
Chapter 11
Differential Crypt Analysis

February 15, 2010

11

Differential crypt-analysis (DCA) is a general form of cryptanalysis applica-
ble primarily to block ciphers, but can also be applicable to stream ciphers
and cryptographic hash functions. With respect to a block cipher, it refers
to a set of techniques for tracing differences through the network of transfor-
mations, discovering where the cipher exhibits non-uniform behaviour, and
exploiting such properties to recover the secret key.

11.1

DCA is a technique for attacking symmetric encryption algorithms which are
composed of many identical stages or rounds, with each round controlled by
a different sub-key. Usually these round sub-keys are derived from a single
key, which can be referred to as the secret encryption key.

To be successful the attack needs to be able to exploit certain non-uniform
characteristics in the target algorithm (as is the case with other similar at-
tacks such as Linear Crypt Analysis). In the specific DCA case these non-
uniformities are non-linear differential characteristics. If such characteristics
are not present or present only at a very low exploitable probability, DCA
cannot be used against the algorithm.

DCA was first described by Eli Biham and Ali Shamir in the Journal
of Cryptology Volume 4, Number 1, 1991. They described DCA as applied
to Data Encryption Standard (DES), the Data Encryption Algorithm. The
discussion that follows here is directly taken from their original paper.

1



11.2.1

Assume we are analysing DES with n iterations, normally n would be equal
to sixteen. The aim of the analysis is to discover the last key, kn by inputting
suitable plain-text P (64 bits) and observing the output cypher-text (Rn, Ln).
If kn is found we can obviously find (Rn−1, Ln−1) and use the same procedure
to try to discover kn−1; etcetera. When the key sequence is found then any
cypher-text can decrypted. Differential crypt analysis is a chosen plain-text
attack.

It should be noted that it is possible to perform the attack in reverse (i.e.
on the decryption process) and try to discover k1, k2 etcetera.

11.2.2

The differential technique involves inputting pairs of plaintext P , P ∗ such
that P + P ∗ = P ′ = constant. (+ means bit by bit XOR, meaning exclu-

2



sive or). At the output we have Ln, Rn and L∗n and the differential values
Ln + L∗n = L′n, Rn + R∗n = R′n. Thus we input many pairs with constant P ′ ;
and we examine the outputs L′n, R′n (which will not be constant because of
the non-linear elements in DES) for the clues to kn.

11.2.3

If we examine DES we see that all the stages are linear except for the S-boxes
within f(). Note that the various permutations and the expansions move bits
around but do not change their values and are therefore linear. Furthermore
the keys Ki enter linearly into f().

An S-box is a component that performs substitution. It provides Shannon’s
property of confusion.

3



In general, some number of input bits m are entered into an S-box, then
they are transformed by the S-box into some number of output bits n. An
mn S-box can be set up as a lookup table. Fixed tables are normally used,
as in the Data Encryption Standard (DES), but this is not always the case.

We denote the inputs to the SX-Box as SXi, SX∗i with differential input
SX ′i = SXi + SX∗i . Note that since KX is constant (the X th 6-bit portion
of the 48-bit sub-key) SX ′i = SX ′E. We can produce 64 different pairs (SXi,
SX∗i ) with constant SX ′i by varying SXE and keeping SX∗E = SXE + SX ′i .
(The effect is exactly the same as keeping (SXE, SX∗E) constant and varying
KX; which of course we cannot do.)

We denote the outputs of the S-box by SX0 = SX(SXi). the S-boxes are
non-linear; therefore SX(SXE+SX∗i ) 6= SX0+SX∗0 = SX(SXi)+SX(SX∗i ).

Constant SX ′i, constructed in 64 different ways, do not produce a constant
SX ′0, but rather a very skew distribution of SX ′0 over the sixteen possible Hex
values 0 to F. (This is to be contrasted with inputting 64 different (single)
SXi which produces exactly four occurrences of each of the possible sixteen
values for SX).

Examples of this skew distribution for the first S-Box, S1, with S1′E =
S1′i = 34(HEX) and S1′E = S1′i = OC.

S1′0 0 1 2 3 4 5 6 7 8 9 A B C D E F
S1′i = 34 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6

S1′i = OC 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2

The figures in the table give the number of occurrences of the value S1′0
for the input S1′i when S1i is put through all 64 possible values. See also
table 11.1.

11.2.4

This skew distribution can be exploited to ‘guess’ S1′0 for example. Thus the
64 possible inputs with S1′i = OC will give S1′0 = E with probability 14

64
.

Suppose we could arrange R′n−1 to give rise to S1′i = OC (actually we can
read R′n−1 = L′n) then we could ‘guess’ S1′0 = E and knowing R′n calculate
the corresponding four bits of L′n−1; and so for S2, S3, . . . S8.

We give an example later of choosing initial P ′ which will ‘push forward’
our probabilistic knowledge of the input to the S-boxes SX ′i and their out-
puts SX ′0 over several DES iterations.

4



11.2.5

Suppose we ‘know’ (probabilistically perhaps) SX ′i and SX ′0, we can also
extract information about the key KX from this knowledge. For example
S1′i = S1′E = 34 gives S1′0 = D eight times. The values for S1i and S1∗i
which do this are (in hex)

S1i S1∗i
6 (1) 32 (C)

10 (3) 24 (E)
16 (C) 22 (1)
1C (0) 28 (D)

When S1E = 1, S1∗E = 35 we need Key K1: 7, 11, 17, 1D, 33, 25, 23,
29 to get these S1iS1∗i .

There are four (not eight) rows in the tables because we have two cases
per row. Example S1i = 6, S1∗i = 32 and S1i = 32, S1∗i = 6. The values in
brackets are the S1-Box output S10, S1∗0 for the inputs, and it will be seem
that S10 + S1∗0 = D = S1′0.

Suppose we know S1E = 1 and S1∗E = 35, by reading the input to f();
example Ln, L∗n; and we ‘know’ S1′0 = D. Then the key K1 must be one of
the eight values listed to the right, to XOR with the S1E = 1 and S1∗E = 35
inputs and give the output S1′0 = D. This simple test allows us to select
eight out of the possible 64 values for K1 as possibly correct.

11.2.6

Now we do another test, still with S1′E = 34, but with S1E = 21, S1∗E = 15
for example; and suppose we find S1′0 = 3. The table becomes

S1i S1∗i
1 (0) 35 (3)
2 (4) 36 (7)

15 (C) 21 (5)

When S1E = 21, S1∗E = 15 we need Key K1: 20, 23, 34, 14, 17, 00 to

5



get these S1iS1∗i .
The key must be one of the six values below the tables if the inputs are

S1E = 21, S1∗E = 15 and the output is S1′0 = 3. Comparing this with the
first test we see that the most likely values for K1 are 23 and 17.

Continuing testing in this way we should establish a frequency distri-
bution for the values of K1. We pick the most frequently occurring value.
Similarly for K2,. . .,K8.

We may now summarise the differential crypt analysis procedure as fol-
lows:

1. Make inputs P, P ∗ giving P ′ = P + P ∗ to produce L′n−1 with a marked
probability,

2. Assume this L′n−1 occurs

3. Calculate the S-box outputs SX ′0 (taking account of the permutation
at the end of f() ) from L′n−1 + R′n where R′n is observed.

4. Calculate the S-box inputs SXE, SX∗E and SX ′E = SX ′i (taking account
of the expansion E at the start of f() ) from Ln, L∗n and L′n observed.

5. Pick off the possible key values Kn (and increment the counts of their
occurrence) which could have produced the SXi, SX∗i from the SXE,
SX∗E to give the supposed SX ′0.

6. Repeat points one to five above many times with given P ′ to build up a
frequency distribution of Kn (or at least parts of it such as K1n. Pick
the most frequent value for Kn.

7. If all the K1, K2, . . . ,K8 of Kn are not found in this way, repeat
points one to six above with another chosen P ′.

11.2.7

It remains to show how we can ‘push forward’ our ‘knowledge’ of (for exam-
ple) L′n−1. See figure 11.1. Consider the following example (which ignores the
initial permutation in DES which is easily accounted for). Initial differrential
input = L′0, R′0 = 60000000 (Hex). the expansion function transforms R′0 to
S1′E = OC while S2′E = S3′E = . . . = S8′E = 0.

This gives S1′0 = E with probability 14
64

; and S2′0 = S3′0 = ... = S8′0 = 0
since identical inputs with zero difference give identical outputs with zero

6



difference. The permutation function takes the three non zero bits of E to
give a differential output to f() of 00808200 (Hex).

Now if we choose L′0 = 00808200 also we go into the next stage with

L′1 = 60000000 = R′0 and
R′1 = 00000000 = L′0 + Output of f()

In the second stage a zero differential input to f() gives a zero differential
output, so we go into the third stage with

L′2 = 00000000 = R′1 and
R′2 = 60000000 = L′1 + Output of f()

This input to the third stage still has probability 14
64

.
Since the third stage input R′2 is that of the first stage we know it pro-

duces an output from f() of 00808200 with probability 14
64

. This gives the
inputs to the fourth stage

L′3 = 60000000 = R′2 and
R′3 = 00808200 = L′2 + Output of f().

and this fourth stage input has probability (14
64

)2.
Considering that in principle the probability of a particular input to any

stage is 2−64, we have produced a very marked probable input to the fourth
stage giving us a very high confidence when we apply it to find k4.

This prodecure can be carried forward for many more rounds. Each time
our confidence about the value L′n−1 decreases, and more tests are necessary.
Intuitively we can say that if the probability of such a desired differential
input to the final round is p (� 2−64 for a 64-bit algorithm) then we require at
least n = 1

p
tests (with varying differential initial inputs designed to produce

the desired differential input to the final round) to be successful. That is, to
produce a sufficiently marked non-uniformity to be able, for example, to pick
off preferred (portions of) subkey values. In the case of DES it can be shown
that only when the number of rounds n is of the order of fourteen or so, does
the computation involved become so heavy that it would be quicker to do a
brute force ‘try all the keys’ attack. DES is ‘secure’ with sixteen iterations,
but only just.

7



1 11.3 Conclusion

Des (and other algorithms such as FEAL)is susceptible to differential crypt-
analysis because:

• It has strongly non-uniform differential characteristics in the S-boxes

• It is linear apart from the S-boxes

• The keys are entered linearly (XOR)

‘Good’ algorithms should be non-linear. Rijndael is an example of an al-
gorithm which is designed to use non-linearity to frustrate differential crypt
analysis. ‘Good’ algorithms must also have uniform of near uniform differ-
ential characteristics.

Example of Projecting L′, R′ forward in DES

Figure 11.1

8



Table 11.1

Some Differential (and linear) Characteristics of DES
S-Box S1 (All numbers in Hex)

S1i = 6− bit Input, S1∗i = 6− bit input = S1i + 34 (S1′i = 34)
S10 = 4− bit Output, S1∗0 = 4− bit output, S1′0 = S10 + S1∗0

Figure in brackets in column S1i is bit 10HEX of input. Figure in brackets
in column S10 is XOR of bits FHEX of Output. (example: 1011 = B → 1
and 1010 = A→ 0)

It is only necessary to show half the table S1 in this form since

In Differential Cryptology S1i and S1∗i interchange.

9



In Linear Cryptology RHS of DES Table 4 is “complement” of LHS.

S1i S1∗i S0 S1∗0 S1′0
00 (0) 34 E (1) 9 7
01 (0) 35 0 (0) 3 3
02 (0) 36 4 (1) 7 3
03 (0) 37 F (0) E 1
04 (0) 30 D (1) F 2
05 (0) 31 7 (1) 5 2
06 (0) 32 1 (1) C D
07 (0) 33 4 (1) B F
08 (0) 3C 2 (1) 5 7
09 (0) 3D E (1) 6 8
0A (0) 3E F (0) 0 F
0B (0) 3F 2 (1) D F
0C (0) 38 B (1) 3 8
0D (0) 39 D (1) A 7
0E (0) 3A 8 (1) A 2
0F (0) 3B 1 (1) 0 1
20 (0) 14 4 (1) 6 2
21 (0) 15 F (0) C 3
22 (0) 16 1 (1) C D
23 (0) 17 C (0) B 7
24 (0) 10 E (1) 3 D
25 (0) 11 8 (1) A 2
26 (0) 12 8 (1) A 2
27 (0) 13 2 (1) 6 4
28 (0) 1C D (1) 0 D
29 (0) 1D 4 (1) 3 7
2A (0) 1E 6 (0) 7 1
2B (0) 1F 9 (0) 8 1
2C (0) 18 2 (1) 5 7
2D (0) 19 1 (1) 9 8
2E (0) 1A B (1) 9 2
2F (0) 1B 7 (1) 5 2

10


