p′ = 1 mod (q − 1) and q.q′ = 1 mod (p − 1). Euclid’s algorithm is
used to find p′ and q′. Clearly

m1 = cp
′

= mpqp′ = mq(1+t(q−1)) = mq = m mod q
m2 = cq

′
= mqpq′ = mp(1+s(p−1)) = mp = m mod p

(using xp−1 = 1 mod p, etc. see Chapter 3, Modular Arithmetic)

1

so m can be found using the Chinese Remainder Theorem. It is the
solution mod n (where n = p.q) to m1 mod q and m2 mod p.

Cock’s solution is none other than RSA, see below, but simpler because
the public key is a single integer and with built-in CRT speed-up. (Moreover,
unlike RSA, it does not rely on the Discrete Logarithm (DL) problem whereby
an RSA secret key exponent might be vulnerable when c and m are both
known.)

In 1974 Malcolm Williamson followed with a three-pass scheme for con-
veying a secret m between two persons A and B sharing a modulus p.

A B
Invents x (integer)

Forms and sends mx mod p
↘

Invents y
Forms and sends mxy mod p

↙
Forms and sends (mxy)x

−1
mod p

↘
Forms (my)y

−1
mod p = m

Note x−1 and y−1 are found mod φ(p). The system is that used to pass a
message in a padlocked bag. A padlocks it, B adds his padlock, A removes
his padlock, B removes his one. This scheme subsequently became known as
Massey Omura.

Williamson then invented the system for A and B to establish a shared
secret using a common modulus p, and base α.

A B
Invents x (integer) Invents y (integer)

Forms and sends αx mod p Forms and sends αy mod p
↘ ↙
↙ ↘

Forms (αy)x mod p Forms (αx)y mod p

Shared Secret (SS) = αxy mod p

Note that both Williamson schemes depend on the infeasibility of solving
for DLs. Observing αx, αy and knowing α and p does not reveal x or y. This
latter scheme was later ‘invented’ by Diffie and Hellman, and is popularly
known by their names.

2

4.1 Certification

An obvious problem with these schemes for secret communication is:

1. How does one know that the other party A is who he claims to be?

2. How does a sender of a secret m in the Cocks scheme know that n
belongs to A and not to an imposter?

3. In the Williamson schemes, how does A know that he is sharing secrets
with B and not with an imposter C?

The solution is for a person’s public information (eg. a public key) to be
certified by a Trusted Third Party (TTP) as genuine. Certification is per-
formed by the TTP digitally signing a block of data called a Certificate which
contains

1. A user’s identity in some agreed form (name, address)

2. His public information, e.g. KAP his public key

3. Relevant dates: of creation, of expiry etc.

4. Scope of use, attributes etc.

5. The TTP’s signature to the above items

The public, with access to a certificate, may verify that the user is genuine,
or at least considered so by the TTP, and that the public information does
indeed correspond to that user.

We see from the form of the certificate that it is necessary to consider
digital signatures which are not part of the above CESG schemes. Those
schemes are all as their name suggests, about non-secret encryption. The
Cocks scheme relies not on a secret key but rather on secret knowledge: p, q
the factors of n. The subsequent RSA scheme uses an explicit secret key, as
well as a public key, which enables its use for digital signature.

Note These PKC techniques are often known as “Asymmetric Key tech-
niques” to distinguish them from traditional “symmetric key” techniques in
while two parties A, B share a common secret key for secure communication.
Asymmetric techniques get over the problem of distributing the shared se-
cret key securely by using a public key - but that of course must be genuine,
(example: as verified by certification)

3

4.2 RSA

The RSA technique is named after its authors Rivest, Shamir and Adelman
who presented it in 1977, MIT Memmo LCS!TM82 4/4/77. (Given the close
collaboration between British and US Intelligence and Secerity Services, and
the frequent involvement of research establishments, it is hard to believe that
the authors of RSA were totally ignorant of the work at CESG over the pre-
vious years. It is notable that their original paper was called “A Method
for Obtaining Digital Signatures and Public-key Crypt-systems” emphasis-
ing the signature as opposed to the encryption capabilities of a technique
otherwise almost identical to that of Cocks.) RSA is the most widely used
PKC technique.

For RSA a user has a key-pair and uses a modulus

n = p.q = the product of two secret primes.

He has a public key exponent e and secret key exponent d.

d = e−1 mod φ(n)

Without factorising n, φ(n) = (p−1)(q−1) cannot be found, hence d cannot
be found. For encryption we have,

Encryption of m : c=me mod n
Decryption of c : m=cd(= med = m(1+rφ(n)) mod n)

(See Chapter 3)
But we can also create a digital signature to m

Sign m : S=Signature=H(m)d mod n

Verification of signature to m: Check H(m) = Se mod n. Here H(m) is
a hash or digest of the message and the verification consists of hashing the
received m and checking it equals the “decrypted” signature. Note the H(m)
is usually signed rather than m to avoid exposing d should m be trivial, and
also to handle very long m (larger than n). Likewise for encrypting long
messages a symmetric algorithm with key = k is often used and then k is
encrypted and transported secretly under RSA.

A B
k′ = ke mod n −→ k=(k′)d mod n

c=E(k;m) −→ m=D(k;c)

Here (d, n) is B′s secret key and (e, n) is B′s public key, to be used by
all who with to send him secret messages and by all who wish to verify B′s
signature to a message.

It is usual, however, for a user to have two RSA key-pairs: one for encryp-
tion and secret messages; one for digital signatures. This obviates a potential

4

fraud where F , a fraudster, gets hold of (c = me mod n) a cypher-text sent
to B and presents it to B as innocent data for signing. If B then performs
cd mod n he reveals m to F . This fraud is frustrated if B, as above, signs
H(c) rather than c.

The importance of digital signatures is due to their blocking of repudi-
ation. A sender cannot repudiate a signed message because he alone has
the secret key which signed it. This is different to the case of Message Au-
thentication Check (MAC), where sender and receiver share a secret key. A
sender can repudiate the MAC attached to a message claiming that the re-
ceiver created it himself. Certificates, signed by a TTP, with its secret key
are non-repudiable - the holders of the TTP’s public key cannot create the
certificates.

Note the the security of RSA relies on

1. Inability to factorise n and hence find d

2. Inability to find discrete logarithms (d) either from m = cd mod n or
s = H(m)d mod n knowing n, m, c, H(m) or s.

Example RSA encryption p = 7, q = 11, n = 77
(p− 1) = 6, (q − 1) = 10
e = 13, d = 37, (e.d = 1 mod 60)

Accordingly we supposeA has Public Key(13, 77) and Secret Key (37, 77)
B sends message m = 2 to A as follows:
cyphertext = c = 213 mod 77 = 30
A deciphers it to m = 3037 mod 77 = 2

Note that decryption (or more generally operations with d the secret key
exponent) can be speeded up if we use the Chinese Remainder Theorem (as
did Cocks); assuming that the holder of d knows the factors of n namely p, q.

Form dp = d mod (p− 1) and dq = d mod (q − 1)
then mp = cdp = (cd mod n) mod p, mq = cdq mod q = (cd mod n) mod q

and we can form m mod p.q by means of the Theorem. Thus using the
above example

5

c=30 dp = d mod (p− 1) = 37 mod 6 = 1
dq = d mod (q − 1) = 37 mod 10 = 7
mp = 301 mod 7 = 2
mq = 307 mod 11 = 87 mod 11 = 2
Therefore m=2 mod 77

4.3 RSA Parameters

A user’s parameters p, q, e (and hence d) must be created somewhere. Either
the user creates his own, in which case he must follow strict procedures if
they are to be secure. This can be done by the use of approved software.
However the result must be checked independently (eg. by a TTP) to ensure
it is unique as well as valid. No two persons should have the same keys.
Additionally the TTP should certify the user’s public key - and probably
issue it on some accessible data base.

Or the TTP creates user keys and delivers them securely (how?) to their
owners. In this case the TTP must destroy it’s own copy of a user’s secret
key after delivery to its rightful owner.

There are obvious administrative and management problems to be solved
in establishing a secure RSA service supporting a large number of users.

To generate large primes - and for security against factorisation and other
attacks n will be 512 bits at least, but more likely 2048 - the standard method
is to start with a random number of suitable size. It is tested for primality,
and if it fails the test it is slightly modified and the test repeated until success
is achieved.

If p is a prime then αp−1 = 1 mod p for all α (see Chapter 3) so a test could
be: try a large number of α, and if the equation holds assume p is prime.
Unfortunately this is inadequate. The existence of Carmichael numbers could
lead one to suppose n is as prime when it is not because αn−1 = 1 mod n for
all α, if n is a Carmichael number.

(If n =
∏
pi, where pi is prime, then φ(n) = LCM φ(pi),and if φ(n) |

(n−1) we have a Carmichael number. Example n = 1729 = 7∗13∗19. φ(n) =
LCM(6, 12, 18) = 36. 36 | 1728). An improved version of this test is due
to Rabin, see appendix 7X.

But it is not sufficient to find any primes for p and q. They must satisfy
special conditions, namely they must be strong primes. (p− 1) must have a
large prime factor p′ and in turn (p′ − 1) must have a large prime factor p′′.
Similarly (q − 1) must have a large prime factor q′ and (q′ − 1) must have a
large prime factor q′′.

One reason for this is to obviate an attack by repeated encryption of
cypher-text c, a message m encrypted under a public key exponent e.

6

c = me mod n

An attacker sees c and knows (e, n). He forms (((ce)e)e...)e = c mod n. That
is, he encrypts c with e until he gets back to c. This is bound to happen -
we are in a finite group. How soon it happens depends on the order of c,
which is outside the attacker’s control and usually outside the control of the
message originator.

If ce
k

= c mod n then ce
k−1

= m mod n and the attacker has decrypted c
to m. To obviate this attack the probability (order of c mod n is small) must
be low. Similarly the probability (order of e mod φ(n) is small) must be low.

The first is ensured by the fact that the probability (order of c is divisible
by p′q′) is high. The second is ensured by the fact that the probability (order
of e is divisible by p′′q′′) is high.

We know that if p, a prime, is such that p− 1 = p′r with p′ a large prime
then the number of elements mod p whose order is divisible by p′ ≥ 2φ(p′) =
2(p′ − 1). See Chapter 8.

If the RSA modulus n=p.q and Order (α) = p′r mod p
and Order (α) = q′s mod q

Then Order (α) mod pq = λ(p′r, q′s) = p′q′λ(rs) ≥ 2p′q′

There exist 2φ(p′) elements mod p whose order is divisible by p′.
2φ(q′) elements mod p whose order is divisible by q′.

so there exist 4φ(p′)φ(q′) elements mod pq whose order is divisible by p′q′, of
which 3φ(p′)φ(q′) have order divisible by 2p′q′. The proportion of elements

whose order is not divisible by p′q′ is P = 1− 4φ(p′)φ(q′)
pq−1

.

Example p = 47, q = 59, p′ = 23, q′ = 29
P = 1− 4∗22∗28

47∗59−1
= 0.111

Thus large p′, q′ as factors of (p − 1), (q − 1) ensure that the probability
that order (c) is large mod pq. Similar reasoning applies to the probability
that Order (e) mod (p− 1)(q− 1) provided we have large p′′, q′′ as factors of
(p′ − 1), (q′ − 1).

Example p = 167, p− 1 = 166, p′ = 83, p′′ = 41
q = 359, q − 1 = 358, q′ = 179, q′′ = 89
p′′q′′ = 3649 p′q′ = 14857 pq = 59953

7

Prob(Order c is divisible by 14857) ≥ 4∗82∗178
59952

∼ 97%
Prob(Order e is divisible by 3649) ≥ 4∗40∗88

83∗179−1
∼ 95%

However, for very large integers (and perhaps we may consider (p−1), (q−1)
as very large “ordinary” integers) the probability that they have very large
prime factors is very high and maybe it is not necessary to construct suitable
p, q in that case. But normally some algorithm for creating suitable p, q
similar to that in appendix Y is used.

For example, the probability that the largest prime factor of an integer
x is less than x.25 is almost zero, so that if RSA factors p, q are of order
22048 then we may perhaps assume that there exist p′, q′ of order of 2500 and
p′′, q′′ of order 2125 making the repeated encryption attack insensible.

Appendix Y sketches a method for generating RSA parameters (without
making this assumption).

The choice of e.

In many systems a community uses a standard e, public key exponent, so
that users’ public keys are just their modulus n. This simplifies management,
and the choice of a small e reduces the complexity of its use (exponentiation
is of a cubic complexity: double the length of a number and you increase the
time taken by a factor of 8).

A typical choice for e is Fermat-5, or 216+1. Exponentiation then involves
16 squarings and a multiplication.

Note, however, that a small exponent can give problems. For example,
suppose e = 3 were chosen, then the same secret message m sent to 3 differ-
ent recipients with moduli n1, n2, n3 would result in 3 cypher-texts.

c1 = m3 mod n c2 = m3 mod n2 c3 = m3 mod n2

An eavesdropper seeing these could put them together using the Chinese
Remainder Theorem to find

c = m3 mod (n1n2n3)

and find m by extracting the cubic root of c.

8

Appendix X

Finding Large Primes

The test xn−1 = 1 mod n? (for any 2 ≤ x ≤ n− 2) will give a positive result
if n is prime. But if n is not prime it can still give a misleading positive
result. In particular, if n is a Carmichael Number, all x′s will give a positive
result, giving the impression that n is prime.

Example n = 561 = 3 ∗ 11 ∗ 17 n− 1 = 560
LCM(φ(ni)) = LCM(2, 10, 16) = 80 | 560
Therefore Order (x) | 80 | 560
for all x; so xn−1 = 1 mod n for all x. Except of course if HCF (x, n) 6= 1.

A better test is needed for the primality of n. The Rabin test is such a
test. If n − 1 = q2k

, this test looks at (xq2
i
mod n) for i = 0 to k. The test

operates on an arbitrary x and with increasing i. The algorithm is as follows:

1. Set i = 0. x2iq = 1 mod n? If true, exit with ”n probably prime“.

2. x2iq = −1 mod n? If true, exit with ”n probably prime“.

3. i = i+ 1 x2iq = 1 mod n? If true exit with ”n not prime“ (because in
step 2 the square root of this was not −1 or 1).

4. i = k? If true exit with ”n not prime (because xn−1 6= 1 mod n)

5. Go to step 2.

Essentially this test tries to find the first time (for increasing i) that xq2
i

=
1 mod n, and ensure that the square roots of this quantity are ±1. (If n is
composite other square roots exist.)

The test can give misleading positive results for certain choices of x. That
is, it can say “n is probably prime” when n not a prime. The test will never
say “n is not prime” when n is prime.

It is shown below that the probability, p, of a misleading positive result
is such that p ≤ 1

4
. In other words the number of x′s which will give a

misleading result. N say, is such that N
n−1
≤ 1

4
. Thus, if the Rabin Test

is repeated m times, i.e. with m different x′s the probability that n is not
prime (after m “probably prime” outputs)≤ (1

4
)m. That is

Prob(n is prime) ≥ 1− (1
4
)m

9

Clearly, for large enough m, we can be virtually certain that n is prime.
Proof that p ≤ 1

4
is relatively long. There are four parts to it, each han-

dling different types of composite n, and counting the number N of solutions
(values of x) to xq2

i
= ±1 mod n, and showing N

(n−1)
≤ 1

4
.

The four parts handle:

1. n =
∏
nei
i with ni primes, and not all ei = 1. (In this case it is suffi-

cient to consider only (xn−1 mod n = 1?)-which holds for all “probably
prime” outputs of the algorithm)

2. n = n1n2...nr for r ≥ 3

3. n = n1n2 with n1 − 1 = 2k1q1, n2 − 1 = 2k2q2 and k1 6= k2

4. As in 3 but for k′1 = k2

1. n =
∏
nei
i with at least one ei > 1. Consider an exponent t (later we

put t = n − 1). How many solutions are there to xt = 1 mod nei
i (i.e.

modulo a prime component of n). There exists a primitive αi and we
can express x = αyi

i mod nei
i .

Order(αti) =
φ(n

ei
i)

HCF (t, φ(n
ei
i))

Solutions to xt = 1mod (nei
i) are then x = αyi

i with yi = 0, si, 2si, . . . (hi−
1)si and si =

φ(n
ei
i)

hi
. (Because (αyi

i)t = (αti)
yi = 1 mod (nei

i)), and the
αyi
i are all distinct since α is primitive). Therefore there exist hi solu-

tions.

Putting this result together for all nei
i i = 1 to r we get that there exist∏

hi solutions to xt = 1 mod n using the Chinese Remainder Theorem.

Now take t = n− 1
hi = HCF ((n− 1), nei−1

i) ≤ (ni − 1)
because there is no common factor between (n− 1) and ni.

N = Number of solution to xn−1 = 1 mod n
≤ ∏

(ni − 1)
Now(ni − 1) ≤ nei

i for ei = 1
and(ni) ≤ 2

9
nei
i for ei ≥ 2

taking the smallest values ni = 3, ei = 2. So N ≤ 2
9

∏
nei
i = 2

9
(n). So

p = N
n−1
≤ 2

9
n
n−1
≤ 1

4
. Provided n ≥ 9.

10

2. Suppose n =
∏
ni and ni − 1 = 2kiqi, n− 1 = 2kq.

Define hi = HCF (n − 1, ni − 1) = 2k
′
iq′i with k′i = (ki, k) and

q′i = HCF (q, qi).

Consider (mod ni) the number of solutions to xq = 1 mod ni. It is
q′i = HCF (q, φ(ni)) = HCF (q, 2kiqi) and to x2jq = −1 mod ni. (It is
half the number of solutions to x2j+1q = 1 mod ni (with j + 1 ≤ k)

i.e.((HCF)/(2))(2j+1q, 2kiqi) = q′i2
j if 1 ≤ j ≤ k′i

((HCF)/(2))(2j+1q, 2kiqi) = 0 if j+1>k′i

because if k′i = kix
2kiq = 1 mod ni implies x2kiq = 1 mod ni).

Using the Chinese Remainder Theorem
N = Number of solution to x2jq = 1 mod n (with j = 0)

and to x2jq = −1 mod n (with 0 ≤ j < k)
is N=

∏
i=1,r q

′
i + Σ0≤j<smallestk′i(=k1)

∏
i=1,r

(Because k1 ≤ k, since n = Zk
q + 1 =

∏
ni =

∏
(1 + 2kiqi))

or 2kq = 2k1q1 + 2k2q2 + 2krqr + Product terms with factor 2k1

Therefore k ≥ k1 where k1 ≤ k2 ≤ . . . r)
So N =

∏
q′i(1 +

∑
0≤j<k 2jr)

Now φ(n) =
∏

(ni − 1) =
∏
i qi2

k1+k2+. . . +kr

So

(N)/(φ(n)) ≤ (1 +
∑
j<k1 2jr)/(2k1+k2+. . . +kr) (0.1)

≤ (1 +
∑
j<k1 2jr)/(2k1r) since k1 is smallest

= (1+ (2rk1 − 1)/(2r − 1))/(2rk1) ≤ 1
2r + 1

2r−1
− 1

(2r−1)2r since k1 ≥ 1

= (1)/(2r−1)

(N)/(n−1) ≤ (N)/(φ(n)) < 1
2r−1 <

1
4

Provided r (the number of prime
factors of n) ≥ 3

3. Suppose n = n1n2 k2 > k1 ≥ 1
Then

11

N
φ(n)

≤ (1+Σj<k12
jr)/(2k1+k2)

from equation ?? with r=2
≤ (1+1+2r + 22r + . . .+ 2(k1−1)r)/(2k1+k2)
= (1+(2k1r − 1)/(2r − 1))/(2k1+k2)
≤ 1/8 + (1/3) ((2k1)/(2k2)− 1/8)
≤ 1/3 (1/2 + 1/4) = 1/4

(using r = 2, k1 + k2 ≥ 3)

4. Finally, if n = n1n2 and k1 = k2 we first show q′1 6= q1 and q′2 6= q2
simultaneously.

For consider (n−1) = n1n2−1 = n1n2−n1+n1−1 = n1(n2−1)+(n1−1).
Suppose n2 > n1. Then (n− 1) cannot be divisible (n2− 1). Therefore
2k1q1 and 2k2q2 cannot both divide 2kq. But k1 ≤ k and k1 = k2 by
hypothesis
Therefore either q′1 = HCF(q1, q) < q1

or q′2 = HCF(q2, q) < q2 holds

Suppose q′1 < q1 since q′1|q1 and these numbers are odd. We have q′1/3
N/φ(n) = ((q′1q

′
2)/(q1q2))(1 + Σj<k12

rj)/22k1

(See expression for N, φ(n))
So N/φ(n) ≤ 1/3 (1+ (22k1 − 1)/3)/22k1

= (1/3) ((2/3)/22k1 + 1/3)
≤ (1/3) (1/6 + 1/3) since k1 ≥ 1
= 1/6
< 1/4

Example Test if 561 is prime
n = 561, n− 1 = 560 = q2k = 35 ∗ 24

x560 = 1 mod 561 all x
Try x = 2

235 = 263 mod 561
270 = 166 mod 561

2140 = 67 mod 561
2280 = 1

So not prime because
√

1 =
√

2280 6= −1
(But if we chose x = 101, we would get 10135 = −1 mod 561 and 561
“probably prime”)

12

Appendix Y

Sketch of procedure to generate RSA keys (512 bits)

1. Pick random p4 ∼ 200 bits.

2. p′′ prime? → No→p′′ = p′′ + 2. Go to step 2.

3. p′ = 2p′′ + 1

4. p′ prime? → No→p′ = p′ + 2p′′. Go to step 4.

5. p = 2p′ + 1

6. p prime? → No→p = p + 2p′. Go to step 6.

7. (p− 1) prime to e? p = p+ 2p′. Go to step 6.

8. Generate q′′, q′ as per step 1 and step 4.

9. k = 2500

pq′
an integer. Make k even.

10. q = kq′ + 1

11. q prime? → No→q = q + 2q′. Go to step 11.

12. (q − 1) prime to e? → No→q = q + 2q′. Go to step 11.

13. n = pq, d = e−1 mod (p− 1)(q − 1)

13

