
Chapter 3
Modular Arithmetic

February 15, 2010

3

In computers information is represented digitally, and nearly always in binary.
It can be considered to be integers and manipulated as such. Arithmetical op-
erations often change the length of the quantities, for example multiplication
doubles the length. Using modular arithmetic with all quantities modulo n
(so that x mod n is the remainder on dividing x by n) imposes a fixed length.

Modular arithmetic also imposes a structure. If n is a prime, p say, then
all integers mod p form a field with addition/subtraction, multiplication and
inverses.

Example mod 7 we have 1 ∗ 1 = 1, 2 ∗ 4 = 1, 3 ∗ 5 = 1mod p

If n is not prime but composite the integers mod n do not form a field but
those less than and prime (ltpt) to n form a multiplicative group of φ(n)
members. φ(n) is called Euler’s Totient Function.

Example φ(15) = 8 and the members of the group are 1, 2, 4, 7, 8, 11, 13
and 14. For example 14 ∗ 8 = 112 = 7 mod(15) which is another member.

A fundamental theorem used in cryptography is:

Theorem 0.1 αφ(n) = 1 mod n provided α is prime to n.

Proof Consider the φ(n) integers ai ltpt n, and the φ(n) products (ai, α).
There are all distinct mod n, because aiα = ajα implies α(ai−aj) = 0 mod n
which is impossible since α, ai, aj have no common factor with n and |(ai −
aj)| < n.

1

Therefore the aiα over i are simply the aj in a different order and∏
i(aiα) = αφ(n) ∏

i ai =
∏
j aj mod n

from which we may cancel the products being prime to n and get

αφ(n) = 1 mod n

When n is a prime p, φ(n) = φ(p) = p−1 and we get Fermat’s Theorem.

Theorem 0.2 (Fermat’s Theorem)

αp−1 = 1 mod p

Note that if c = mrmod n with c, r and n known we can find m from
m = csmod n with s = r−1mod φ(n) or rs = 1 mod φ(n). This requires the
ability to calculate φ(n) which in turn requirs the factors of n (see theorem
??).

To find modular inverses, we use Euclid’s Algorithm, which essentially
finds the highest common factor (HCF) between two integers, and can be
extended to find the inverse of one with respect to the other provided that
HCF = 1.

3.1 Euclid’s Algorithm

Suppose integers a > b. We divide a by b to find quotient q0 and remainder
r0.

a = q0b+ ro

Repeat for b, r0 : b = q1r0 + r1
Repeat for r0, r1 : r0 = q2r1 + r2 etc.

At each steep the remainder is less than the divisor, the remainder from
the previous step. Therefore r0 > r1 > r2 > · · · > rn and the process stops
with rn > 0 and rn+1 = 0.

rn−3 = qn−1rn−2 + rn−1

rn−2 = qnrn−1 + rn
rn−1 = qn+1rn

2

Since rn divides rn−1 it must divide rn−2 etc. until we see rn divides b and
a. Conversely, if h = HCF (a, b), h divides a, b, r0, r1, · · · , rn. Therefore
rn = h = HCF (a, b). If rn = 1 we may write

1 = rn−2 − qnrn−1

= rn−2 − qn(rn−3 − qn−1rn−2)
= rn−2(1 + qnqn−1)− qnrn−3

etc. working up the ladder to get
±1 = aB-Ab

If −1 applies we have b−1 = A mod a. If +1 applies we have −Ab = 1−aB
and adding ab to both sides gives b(a − A) = 1 + a(b − B) so b−1 = (a −
A) mod a. Then we can calculate modular inverses using Euclid to find the
HCF (= 1) and working backwards up the ladder to find b−1mod a

3.2 Continued Fraction Algorithm

There is a direct relationship between Euclid and continued fractions. This is
illustrated below. It enables a faster one-pass algorithm for finding a modular
inverse. At each stage as one finds the new qj one evaluates Aj, Bj (where
Aj

Bj
is an approximation to a

b
) using iterative formulae. The process ends with

aBn−1 − An−1b = (−1)n−1. For more background on continued fractions see
Davenport “The Higher Arithmetic”.

Remark If the quotients are all unity in a continued fraction expansion the
ratio Aj

Bj
is that of adjacent Fiboncacci numbers.

Euclid Example: a = 67 and b = 24
a = q0b+ r0 67=2∗24 + 19
b = q1r0 + r1 24=1∗19 + 5
r0 = q2r1 + r2 19=3∗5 + 4

etc· · · 5=1∗ 4 + 1
rn−3 = qn−1rn−2 + rn−1 4=4∗1

rn−2 = qnrn−1 + rn
rn−1 = qn+1rn

3

Continued Fractions Example: a = 67 and b = 24
a
b

= q0 + 1
b

r0

67
24

= 2 + 1
24
19

= q0 + 1
q1+ 1

r0
r1

= 2 + 1
1+ 1

19
5

= q0 + 1
q1+ 1

q2+ 1
r1
r2

= 2 + 1
1+ 1

3+ 1
5
4

= 2 + 1
1+ 1

3+ 1

1+ 1
4
1

q0 = 2 q1 = 1 q2 = 3 q3 = 1 q4 = 4

Successive Approximations to a
b
←− Ai

Bi

A0 = q0 B0 = 1
A1 = q0q1 + 1 B1 = q1
A2 = q0q1q2 + q0 + q2 B2 = q1q2 + 1
· · · · · ·
easily shown that:
Am−1 = qm−1Am−2 + Am−3 Bm−1 = qm−1Bm−2 +Bm−3

Am = qmAm−1 + Am−2 Bm = qmBm−1 +Bm−2

Can prove that:
AmBm−1 − Am−1Bm = (−1)m−1

At finish (rn = 1, rn+1 = 0)
An = a Bn = b
So aBn−1 − An−1b = (−1)n−1

which gives inverse of b mod a = ±An−1

Example
A0 = 2 B0 = 1
A1 = 3 B1 = 1
(use iteration formula)
A2 = 3.3 + 2 = 11 B2 = 4
A3 = 1.11 + 3 = 14 B3 = 1.4 + 1 = 5
A4 = 4.14 + 11 = 67 = a B4 = 4.5 + 4 = 24 = b

So aB3 − bA3 = (−1)3

67.5− 24.14 = −1
Therefore 24−1mod 67 = 14

4

3.3 The Chinese Remainder Theorem (CRT)

The theorem states that if a, b are coprime (and a > b) then there exists a
unique solution mod (ab) to the two equations:

x = α mod a
x = β mod b

The theorem is fundamental in handling situations where the modulus is
composite. We ‘prove’ the theorem by solving the two equations as follows:
x = β + jb for some j, so
x− β = jb and taking modulo a gives
α− β = jb mod a. Solving for j gives
j = b−1(mod a)(α− β).
Substitute in x = β + jb.

Example
x = 3 mod 17 (a)
x = 5 mod 11 (b)
j = 11−1(mod 17)(3− 5)

By Euclid 11−1mod 17 = 14
Therefore j = 15 ∗ 14mod 17 = 6
So x = 5 + 6 ∗ 11 = 71 mod 187

Usually CRT is used when a and b are primes but the procedure is readily
extended to serve when they are composite provided that (a, b) are co-prime.

3.4 Theorems about Euler’s Totient Function φ()

An immediate consequence of CRT is:

Theorem 0.3 φ(ab) = φ(a)φ(b) provided that (a, b) are coprime.

Proof By CRT there are φ(a) ∗ φ(b) distinct solutions mod (ab) to

x = α mod a,
x = β mod b

where α, β are less than and prime to (ltpt) (a, b) respectively.
The solution x is in turn ltpt (ab). Therefore φ(ab) ≥ φ(a) ∗ φ(b). But

any x ltpt (ab) taken mod a is ltpt a and similarly for b, therefore it has
already been considered. Therefore φ(ab) = φ(a) ∗ φ(b)

5

This leads to:

Theorem 0.4 If n =
∏
i p

ei
i where the pi are the prime factors of n then

φ(n) = n
∏
i(1− 1

pi
)

Proof φ(pe) = pe− pe−1 if p is prime, because this is the number of integers
less than pe less those divisible by p. By Theorem??

φ(n) =
∏
i(p

e
i − p

ei−1
i) = n

∏
i(1− 1

pi
)

Example φ(36) = φ(32 ∗ 22) = 36(a− 1
3
)(1− 1

2
) = 12

Namely 1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35.

Theorem 0.5 If di is a divisor of m then m =
∑
i φ(di) the sum being over

all dividers including m itself and 1.

Example m = 12; di = 1, 2, 3, 4, 6, 12 φ(di) = 1, 1, 2, 2, 2, 4

Proof Suppose m =
∑
j p

ej

j with pj prime then the dividers di have the form∏
j p

fj

j 1 ≤ fj ≤ ej.

Consider all the dividers of form pf1ix1
1 where x1 is composed of all the

other terms p
fj

j except those containing p1 and 1 ≤ f1i ≤ e1∑
i φ(x1p

f1i
1) = φ(x1

∑
i φ(pf1i

1)
= φ(x1)(1 + (p1 − 1) + p1(p1 − 1) + . . . + pe1−1

1 (p1 − 1))
= φ(x1)p

e1
1 using Theorem ??.

Repeat the process extracting p2 from x1 to get∑
(alldividers) = φ(x2)p

e2
2 p

e1
1

where x2 contains no terms with p1 or p2. The procedure finishes with∑
(alldividers) =

∏
j p

ej

j = m

6

3.5 Theorems about the Order of Elements mod(n)

The elements α ltpt n form a group (closed under multiplication, with in-
verses αφ(n)−1) of order φ(n). We define the order of α (θ(α)) = thelowestintegerj
such that αj = 1mod n.

Theorem 0.6 If r = θ(α)mod n then r|φ(n) (r divides φ(n))

Proof Suppose φ(n) = ir + k then k < r

1 = αφ(n) = αir+k = αkmod n

which is a contradiction because r is the lowest integer. Therefore k = 0.

Definition An element is called primitive if it’s order is the order of the
group (θ(α) = φ(n)).

Theorem 0.7 If the modulus is a prime p there exists a primitive element
in the group GF (p).

Proof Firstly we show that if elements a, b in the group have orders e, f
which are coprime then θ(ab) = ef because

(ab)ef = (ae)f .bf)e = 1 mod p therefore Order(ab)|ef

and if x = Order(ab) (ab)xe = bxe = 1mod p so f |x and similarly e|x.
Therefore ef |x or ef |Order(ab).

Now suppose φ(p) = p − 1 =
∏
pei
i . pi prime Let q = p−1

p1
. There exist

elements in the group (GF (p)) which do not satisfy xq = 1 mod p because
there are at most q solutions to this equation in a field. Let a1 be such an
element with Order(a1) =

∏
pfi
i . But f1 = e1 otherwise a1 would satisfy

xq = 1 mod p.

Consequently α1 = a
p

f2
2 p

f3
3

1 . . . has order pf11 = pe11 . Similarly we can find
α2 with order pe22 etc. Therefore

∏
αi has order

∏
pei
i = p − 1 and

∏
αi is

primitive.

Example p = 13. 2 is primitive. 1, 2, 22 = 4, 23 = 8, 24 = 3, 25 = 6, 26 =
12 (= −1), 27 = 11, 28 = 9, 29 = 5, 210 = 10, 211 = 7, 212 = 1

Theorem 0.8 If α has order d mod n then θ(αs = d
h
) where h = HCF (d, s).

7

Proof Suppose d = ih, s = jh (i, j) coprime then (αs)
d
h = αjd = (αd)j = 1

therefore Order(αs)| d
h
. If θ(αs) = x then 1 = (αs)x = αjhx d|jhx, or

d
h

= i|x = θ(αs). Therefore θ(αs) = d
h
.

Corollary 0.9 If n = p prime and α is primitive we have θ(αdi) = p−1
di

= d′i
where d′i (also a divisor of (p-1)) is the ‘complement’ of di. The number of
elements of order = d′i is φ(d′i). See theorem ??.

Example p = 13, p− 1 = 12, d1 = 1, d2 = 2, d3 = 3, d4 = 4, d5 = 6, d6 =
12, α = 2

di = 1 2 3 4 6 12
2di = 2 4 8 3 12 1

d′i = Order(2di) = 12 6 4 3 2 1
Number of elements of this order=φ(d′1) = 4 2 2 2 1 1

Elements of Order = 12 are 2, 6, 11, 7
Elements of Order = 6 are 4, 10
Elements of Order = 4 are 5, 8
Elements of Order = 3 are 3, 9
Elements of Order = 2 are 12
Elements of Order = 1 are 1

Theorem 0.10 If n = n1n2 (n1, n2) coprime and
θ(α) = k1mod n1

θ(α) = k2mod n2

then θ(α)mod (n1n2) = LCM(k1, k2). Where LCM is the least common
multiple.

Proof Let LCM = λ so λ = s1k1 = s2k2.

αk1 = 1 mod n1 therefore αλ = 1 mod n1 therefore n1|(αλ − 1)
αk2 = 1 mod n2 therefore αλ = 1 mod n2 therefore n2|(αλ − 1)

But n1, n2 coprime therefore (n1n2)|(αλ−1), thereforeOrder(α)mod n1n2|λ.
Let x = Order(α)mod(n1n2) α

x = 1 mod n1n2 so

αx =1 mod n1 so k1|x
αx =1 mod n2 so k2|x

Therefore LCM(k1, k2) = λ|x = Order(α), Therefore Order(α) =
λ mod(n1n2)

8

Corollary 0.11 There exists no primitive element for a composite modulus
(except when n1 or n2 = 2) because the maximum values for k1, k2 are
φ(n1), φ(2) and λ < φ(n1)φ(n2) because they have a common factor of two.
Now φ(n1n2) = φ(n1)φ(n2).
Therefore the max order of element < φ(n1n2).

Example n1 = 3, n2 = 7, φ(n1) = 2, φ(n2) = 6, max λ = 6, φ(21) = 12.

Appendix X

Some superficial notes on Multi-precision Arith-

metic

Because the numbers (integers) used in cryptology are large - or at best very
much larger than those handled by current computer hardware (32 or 64 bits)
- multi-precision arithmetic using special software packages is essential. The
following notes discuss firstly the general ideas involved in multi-precision
addition/subtraction and multiplication/division. (Exponentiation is just
repeated multiplication.) Computers have hardware-implemented arithmetic
of their own word-length (example: 32 or 64 bits) which can be invoked by
a multi-precision software package if useful.

Cryptographic arithmetic is frequently modular (mod n) as well as in-
volving large integers. Two approaches to speeding up such calculations
(Karatsuba and montgomery) are appended.

1. We assume a word-length of s bits - in positive (i.e. not “two’s com-
plement”) form. All integers are positive.

2. The “base” is then B = 2s, and a multi-precision integer is of the form
anB

n−1 + an−1B
n−2 + ...+ a2B+ a1 where ai is a positive s-bit integer.

(Example: S = 32)

3. We are concerned with modular arithmetic in which quantities are
mod N , and so if Bn−1 < N ≤ Bn we have at most n words in a
multi-precision integer.

4. In practice this means that when adding two integers a, b(< N of
course) we may need to subtract N from the result; when subtracting b
from a we need to test if b > a and if so add in N ; and when multiplying
we need to find the remainder on dividing the product of two integers
by N . If N = Bn all this is easy, we simply discard all the words to

9

the left of Bn. (In reality N 6= Bn, in particular because we require N
to be a prime or a product of two primes, but for the following timings
let us ignore this and suppose N = Bn).

Assume single precision addition takes time t, and single precision multipli-
cation takes time m - note: the multiplication of two single precision integers
produces a double-precision result.

Integer length m bits Time for Addition Time for Multiplication

B t m
2B 2t 3m+2t
4B 4t 10m+9t
8B 8t 36m+35t

Very roughly: Double the length of integers results in doubling the time
for addition, and quadrupling the time for multiplication.

What of exponentiation? Let us assume the size of exponents is the
size of the other integers. An exponent of m bits needs m multiplications so
we have:

Integer length m bits Time for exponentiation

B 2(s-1)m
2B 2(2s-1)(3m+2t)
4B 2(4s-1)(10m+9t)
8B 2(8s-1)(36m+35t)

Double the length of integers results in multiplying the time taken by ap-
proximately eight. Exponentiation is of cubic complexity.

Note: Example: (s = 4 bits) x15 = x8∗x4∗x2∗1 = 3 squarings and 3multiplications =
6 operations = 2(s− 1)

In the preceding we have assumed modularity is achieved by discarding
- i.e. N = Bn. This is not so usually. Modularity has to be achieved by
division. Division is a complex, trial and error procedure. To divide a by b,
assuming a is significantly greater than b, we

1. Shift b left (b ∗ 2i) until b2i ≤ a but b2i+1 > a, call b2i now b.

10

2. Subtract b from a to form a′ = a− b.

3. Shift b right to get b′ = b
2
.

4. Is b′ < a′? If yes the go to step two (with b = b′, a = a′), if no then go
to step 3.

If the quotient is of interest, record a ‘1′ for each subtraction in step 2 in
the appropriate quotient register. If we are only interested in the remainder
stop the process when b can’t be shifted further right, and then the remainder
is equal to a′.

The number of subtractions is (very roughly) ns, for integers of length n
s-bits words. (The situation is complicated by working across word bound-
aries, the possibility of using some hardware division, the fact that many
reductions modulo-N take place on the results (DOUBLE-precision) of mul-
tiplications, etc). Assuming this is correct we have for example:

Integer length Time for Multiplication Modular Time for Exponentiation Modular

8B 36m+ t(35 + 8s) 2(8(s− 1))(36m+ t(35 + 8s))

If m = t and s = 32 for example, time for 256-bit modular exponentiation
2 ∗ 8 ∗ 31(36 + 35 + 256)t = 1.6 ∗ 105t

3X.1 Karatsuba speed up of Multi-precision Multiplica-
tion

Suppose we work with multi-precision integers of length 2ks bits (example:
k = 5, m = 32 for 1024-bit arithmetic). We start with the fact

a∗b = ((a+b)2−(a−b)2)/(4) (0.2)

Thus multiplication can be reduced to two squarings (plus a trivial right
shift).

Squaring can be made to take 3
4

of the time that direct multiplication
takes. As follows:

11

Let a =(a1, a2) and
let 2ks =2j=length of a

then a =a12
j + a2

so a2 =a12
2j + a1a22

j+1 + a2
2

=2j(a1 + a2)
2 + (22j − 2j)a2

1 + (1− 2j)a2
2

= 3 squarings of integers of lengthj=2k−1s (with some other trivial operations)

So the time is 3
4

of the time to square (a1, a2) of length 2ks.
But we can iterate to evaluate squarings of length 2k−1s as three squarings

of length 2k−2s; etc until 2k−i = 1, i.e. k times. Each time we gain 3
4
, so final

time (taking into account it has to be done twice see equation ?? above) is
2∗ (3

4
)k of unoptimised time. If k = 5 we have cut to 0.475 unoptimised time.

3X.1.1 Modular Multiplication Without Trial Division (Montgomery)

The idea: change the representation of integers mod N to another repre-
sentation. Perform the operation - example: repeated multiplication as in
squaring - in this new more convenient representation. When finished, con-
vert the result back to original representation.

Of course, the initial conversion and final reconversion cost time. But,
the intervening operation (if repeated) are much faster - hence the ultimate
gain.

Let N be the modulus, x, y two integers < N . Let R be a convenient
base (example: 2k for some k) and form x′ = Rx mod N and y′ = Ry mod N .
(Note: R, N co-prime and R > N). In this representation (x+ y)′ = x′+ y′.
However x′y′ 6= (xy)′ because x′y′ = R2xy mod N . Therefore to get the
correct form for (xy)′ we need to evaluate

R−1x′y′ mod N = R(xy) mod N
Let R−1 be inverse of R mod N so that

RR−1 = 1+NN′ for some N ′

Since R−1 < N we must have N ′ < R. To convert any T to R−1T mod N
(for example T = x′y′) we use

TRR−1 = T(1+NN′)
So TR−1 mod N = (T(1+NN′))/(R) mod N

= (T+(((T mod R)N′)mod R)N)/(R) mod N

If T < N2 (example: T = x′y′) then T < RN . So TR−1 mod N < RN+RN
R

=

12

2N mod N and the mod N = 2N mod N means either subtract N once or
not at all.

3X.2 Algorithm

1. Form m = ((T mod R)N ′) mod R giving m < R.

2. t = (T+mN)
R

.
Note: t is an integer since mN = TN ′N mod R = −T mod R
Note: tR + T mod N , therefore t = TR−1 mod R
Division is trivial

3. If t ≥ N then t = t−N

Answer: t = R−1T mod N . That is in evaluating x ∗ y mod N instead of one
multiplication and one division we have three multiplication (x′y′, TN ′, mN)
(Plus initial conversions x y)

Example x = 17, y = 24, N = 29, xy mod N =?
Choose R = 32(= 25) R−1 mod 29 = 10, N ′ = 11

x′ = Rx mod N=22
y′ = Ry mod N=14

so x′y′ = 308

So(xy)′ = Rxy=R−1x′y′ mod N
= (308+((308(mod 32).11)mod 32)∗29)/(32)
= (308+(20∗11) mod 32 ∗ 29)/(32)
= (308+28∗29)/(32)
= 35

To convert (xy)′ = Rxy mod N back to xy, multiply by R−1

xy=R−1(xy)′ = (35+(((35 mod 32).11)mod 32)29)/(32)
=(35+29)/(32)
=2 mod 29 (=17∗24 mod 29)

13

