
Chapter 1
Introduction and Background

February 15, 2010

1

The notes forming this collection are essentially those given out to third
and fourth year undergraduate students of a course on Cryptology (Cryp-
tography plus Crypt-analysis; of constructing cryptograms/cyphers plus at-
tacking/breaking them). The course is given in the School of Mathematics,
Trinity College, University of Dublin, and the students are essentially lo-
cal maths students; although some physics, statistics and indeed Erasmus
students from Germany have attended.

The course is optional and is given every second year. Originally there
was no intention of examining the students at the end of the course, but
they themselves requested an examination. They said the material interested
them, and they knew their own characters sufficiently well to be sure that
without an examination they would never study it properly.

There is much material in the course and although an ability in maths
- notably number theory - is desirable, the course is certainly not confined
to mathematics. Much of it is hard to categorise: Scientific common sense?
Logical reasoning? Clever patterns? Perhaps the one thread that runs right
through any course on cryptology is suspicion. Is there a flaw in the argu-
ment? Can the procedure be subverted? Can interference be detected? After
all, from the very start we know that cyphers, cryptograms, encrypted data
- call them what you will - are not what they appear to be. They conceal
something.

The course could be considered to be tough. Nevertheless, year after year,
some 30 per cent of students perform excellently in the examination and fail-
ures amongst the remainder are very few. This has surprised examiners, but
this also convinced them that although the course may appear intimidating it
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obviously is not unfair, let alone impossible. More, if the students did not re-
spond with their enthusiasm and interest the course would have ceased being
given years ago. These notes are dedicated to them and to follow enthusiasts
whoever and wherever they maybe.

Finally, the notes which follow were distributed in lectures, and have only
been modified in a minor way - correcting errors and obscurities and removing
less relevant material. However, in a lecture course there is much talk and
this appears here as ‘continuity’ or ‘introduction’ to and between the various
modules. This ‘continuity’ is much more brief written than spoken, and may
appear abrupt. The reader should therefore ponder for themselves: What is
the purpose of this? Is this relevant? Why is this technique chosen rather
than some other? Suspicion and scepticism are the makings of a cryptologist.

1.1 Background

The three main strands of cryptography are very ancient. They are:

1. Creating, holding and exchanging secrets or secret messages.

2. Assuring the authenticity of documents (such as written orders).

3. Controlling access to sources of materials or information.

Within these general areas of security services there are many subdivi-
sions. For example: confidentiality may apply to data, to the identity of per-
sons (anonymity), or to the existence of communication. In turn such services
are provided by mechanisms such as encryption, aliasing, spread spectrum
techniques or steganography. Each such mechanism may have many different
methods of implementation. For example there are innumerable encryption
algorithms.

Similarly authenticity services can give proof of the identity of the sender
(of a message), or proof of receipt, or proof of transmission, or proof of
integrity of data (no corruption), and so forth. The mechanism providing
these services are for example: MACs (Message Authentication Checks) or
Digital Signatures. These mechanisms use algorithms based on modular
arithmetic or elliptic curves, to name but two.

Again, access control services may take many forms, in particular one way
(a PIN, for example), or reciprocal (some challenge-response procedure), or
indeed multi-person (threshold - based systems - any m keys of n allow ac-
cess). And here, besides mathematics, the mechanisms may include physical
items, even biometrics. “What you know, what you have and what you are”.

Examples from antiquity of such security services are many. Secret mes-
sages may be written on the shaved head of a slave. His hair is let grow,
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and shaved again or reception (if his head is not cut off to stop him talking
, see Herodotus.) Caesar’s cypher (see below) is a simple old example of
encryption.

Documents have been authenticated by seals in medieval Europe. (Forg-
ing of seals, guarded by a lord privy seal, would be punishable by death -
and of course one or more signatures, per page.)

And passwords have applied at town gates (not to mention keys and
padlocks) since time began. The ordinary man is used to such things - you
may take the ass if you give the password ‘The master has need of him’.

The following notes concentrate on confidentiality (encryption) techniques
and on authenticity (MACs and digital signatures) although other topics are
occasionally raised, and we begin with early primitive cypher.

The Latin often inscribed on sundials, has the wise meaning “I do not
record the hour unless they are fine”.

1.2 Caesar’s Cypher

This is a substitution cypher in which each letter (we assume we are handling
letters, e.g. the 26 letters of the English alphabet) is replaced by another.
We regard the letters as numbered 0 to 25 with A=1, B=2, C=3, . . ., Y=25,
Z=0. The substitution rule for Caesar’s cypher is to add the one-letter key, k,
to the plain-text so ci = k+pi mod 26 where ci and pi are the ith cypher-text
and plain-text letters respectively.

Example The key k, is the letter C = 3 so we have

P= O R A S N O N C O N S T O N I
C= R U D V Q R Q F R Q V W R Q L

P= S I S E R E N A S
C= V L V H U H Q D V

(Decryption is subtracting the key from c)

Problems with this simple cypher are:

1. Open to brute force attack (try all the keys, A to Z)

2. A known plain-text - cypher-text pair reveals the key by subtraction

3. More subtly, the relative frequency of letters is transferred but not
changed.
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In English (not Latin) the most frequent letters are E(0.131), T (0.090),
O(0.082), A(0.078), N(0.073), I(0.068), R(0.066), S(0.065) etcetera. Adding
key = C simply makes H it the most frequency then W, R, D etcetera. As
attacker can count the frequency of occurrence of a letter in the cypher-text
and deduce the key from that - assuming Caesar is applied to English.

1.3 Poly-alphabetic Cyphers

These are also substitution cyphers, but the key is several letters long, ex-
ample: key = ki for i = 1 to m and then repeated. We may write y = fi(x)
where y is the cypher-text and x is the plain-text and fi() is the substitution
function using ki.

Example
Vigenere cypher

y = x+ ki mod 26
Beaufort cypher

y = ki − x mod 26
Variant Beaufort cypher

y = x− ki mod 26

With the key = “Latin” = 12, 1, 20, 9, 14 we have:
Plain-text x= O R A S N O N C O N S T O N I

Key 1 L A T I N L A T I N L A T I N
Vigenere y= A S U B B A O W X B E U I W W

Key 2 V B V B V B V B V B V B V B V
Variant Beaufort y= E Q Y Z . . . . . . . . . . .

Plain-text x= S I S E R E N A S
Key 1 L A T I N L A T I

Vigenere y= E J M N F Q O U B
Key 2 B V B V B V B V B

Variant Beaufort y= . . . . . . . . .

Here we have a “product cypher”. The plain-text is first encrypted with
Vigenere and key =′′ Latin“, then re-encrypted with Variant Beaufort and
key =′′ V B“. The net result is a key of length 5 ∗ 2 = 10 characters.

An attacker can still “try all the keys” (265 ∗ 262). He can also search
very long samples of cypher-text for relative character frequencies. More
profitably he can match two samples of cypher-text against each other and
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count the frequency of characters coinciding. When the two samples are “in
phase” the probability of a coincidence is p2

i where pi is the probability of
character i. When not in phase the probability is pipj. In English, for letter
E, p2

i = 0.017 and overall the average p2
i = 0.0673, whereas out of phase the

probability of coincidence is 1
26

= 0.0385.
Shifting the two samples with respect to each other to maximise the non-

uniformity of coincidences will reveal the “phasing” of the keys, and hence
the actual key value is easily found.

Shannon’s theory of secrecy systems (see Appendix M11-X) discusses the
importance of key length from the Information Theory view point:the ability
to decrypt a cypher-text by trying possible keys and looking for “meaningful”
resultant plain-text. The assumption is that not all text is possible (and
meaningful) and if only one meaningful plain-text is found then that must
be the right one. This assumption does not hold if the plain-text is apparently
random. Hence many systems reversibly randomise data before encryption -
example: by pre-whitening

1.4 Permutation Cyphers

These simply permute the letters of the plain-text, for example: THERE-
WASAYOUNGLADYOFCHICH(ESTER etc) is permuted to GOARCHNY-
SEIOAWTCDAHHLFYEH using a 5 ∗ 5 square array with the key “GREAT
POEMS”. The student may work it out for himself.

Note that if there are t letters in the alphabet and the key is of length m,
there are m! possible permutations and (t!)m possible substitutions. Substi-
tution is more complex and so more secure, but, if t = 2, binary, permutations
begin to be important.

1.5 Mechanical Encryptor/Decryptor

Mechanical means of encryption/decryption can save time when the proce-
dure or algorithm is complex (and to be secure it must be complex). They
can also ensure accuracy, avoiding human errors. Many have been invented
some examples are:

1.5.1 The Jefferson Wheels

A number of wheels m have mounted on a common horizontal axle. Each
wheel can turn independently. Each has the 26 letters of the alphabet, in
some permutation pi (for the ith wheel) unique to that wheel, written on the
“tread” of the “tyre”. To encrypt an m-letter word the wheels are turned
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until one can read that word across the wheels (in a line parallel with the
axle). One then reads off as cypher-text another word two, three or whatever
number of displacements round the wheels from the start word. The result
clearly depends on the permumations written on the wheels and the order in
which they are mounted on the axle.

To decrypt one must know this key - the permutations on , and the order
of the wheels. If one has those correctly mounted one sets up the cypher-
text as a horizontal reading and looks for ‘meaningful’ plain-text at one of 26
displacements from it. The relevance of Shannon’s Theory is obvious. What
are the chances of finding wrong meaningful plain-text? (The probability
of finding random meaningful plain-text of length m is 26 ∗ 2−2.4m which is
< 1% if m ≥ 5). Thus if meaningful text is found by valid user or attacker
it is almost certainly correct.

1.5.2 The Wheatstone Disc

Two discs, an inner and an outer, are mounted on a common axle like the
face of a clock. On the outer are 26 letters plus a space, on the inner are
26 letters in some permuted order. Two hands, geared to move together
like clock hands, rotate on the axle. The outer hand is set to point to the
next plain-text character. As characters are encoded the hands move around
clockwise, but the inner hand advances an extra portion each full rotation
so the substitution changes according to the plain-text encoded. What does
one do with a repeated plain-text character? Move round 360 degrees and
get the same result as if one had moved one position less than 360 degrees?
It is clear there is a possibility of decryption ambiguity. Solution? Ban
repeated characters. A more serious problem is the “feed forwards” nature of
encryption: the plain-text changes the “rules”. This means that decryption
is “feed back”. As a result a decryption error (for example caused by a
single character of cypher-text in error) can cause a permanent plain-text
error because the “rules” (the relative position of the two hands) have been
changed.

1.5.3 The Enigma Machine

The famous German Enigma encryptor of World War II went through var-
ious developments (the basic design was captured by Polish Resistance and
delivered to the British who cracked the cyphers by it using one of the ear-
liest computers, Colossus, at Bletchley Park). Very roughly, the machine
consisted of three discs mounted on an axle, with respectively 25, 26 and 26
positions on each. Characters were encoded one by one by pressing a contact
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at the first disc, which lit a lamp at the third. The contact corresponded to
the next plain-text character, the lamp to the ensuing cypher-text character.
On each operation the first disc advanced a position and before recommenc-
ing after 25 it ratcheted on the second disc one position; and similarly the
second moved on the third after a revolution. Thus the substitution sequence
only repeated after 25 ∗ 26 ∗ 26 = 16900 characters.

Each disc bore a permutation of the alphabet round the rim in the form
of cross wirings, so it one pressed A the result on the first disc might be
G. G in turn had electrical contact with a letter point on the second disc
cross wired also to another character with electrical contact to the third disc,
which would be cross wired to the final character and light bulb.

Decryption is obviously to press a button corresponding to the cypher-
text character at the third disc and observe the light at the first (assuming
the set-up is symmetrical). Clearly the ratcheting mechanism for advancing
the discs must be suitably arranged to work from disc three to one, rather
one to three, when decrypting.

The “key” for Enigma is the cross-wiring permutations on the discs (invo-
lutions) and the choice and order of mounting of discs for a specific occasion
- there was a library of discs.

It would require a very long sequence of cypher-text to find out the plain-
text by counting character frequencies. Even brute force attacks are laborious
(how do we recognise success? see Shannon Appendix M11-X). But one
approach is to plant known plain-text or partial plain-text and search for
it when trying keys. This is not too difficult: Organise some extraordinary
event which the enemy is bound to comment on in his plain-text, and look
for key words.

1.5.4 Some Diagrams

In general one may represent encryption/ decryption operations by figure
1.F1.
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Here m=message (plain-text), k=encryption key, E()=encryption operation
which produces c, c=cypher-text,D() = E−1=decryption, and k′ = decryption key.
In symmetric systems (see Chapter 2) k′ = k, and sender and receiver share
the same key. In asymmetric, public key systems k′ 6= k and k′ cannot be
deduced from k.

A central problem is: Who generates the keys? How are they distributed
to participants? More generally: How are keys managed, including with-
drawals, changes, safeguarding, etcetera?

Figure 1.F2 represents a general scheme for authentication.

8



Message m is put through algorithm M using key k to produce a Message
Authentication Check or MAC. The received message (hopefully uncorrupted
m) is put through algorithm M ′ using key k′ to produce an output we call
MAC′. MAC′ is tested for compatibility with MAC, and if successful the
conclusion is:’The message m was uncorrupted, the sender was using the
correct key k corresponding to M, M ′ and k′ and so must be who he claims
to be. In many cases M() = M ′() and k = k′ and the test is MAC ′ = MAC?
In other cases, digital signatures, tests and keys are different (see Chapter
4) and the compatibility test (MAC ′ = MAC) is more complex. As with
encryption, key management is critical.

Access control systems can be represented by many diagrams, for example
one-way password-submission. Figure 1.F3 shows a common form of three-
way access control.
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Client A wishes to access Server B. A sends his claimed identity and a
“challenge” (example: a random number rA). B sends back his identity and
response Y to A′s challenge generated using his key kB. B sends a challenge
rB to A. A checks Y (which will involve some key compatible with kB) to see
if A′s response is valid. If it is, A knows that he is communicating with B. A
then produces X his response to B′s challenge rB using kA and sends X back
to B. B checks X (which will involve some key compatible with kA) to see
if B′s response is valid. If all this succeeds then A and B conclude that they
are talking to the real A and B and grant further access or communication
rights.

The purpose of challenge/response is so that access control does not rely
on a fixed item, visible to an eavesdropper on the channel. Responses X, Y
cannot be foreseen, or generated except by those holding kA, kB.

The figure 1.F3 is often elaborated to include, the establishment for ex-
ample of a secret key to encrypt all subsequent conversation, or to deliver
authorisation parameters to A, and so forth.
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Note the A and B are really mechanised procedures; In a smart-card?
In a computer? Note also that A′s claim might be supported by further
information such as a biometric reading, or even a simple password to ensure
that B only processes plausible clients, rejecting all those who cannot produce
a basic password before spending time on more complex checks.

Appendix X

Unicity Key Length and Unicity Distance

If 1111 there are P plain-texts, C cypher-text and K keys, then on average
each cypher-text arises from KP

C
plain-texts.

In a brute force (try-all-the-keys) attack if KP
C
>> 1 then the attacker will

find very many possible plain-texts and be unable to choose between them.
Thus the cypher can be made secure by choosing: Large K, C ≈ P . (P ≤ C
for reversibility, but if P is non-redundant then all plain-texts (nearly) are
valid and P ≈ C).

Conversely, given K, and given P < C an attacker can look for very
large cypher-texts (very long) and get KP

C
< 1. Now if he finds a meaningful

plain-text when trying to decrypt he is almost sure that it is the plain-text.
The number of meaningful plain-texts is determined by the entropy H(P ).

We define H(P ) by

H(P ) =
∑
i=1,t pi log

1
pi

where pi is the probability of occurrence of the ith character in an alphabet
of t characters. (This is a crude definition, taking no account of double and
triple letter combinations, etcetera; but it will serve).

We take two as the base of the logarithms. We could take something
else (example: t). With two as base the entropy tells us how many binary
information units (bits) are needed to encode one character. If all the pi are
equal, then H(P ) = log2t, since pi = 1

t
. In most languages H(P ) << log2t.

Suppose plain-text, cypher-text and keys are all formed from this alphabet
of t characters. Suppose plain-text and cypher-text are of the same length
n, and the key is of length k. Then

C = tn = 2αn with α = log2t
K = 2αk

P = 2H(P )n

Note that P is now the number of meaningful plain-texts, and is much less
than 2αn.
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Given P and C the unicity key length, k′, is that key length which gives
K ′ keys with K ′ = C

P
that is 2αk

′
= 2αn

2H(P )n .
We want (for unbreakable cypher - many valid plain-texts when an at-

tacker tries all the keys) k >> k′ that is:

k >> Unicity key length = k′ = n(1− H(P )
α

)

Note: H(P )
α

is the entropy of p with t as the base of logs.
If H(P ) ≈ α, as occurs with non-redundant text, then, to make our

cypher secure, we can work with smaller k′.
Conversely, given K, the unicity distance is that length of cypher-text

which enables an attacker (if he finds many examples) to break the cypher
because C >> KP that is n >> n′ = Unicity distance where n′ is given by
C = KP i.e. 2αn

′
= 2αk ∗ 2H(P )n′

so n′ = k

1−H(P )
α

. The quantity (1− H(P )
α

) is

called the Redundancy, R < 1.
Therefore Unicity Key Length = k′ = nR

Unicity Distance n′ = k
R

For security we want k >> k′. To break, we want n >> n′. If R = 0 the
cypher is theoretically unbreakable.

In English α = log226 ∼ 4.6, H(P ) ∼ 2.3 say so R = 1
2
, so k′ = n

2
and

n′ = 2k.

1.1.X Perfect Secrecy

Shannon also puts forward the notion of perfect secrecy where the prob-
ability of plain-text p given knowledge of the cypher-text c, Prob(p | c) is
equal to the probability of Prob(p). By Bayes’ Theorem Prob(p|c).P rob(c) =
Prob(c|p).P rob(p).

So perfect secrecy implies Prob(c|p) = Prob(c) evaluated over all keys k.
So the distribution of c is independent of p. Now
Prob(c|p) = (

∑
Probabilities of all keys which perform the mapping p→

c)
and independence means that p is mapped into all cypher-texts. Therefore
K where K = Number of keys and C = Numberofcypher − texts.

But C ≥ P the number of plain-texts, for reversibility.
Therefore K ≥ P is necessary for perfect secrecy. The number of keys

must be greater or equal to the number of plain-texts.
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