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Answer Section A and B in separate answer books. Section A - Answer 3 out of the 6
questions. Section B - Answer 2 out of the 4 questions.

SECTION A

PLEASE INSERT Michael Purser’s questions here.

SECTION B

7. Show that the multiplicative group F× = F − {0} of a finite field F is cyclic.
Determine all the primitive elements (multiplicative generators) in GF(17).

8. Listing the elements of GF(8) in any way you wish, draw up the addition and multipli-
cation tables for this field.

9. Define the characteristic of a field, and show that the characteristic of a finite field F is
always a prime number.

Show that a finite field F of characteristic p contains pn elements for some n.
Show further that the map

Φ : x 7→ xp

is an automorphism of F ; and show that every automorphism of F is of the form x 7→
Φi(x) for some i.

Prove that each subfield K ⊂ F is of the form

K = {x ∈ F : Φm(x) = x}

for some m.
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10. Show that if f(x) is an irreducible polynomial of degree d over GF(pd), then

f(x) | xpd − x.

Hence or otherwise show that if there are N(d, p) prime polynomials of degree d over
GF(pn) then ∑

d|n

dN(d, p) = pn.

Determine the number of prime polynomials of degree 6 over GF(2), and find one of
them.
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