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INTRODUCTION.

The present Supplement contains the integration of some partial differential equations,
to which I have been conducted by the view of mathematical optics, proposed in my former
memoirs. According to that view, the geometrical properties of an optical system of rays may
be deduced by analytic methods, from the form of one characteristic function; of which the
partial differential coefficients of the first order, taken with respect to the three rectangular
coordinates of any proposed point of the system, are, in the case of ordinary light, equal
to the index of refraction of the medium, multiplied by the cosines of the angles which the
ray passing through the point makes with the axes of coordinates: and as these cosines
are connected by the known relation that the sum of their squares is unity, there results
a corresponding connexion between the partial differential coefficients to which they are
proportional. This connexion is expressed by an equation which it is interesting to study
and to integrate, because it contains a general property of ordinary systems of rays, and
because its integral is a general form for the characteristic function of such a system. The
integral which I have given in the present memoir, is deduced from equations assigned in my
former Supplement; an elimination which had been before supposed, being now effected, by
the theorems which Laplace has established in the second Book of the Mécanique Céleste, for
the development of functions into series. The development thus obtained, proceeds according
to the ascending powers of the perpendicular distances of a variable point from the tangent
planes of the two rectangular developable pencils which pass through an assumed ray of the
system, and according to the descending powers of the distances of the projection of the
variable point upon the assumed ray, from the points in which that ray touches the two
caustic surfaces. In the case of rays contained in one plane, or symmetric about one axis,
the partial differential equation takes simpler forms, of which I have assigned the integrals,
and have given an example of their optical use, by briefly shewing their connexion with the
longitudinal aberrations of curvature. I hope, in a future memoir, to point out other methods
of integrating the general equation for the characteristic function of ordinary systems of rays,
and other applications of the resulting expressions, to the solution of optical problems.

WILLIAM R. HAMILTON.

Observatory, October 1830.
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SECOND SUPPLEMENT.

Statement and Integration of the Partial Differential Equation, which determines
the Characteristic Function of Ordinary Systems of Rays, produced by any Number

of successive Reflexions or Refractions.

1. Suppose that rays of a given colour diverge from a given luminous origin, and undergo
any number of successive changes of direction, according to the known laws of ordinary
reflexion and refraction, at surfaces having any given shapes and positions, and enclosing
media of any given refractive indices. Let α, β, γ, be the cosines of the angles which the
direction of a final ray makes with three rectangular axes, and let x, y, z, be the three
rectangular coordinates, referred to the same axes, of a point upon this final ray; then α, β, γ,
will in general be functions of x, y, z, such that if µ denote the refractive index of the final
medium, for rays of the given colour, the expression

µ(αdx+ β dy + γ dz)

is equal to the differential of a certain function V , of which I have shewn the existence and
the meaning in former memoirs, and which I have called the characteristic function of the
final system. The design of the present Supplement, is to point out some new properties and
uses of this function, resulting from the partial differential equation(

dV

dx

)2

+
(
dV

dy

)2

+
(
dV

dz

)2

= µ2, (A)

which we obtain by eliminating the three cosines α, β, γ, between the three equations

dV

dx
= µα,

dV

dy
= µβ,

dV

dz
= µγ, (B)

by the help of the known relation

α2 + β2 + γ2 = 1.

2. The equation (A) is a particular case of a more general differential equation, for all
optical systems of rays, ordinary or extraordinary, obtained by eliminating the same three
cosines, α, β, γ, by the same known relation between the three following equations, assigned
in my former memoirs,

dV

dx
=
δv

δα
,

dV

dy
=
δv

δβ
,

dV

dz
=
δv

δγ
;

in which V is the characteristic function of the system, and v is a homogeneous function
of α, β, γ, of the first dimension, representing the velocity of the light, estimated on the
hypothesis of emission, and differentiated as if α, β, γ, were three independent variables.
And the integral of (A), is a particular case of a more general integral, extending to all
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optical systems of straight rays, and consisting of the following combination of equations,
assigned in my former Supplement:

W + V = x
δv

δα
+ y

δv

δβ
+ z

δv

δγ
,

δW

δα
= x

δ2v

δα2
+ y

δ2v

δα δβ
+ z

δ2v

δα δγ
,

δW

δβ
= x

δ2v

δα δβ
+ y

δ2v

δβ2
+ z

δ2v

δβ δγ
,

δW

δγ
= x

δ2v

δα δγ
+ y

δ2v

δβ δγ
+ z

δ2v

δγ2
;

between which the three quantities α, β, γ, are to be eliminated; W being an arbitrary but
homogeneous function of these three quantities, of the dimension zero; and the partial differ-
ential coefficients in which the sign δ occurs, being formed by differentiating the homogeneous
functions W , v, as if α, β, γ, were three independent variables. In applying these general
results to ordinary systems of rays, we are to put

v = µ(α2 + β2 + γ2)
1
2 ;

δv

δα
=
µ2α

v
,

δv

δβ
=
µ2β

v
,

δv

δγ
=
µ2γ

v
;

δ2v

δα2
=
µ2

v3
(v2 − µ2α2),

δ2v

δβ2
=
µ2

v3
(v2 − µ2β2),

δ2v

δγ2
=
µ2

v3
(v2 − µ2γ2);

δ2v

δα δβ
= −µ

4αβ

v3
,

δ2v

δβ δγ
= −µ

4βγ

v3
,

δ2v

δγ δα
= −µ

4γα

v3
:

or, (making after the differentiations α2 + β2 + γ2 = 1,)

v = µ,
δv

δα
= µα,

δv

δβ
= µβ,

δv

δγ
= µγ,

δ2v

δα2
= µ(1− α2),

δ2v

δβ2
= µ(1− β2),

δ2v

δγ2
= µ(1− γ2),

δ2v

δα δβ
= −µαβ, δ2v

δβ δγ
= −µβγ, δ2v

δγ δα
= −µγα;

and therefore,
W + V = µ(αx+ βy + γz),

δW

δα
= µx− µα(αx+ βy + γz),

δW

δβ
= µy − µβ(αx+ βy + γz),

δW

δγ
= µz − µγ(αx+ βy + γz).


(C)

This system of equations (C) is one form for the integral of the partial differential equa-
tion (A); the quantities α, β, γ, being supposed to be eliminated, and W being an arbitrary
function of these quantities, of the kind already mentioned.
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Transformation and Development of the Integral.

3. The system of equations (C) may be transformed into the following:

µx =
dU

dα
, µy =

dU

dβ
, V + U = α

dU

dα
+ β

dU

dβ
; (D)

in which U is a function of the three independent variables α, β, z, obtained from the
function W by putting

U = W − µγz, (E)

and by considering γ as a function of α, β. Let us now proceed to eliminate α, β, between
the three equations (D), by the theorems which Laplace has given in the second Book of the
Mécanique Céleste, for the development of functions into series.

This elimination may be simplified by a proper choice of the coordinates. The rays of
an ordinary system being perpendicular to the surfaces which have for equation

V = const.,

compose in general two series of rectangular developable pencils, and are tangents to two
caustic surfaces. Let us therefore denote by x′, y′, z′, three rectangular coordinates so chosen
that the axis of z′ coincides with some given ray, and that the planes of x′z′ and y′z′ are
the tangent planes of the two developable pencils to which that ray belongs; and let α β γ
denote, for any proposed ray of the system, the cosines of the angles which the ray makes
with the axes of x′ y′ z′. The equations (A) (B) (C) (D) (E) will apply to the coordinates
thus chosen, by simply changing x y z to x′ y′ z′; and by changing γ to its value

γ =
√

1− α2 − β2 = 1− α2 + β2

2
− γ(4) − γ(6) −&c.,

in which

γ(2i+4) =
1 . 3 . 5 . . . (2i+ 1)
2 . 4 . 6 . . . (2i+ 2)

(α2 + β2)i+2

2i+ 4
,

the function W will in general admit of being thus developed,

W = µW (0) +
µ

2
(Aα2 +Bβ2) + µW (3) + µW (4) + &c., (F)

W (0), A, B, being constants, and W (3), W (4), W (i), being rational homogeneous functions of
the two small variables α, β, of the dimensions 3, 4, i, respectively. The constants A, B, are
here the distances upon the ray, from the point in which it touches the two caustic surfaces,
to the origin of the coordinates x′ y′ z′; and the terms proportional to α, β, αβ, disappear
from the development of W , by the choice which we have made of these coordinates, and by
the principles of the former Supplement. In this manner the function U becomes

U = µW (0) − µz′ +
µ

2
{(z′ +A)α2 + (z′ +B)β2}+ µU (3) + µU (4) + &c., (G)
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in which
U (2i+3) = W (2i+3); U (2i+4) = W (2i+4) + z′γ

(2i+4);

and the two first of the equations (D) become

α = α′ + (z′ +A)−1 dφ

dα
; β = β′ + (z′ +B)−1 dφ

dβ
, (H)

if we put for abridgment

α′ =
x′

z′ +A
, β′ =

y′
z′ +B

, φ = −(U (3) + U (4) + &c.). (I)

On account of the smallness of
dφ

dα
,
dφ

dβ
, the quantities α′, β′, are approximate values

of α, β; and to develope α, β, themselves, or any function of them, F (α, β), in a series of
ascending powers of these approximate values, we have, by the theorems of Laplace before
referred to,

F (α, β) = F′ + Σ(n)
∞
0


dn

dαn′

(
dF′
dα′

(
dφ′
dα′

)n+1
)

[n+ 1]n+1(z′ +A)n+1
+

dn

dβn′

(
dF′
dβ′

(
dφ′
dβ′

)n+1
)

[n+ 1]n+1(z′ +B)n+1



+ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′



d2F′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1

+
dF′
dα′

(
dφ′
dβ′

)n′+1
d

dβ′

(
dφ′
dα′

)n+1

+
dF′
dβ′

(
dφ′
dα′

)n+1
d

dα′

(
dφ′
dβ′

)n′+1


[n+ 1]n+1[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1

,

(K)

the functions F′, φ′, being formed from F , φ, by changing α, β, to α′, β′, and [n + 1]n+1,
[n′ + 1]n

′+1, being known factorial symbols; we have therefore,
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α = α′ + Σ(n)
∞
0

dn

dαn′
.

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n+1

+ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n(
dφ′
dβ′

)n′+1
)

[n]n[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1
;

β = β′ + Σ(n)
∞
0

dn

dβn′
.

(
dφ′
dβ′

)n+1

[n+ 1]n+1(z′ +B)n+1

+ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′)
[n+ 1]n+1[n′]n′(z′ +A)n+1(z′ +B)n′+1

.



(L)

Now, if we differentiate V as a function of the three independent variables α′, β′, z′, we have
by (B) and (I),

dV

dα′
= µα(z′ +A),

dV

dβ′
= µβ(z′ +B),

dV

dz′
= µ(αα′ + ββ′ + γ); (M)

we have also V = µz′ − µW (0), when α′, β′, vanish; and therefore,

V = µz′ − µW (0) + µ

∫
{(z′ +A)αdα′ + (z′ +B)β dβ′}, (N)

z′ being considered as constant in the integration, and the integral being so determined as
to vanish with α′, β′. Substituting in this expression (N), the developments of α, β, and

performing the integration, we find the following development for
V

µ
,

V

µ
= z′ −W (0) + 1

2{(z′ +A)α2
′ + (z′ +B)β2

′ }

+ φ′ + Σ(n)
∞
0


dn

dαn′
.

(
dφ′
dα′

)n+2

[n+ 2]n+2(z′ +A)n+1
+

dn

dβn′
.

(
dφ′
dβ′

)n+2

[n+ 2]n+2(z′ +B)n+1



+ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1
)

[n+ 1]n+1[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1
; (O)

which is another form for the integral of the partial differential equation (A), obtained from
the elimination (D). And if we wish to introduce any other rectangular coordinates x, y, z,
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into the expression of this integral (O), instead of x′, y′, z′, we may do so by the known
methods, by putting

x′ = (x− x′′) cos. xx′ + (y − y′′) cos. yx′ + (z − z′′) cos. zx′,
y′ = (x− x′′) cos. xy′ + (y − y′′) cos. yy′ + (z − z′′) cos. zy′,
z′ = (x− x′′) cos. xz′ + (y − y′′) cos. yz′ + (z − z′′) cos. zz′,

 (P)

x′′, y′′, z′′, being the values of x, y, z, that belong to the point upon the ray which had been
taken for origin.

Verifications of the foregoing Developments.

4. We may verify the form (O) which we have thus found for the integral of (A), by the
folowing condition, resulting from (M),

d

dz′
.
V

µ
− α′
z′ +A

d

dα′
.
V

µ
− β′
z′ +B

d

dβ′
.
V

µ
=
√

1− α2 − β2, (Q)

of which each member is an expression for the cosine γ of the small angle which a near ray
makes with the ray that we have taken for the axis of z′. The condition (Q) may be put
under the form

d

dz′
.
V

µ
− (αα′ + ββ′) =

√
1− α2 − β2 (R)

in which, by (O),

d

dz′
.
V

µ
= 1 +

α2
′ + β2

′
2

+
dφ′
dz′

+ Σ(n)
∞
0


dn

dαn′

((
dφ′
dα′

)n+1
d2φ′
dα′ dz′

)
[n+ 1]n+1(z′ +A)n+1

+

dn

dβn′

((
dφ′
dβ′

)n+1
d2φ′
dβ′ dz′

)
[n+ 1]n+1(z′ +B)n+1


− Σ(n)

∞
0


dn

dαn′
.

(
dφ′
dα′

)n+2

[n]n(n+ 2)(z′ +A)n+2
+

dn

dβn′
.

(
dφ′
dβ′

)n+2

[n]n(n+ 2)(z′ +B)n+2



+ Σ(n,n′)
∞,
0,
∞
0

dn+n′+1

dαn′ dβ
n′
′ dz′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1
)

[n+ 1]n+1[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1

− Σ(n,n′)
∞,
0,
∞
0

(
z′ +A

n+ 1
+
z′ +B

n′ + 1

) dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1
)

[n]n[n′]n′(z′ +A)n+2(z′ +B)n′+2
;

(S)
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and, by (L),

αα′ + ββ′ = α2
′ + β2

′ + Σ(n)
∞
0


α′ .

dn

dαn′

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n+1
+

β′ .
dn

dβn′

(
dφ′
dβ′

)n+1

[n+ 1]n+1(z′ +B)n+1



+ α′ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n(
dφ′
dβ′

)n′+1
)

[n]n[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1

+ β′ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′)
[n+ 1]n+1[n′]n′(z′ +A)n+1(z′ +B)n′+1

; (T)

while the development of √
1− α2 − β2

may be deduced from the general formula (K) by changing

F (α, β) to γ =
√

1− α2 − β2,

F′ to γ′ =
√

1− α2
′ − β2

′ .

To compare these several developments, and to examine whether they satisfy the condi-
tion (R), we are to observe, that from the nature of the function φ, we have by the foregoing
number,

dφ′
dz′

= −(γ(4)
′ + γ

(6)
′ + &c.) = γ1 − 1 +

α2
′ + β2

′
2

;

d2φ′
dα′ dz′

= α′ +
dγ′
dα′

;
d2φ′
dβ′ dz′

= β′ +
dγ′
dβ′

;
d3φ′

dα′ dβ′ dz′
=

d2γ′
dα′ dβ′

;

 (U)

and therefore

d

dz′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1
)

=
d2γ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1

+
(
α′ +

dγ′
dα′

)(
dφ′
dβ′

)n′+1
d

dβ′
.

(
dφ′
dα′

)n+1

+
(
β′ +

dγ′
dβ′

)(
dφ′
dα′

)n+1
d

dα′
.

(
dφ′
dβ′

)n′+1

;
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by which means the difference of the developments (S) and (T) becomes

d

dz′
.
V

µ
− (αα′ + ββ′) = γ′ + Σ(n)

∞
0


dn

dαn′

((
dφ′
dα′

)n+1
dγ′
dα′

)
[n+ 1]n+1(z′ +A)n+1

+

dn

dβn′

((
dφ′
dβ′

)n+1
dγ′
dβ′

)
[n+ 1]n+1(z′ +B)n+1



+ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′



d2γ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1

+
dγ′
dα′

(
dφ′
dβ′

)n′+1
d

dβ′
.

(
dφ′
dα′

)n+1

+
dγ′
dβ′

(
dφ′
dα′

)n+1
d

dα′
.

(
dφ′
dβ′

)n′+1


[n+ 1]n+1[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1

,

(V)

and the series in this second member being exactly that which would result in the development
of

γ =
√

1− α2 − β2,

from the formula (K), we see that the condition (Q) or (R) is satisfied, and the sought
verification is obtained.

Another verification of the foregoing developments may be obtained by applying the
general expression in series (K), for any function F of the cosines α, β, to the case where this

function is =
dφ

dα
. We find, first

dφ

dα
=
dφ′
dα′

+ Σ(n)
∞
0


dn

dαn′

((
dφ′
dα′

)n+1
d2φ′
dα2
′

)
[n+ 1]n+1(z′ +A)n+1

+

dn

dβn′

((
dφ′
dβ′

)n+1
d2φ′
dα′ dβ′

)
[n+ 1]n+1(z′ +B)n+1



+ Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′



d3φ′
dα2
′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1

+
d2φ′
dα2
′

(
dφ′
dβ′

)n′+1
d

dβ′
.

(
dφ′
dα′

)n+1

+
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1
d

dα′
.

(
dφ′
dβ′

)n′+1


[n+ 1]n+1[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1

,

(W)
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which may be put under the form

dφ

dα
= Σ(n)

∞
0

dn

dαn′
.

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n
+ Σ(n,n′)

∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n(
dφ′
dβ′

)n′+1
)

[n]n[n′ + 1]n′+1(z′ +A)n(z′ +B)n′+1
,

(X)
that is, by (L),

dφ

dα
= (z′ +A)(α− α′), (Y)

which agrees with the conditions (H). A similar verification may be obtained by the same

conditions (H), by considering the development of
dφ

dβ
.

Finally, we may observe that the condition
V

µ
= αx′ + βy′ + γz′ −

W

µ
= αx′ + βy′ −

U

µ
(Z)

becomes, by (G) and (I),

V

µ
= z′ −W (0) + (z′ +A)

(
αα′ −

α2

2

)
+ (z′ +B)

(
ββ′ −

β2

2

)
+ φ; (A′)

in which, by (K) and (L),

αα′ −
α2

2
=
α2
′

2
− Σ(n)

∞
0

n+ 1
n+ 2

dn

dαn′

(
dφ′
dα′

)n+2

[n+ 1]n+1(z′ +A)n+2

− Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1
)

[n]n[n′ + 1]n′+1(z′ +A)n+2(z′ +B)n′+1
,

ββ′ −
β2

2
=
β2
′

2
− Σ(n)

∞
0

n+ 1
n+ 2

dn

dβn′

(
dφ′
dβ′

)n+2

[n+ 1]n+1(z′ +B)n+2

− Σ(n,n′)
∞,
0,
∞
0

dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1
)

[n+ 1]n+1[n′]n′(z′ +A)n+1(z′ +B)n′+2
,

φ = φ′ + Σ(n)
∞
0


dn

dαn′

(
dφ′
dα′

)n+2

[n+ 1]n+1(z′ +A)n+1
+

dn

dβn′

(
dφ′
dβ′

)n+2

[n+ 1]n+1(z′ +B)n+1



+ Σ(n,n′)
∞,
0,
∞
0

(n+ n′ + 3)
dn+n′

dαn′ dβ
n′
′

(
d2φ′
dα′ dβ′

(
dφ′
dα′

)n+1(
dφ′
dβ′

)n′+1
)

[n+ 1]n+1[n′ + 1]n′+1(z′ +A)n+1(z′ +B)n′+1
; (B′)
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so that we are conducted by this other method to the same expression (O) for the character-
istic function of an ordinary optical system, as that which we before obtained by performing
the integrations (N). In all these expressions the sign Σ(n,n′)

∞,
0,
∞
0 denotes a summation with

reference to the variable integers n, n′, from zero to infinity.

Case of a Plane System.

5. A similar analysis may be applied to integrate the partial differential equation(
dV

dx

)2

+
(
dV

dz

)2

= µ2, (C′)

to which the equation (A) of this Supplement reduces itself, when we consider a system of
rays of ordinary light, contained in the plane of xz. In this case, if we put

x′ = (x− x′′) cos. xx′ + (z − z′′) cos. zx′,
z′ = (x− x′′) cos. xz′ + (z − z′′) cos. zz′,

}
(D′)

we may suppose x′ z′ to be new rectangular coordinates, in the same plane as x z, and such
that the axis of z′ coincides with the direction of some given ray of the system: and we may
denote by α, γ, the cosines of the angles which any near ray makes with these new axes, so
that

γ =
√

1− α2.

We shall then have for one form of the integral of the partial differential equation (C′), the
following combination of equations:

µx′ =
dU

dα
, V + U = α

dU

dα
, (E′)

between which α is conceived to be eliminated, and in which

U = W − µγz′ = µW (0) − µz′ +
µ(z′ +A)α2

2
− µφ;

−φ = Σ(i)
∞
0 (W (i+3) + z′γ

(2i+4));

W (i+3) = αi+3 . wi+3; γ(2i+4) =
1 . 3 . 5 . . . (2i+ 1)
2 . 4 . 6 . . . (2i+ 2)

.
α2i+4

2i+ 4
;


(F′)

W (0), wi+3, being constant coefficients in the development of the function W , according to
the powers of α, and A being another constant in that development, namely, the distance
upon the given ray, from the point where it touches the caustic curve of the plane system, to
the origin of x′ and z′. The first of the two equations (E′) becomes

α = α′ +
1

z′ +A

dφ

dα
,
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when we put
α′ =

x′
z′ +A

;

and gives therefore, by the well-known theorem of Lagrange, for functions of a single variable,

F (α) = F′ + Σ(n)
∞
0

dn

dαn′
.
dF′
dα′

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n+1
, (G′)

F (α) denoting any function of α, which admits of being developed according to positive
integer powers of α′, and F′, φ′, being formed from F , φ, by changing α to α′. The cosines
α, γ, may therefore be thus developed,

α = α′ + Σ(n)
∞
0

dn

dαn′
.

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n+1

γ = γ′ + Σ(n)
∞
0

dn

dαn′
.
dγ′
dα′

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n+1


(H′)

if we put
γ′ =

√
1− α2

′ .

And since V may be thus expressed,

V = µz′ − µW (0) + µ(z′ +A)
∫ α′

0

αdα′, (I′)

because
dV = µ(αdx′ + γ dz′) = µα(z′ +A) dα′ + µ(αα′ + γ) dz′,

and because V becomes µz′ − µW (0) when α′ = 0, we find, finally,

V

µ
= z′ −W (0) +

(z′ +A)α2
′

2
+ φ′ + Σ(n)

∞
0

dn

dαn′
.

(
dφ′
dα′

)n+2

[n+ 2]n+2(z′ +A)n+1
. (K′)

This form (K′) for the integral of the partial differential equation (C′), may be verified
by observing that it satisfies the condition

1
µ

dV

dz′
= αα′ + γ, (L′)

V being differentiated for z′ and α′ as two independent variables; because

dφ′
dz′

= −Σ(i)
∞
0 γ

(2i+4)
′ = γ′ − 1− α2

′
2
,

d2φ′
dα′ dz′

=
dγ′
dα′

+ α′,
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dn+1

dαn′ dz′
.

(
dφ′
dα′

)n+2

= (n+ 2)
dn

dαn′

{(
dφ′
dα′

)n+1(
dγ′
dα′

+ α′

)}
,

dn+1

dαn+1
′

. α′

(
dφ′
dα′

)n+2

= α′
dn+1

dαn+1
′

.

(
dφ′
dα′

)n+2

+ (n+ 1)
dn

dαn′
.

(
dφ′
dα′

)n+2

, (M′)

and therefore, differentiating (K’) as if α′ were constant,

1
µ

dV

dz′
= γ′ + α2

′ + α′ Σ(n)
∞
0

dn

dαn′
.

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n+1
+ Σ(n)

∞
0

dn

dαn′
.
dγ′
dα′

(
dφ′
dα′

)n+1

[n+ 1]n+1(z′ +A)n+1
, (N′)

that is, by (H′)
1
µ

dV

dz′
= αα′ + γ.

Case of a System of Revolution.

6. Another particular case of the partial differential equation (A) deserves to be consid-
ered specially; namely the case of systems of revolution, symmetric about some single ray.
In this case, if we take for the axis of z, the ray which is the axis of the system, V will be a
function of z and of x2 + y2; and if we put

x2 + y2 = η, (O′)

we may in general suppose V developed according to positive integer powers of η, in a series
satisfying the condition, (

dV

dz

)2

+ 4η
(
dV

dη

)2

= µ2. (P′)

To integrate this partial differential equation (P′), which is a particular case of (A), we
may employ the corresponding case of the general system of equations (D), (E), putting for
abridgment

α2 + β2 = ε, (Q′)

and considering the quantities W , U , as functions of ε, which we shall suppose capable of
being developed according to positive integer powers of that variable. In this manner we shall
obtain

dU

dα
= 2α

dU

dε
,

dU

dβ
= 2β

dU

dε
, (R′)

and therefore by (D),

µ2η = 4ε
(
dU

dε

)2

, V + U = 2ε
dU

dε
. (S′)

We have also by (E),

U = W − µz
√

1− ε, dU

dε
=
dW

dε
+
µz

2γ
, (T′)
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in which
γ =
√

1− ε;

and we may put

W = µW (0) +
µAε

2
+ µΣ(i)

∞
0 εi+2w2i+4;

dW

dε
=
µA

2
+ µΣ(i)

∞
0 (i+ 2)εi+1w2i+4;

dU

dε
=
µ(z +A)

2
− µψ; −ψ = Σ(i)

∞
0 Ui+1ε

i+1;

Ui+1 = (i+ 2)w2i+4 +
1 . 3 . 5 . . . (2i+ 1)
2 . 4 . 6 . . . (2i+ 2)

z

2
;


(U′)

in which W (0), w2i+4, A, are constants of the same kind as before, A denoting the distance
of the origin from the focus of central rays. Hence, if we put for abridgment,

ε′ =
η

(z +A)2
=

x2 + y2

(z +A)2
, (V′)

ε′ is an approximate value of ε, and we have the following relation between ε and ε′,

ε = ε′ +
4εψ
z +A

− 4εψ2

(z +A)2
, (W′)

which gives, by the theorems before referred to,

f(ε) = f′ + Σ(n)
∞
0

4n+1 d
n

dεn′

{
df′
dε′

(
ε′ψ′ −

ε′ψ
2
′

z +A

)n+1
}

[n+ 1]n+1(z +A)n+1
, (X′)

f(ε) being a function of ε and f′, ψ′, being formed from f , ψ, by changing ε to ε′. We have
also, by (S′) (T′) (U′),

V

µ
= z −W (0) +

1
µ

∫ ε

0

(
dU

dε
+ 2ε

d2U

dε2

)
dε

= z −W (0) +
(z +A)ε

2
− 2εψ +

∫ ε

0

ψ dε, (Y′)

and therefore, by (X′),

V

µ
= z −W (0) +

(z +A)ε′
2

− 2ε′ψ′ +
∫ ε′

0

ψ′ dε′

+ Σ(n)
∞
0

4n+1

[n+ 1]n+1(z +A)n+1

dn

dεn′

{(
z +A

2
− 2ε′

dψ′
dε′
− ψ′

)(
ε′ψ′ −

ε′ψ
2
′

z +A

)n+1
}

;

(Z′)
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in which,

ψ′ = −Σ(i)
∞
0 Ui+1ε

i+1
′ ;

dψ′
dε′

= −Σ(i)
∞
0 (i+ 1)Ui+1ε

i
′ ;∫ ε′

0

ψ′ dε′ = −Σ(i)
∞
0 Ui+1 .

εi+2
′
i+ 2

; ε′ =
η

(z +A)2
.

The development (Z′) is one form of the integral of the partial differential equation
(P′); another form of the same integral may be obtained from the expression (K′) for the

characteristic function of a plane system, by changing α′ to
√
η

z +A
, and z′ to z, and supposing

w2i+3 = 0, and is,

V

µ
= z −W (0) +

η

2(z +A)
+ φ′ + 4 Σ(n)

∞
0

2n(z +A)n+1

[n+ 2]n+2

dn

(d
√
η)n

(
η1+n

2

(
dφ′
dη

)n+2
)
, (A′′)

in which

φ′ = −Σ(i)
∞
0

ηi+2

(z +A)2i+4

(
w2i+4 +

1 . 3 . 5 . . . (2i+ 1)
2 . 4 . 6 . . . (2i+ 2)

z

2i+ 4

)
. (B′′)

Each of these forms gives, when we neglect η4, the following approximate expression for
the characteristic function V of a system of ordinary rays, symmetric about the axis of z,

V

µ
= z −W (0) +

η

2(z +A)
− (z + 8w4)η2

8(z +A)4
− (z + 16w6)η3

16(z +A)6
+

(z + 8w4)2η3

8(z +A)7
; (C′′)

in which η = x2 +y2, and W (0), A, w4, w6, are constants in the development of the connected
function W , such that when we neglect the eighth power of the sine of the angle contained
between a near ray, and the axis of revolution of the system, we have

W

µ
= W (0) +

A(α2 + β2)
2

+ w4(α2 + β2)2 + w6(α2 + β2)3, (D′′)

α, β, being, as before, the cosines of the angles that the near ray makes with the axes of x
and y, to which it is nearly perpendicular.

Verification of the Approximate Integral for Systems of Revolution.

7. The approximate expression (C′′) for the characteristic function of an optical system of
revolution, admits of extensive applications: it is therefore useful to consider other methods,
by which it may be obtained or verified. An immediate verification may be derived from the
partial differential equation (P′) of which (C′′) ought to be an approximate integral; namely,
by computing from (C′′) the approximate expressions of

1
µ2

(
dV

dz

)2

and
4η
µ2

(
dV

dη

)2

,
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and trying whether their sum is unity, when η4 is neglected. Putting for this purpose the
expression (C′′) under the form

V

µ
= z −W (0) +

η

2(z +A)
− η2

8(z +A)3
+

η3

16(z +A)5

+
(A− 8w4)η2

8(z +A)4
+

(32w4 − 16w6 − 3A)η3

16(z +A)6
+

(A− 8w4)2η3

8(z +A)7
, (E′′)

we find, by differentiation,

1
µ

dV

dz
= 1− η

2(z +A)2
+

3η2

8(z +A)4
− 5η3

16(z +A)6
− (A− 8w4)η2

2(z +A)5

− 3(32w4 − 16w6 − 3A)η3

8(z +A)7
− 7(A− 8w4)2η3

8(z +A)8
;

2
µ

dV

dη
=

1
z +A

− η

2(z +A)3
+

3η2

8(z +A)5
+

(A− 8w4)η
2(z +A)4

+
3(32w4 − 16w6 − 3A)η2

8(z +A)6
+

3(A− 8w4)2η2

4(z +A)7
;


(F′′)

and therefore, neglecting η4,

1
µ2

(
dV

dz

)2

= 1− η

(z +A)2
+

η2

(z +A)4
− η3

(z +A)6
− (A− 8w4)η2

(z +A)5

+
(11A− 112w4 + 48w6)η3

4(z +A)7
− 7(A− 8w4)2η3

4(z +A)8
;

4η
µ2

(
dV

dη

)2

=
η

(z +A)2
− η2

(z +A)4
+

η3

(z +A)6
+

(A− 8w4)η2

(z +A)5

− (11A− 112w4 + 48w6)η3

4(z +A)7
+

7(A− 8w4)2η3

4(z +A)8
;


(G′′)

expressions of which the sum is unity, as it ought to be. We may remark that the former
of these two expressions represents the square of the cosine, and the latter the square of the
sine, of the angle which a near ray makes with the axis of revolution of the system.

Other Method of obtaining the Approximate Integral.

8. Again, the approximate integral (C′′) of the partial differential equation (P′), may be
obtained in the following manner. Since V is supposed capable of being developed according
to positive integer powers of η, let us assume

V

µ
= V (0) + V (1)η + V (2)η2 + V (3)η3, (H′′)
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neglecting η4, and considering V (0), V (1), V (2), V (3), as functions of z, of which the forms
are to be determined. To determine these forms, we have, when η = 0,

V = µV (0) dV

dη
= µV (1);

d2V

dη2
= 2µV (2);

d3V

dη3
= 6µV (3);

dV

dz
= µ

dV (0)

dz

d2V

dη dz
= µ

dV (1)

dz
;

d3V

dη2 dz
= 2µ

dV (2)

dz
;

d4V

dη3 dz
= 6µ

dV (3)

dz
.

 (I′′)

The equation (P′) shews that
dV

dz
= ±µ, when η = 0; and

dV

dz
is positive, if we suppose

the motion of the light directed from the negative towards the positive part of the axis of z;
we have therefore, by (I′′),

dV (0)

dz
= 1. (K′′)

The equation (P′) gives also, by differentiating it with respect to η,

0 =
dV

dz

d2V

dη dz
+ 4η

dV

dη

d2V

dη2
+ 2

(
dV

dη

)2

;

0 =
dV

dz

d3V

dη2 dz
+
(
d2V

dη dz

)2

+ 4η
dV

dη

d3V

dη3
+ 4η

(
d2V

dη2

)2

+ 8
dV

dη

d2V

dη2
;

0 =
dV

dz

d4V

dη3 dz
+ 3

d2V

dη dz

d3V

dη2 dz
+ 4η

dV

dη

d4V

dη4
+ 12η

d2V

dη2

d3V

dη3
+ 12

dV

dη

d3V

dη3
+ 12

(
d2V

dη2

)2

;


(L′′)

and, making η = 0, we find by (I′′) the following equations in ordinary differentials, from
which V (1), V (2), V (3), are to be deduced:

0 =
dV (1)

dz
+ 2V (1)2;

0 =
dV (2)

dz
+ 8V (1)V (2) + 1

2

(
dV (1)

dz

)2

;

0 =
dV (3)

dz
+ 12V (1)V (3) +

dV (1)

dz

dV (2)

dz
+ 8V (2)2.


(M′′)

These three differential equations, when divided respectively by V (1)2, V (1)4, V (1)6, can
easily be integrated, and give, when combined with the integral of (K′′),

v0 = V (0) − z;

v1 =
1

V (1)
− 2z;

v2 =
V (2)

V (1)4
+ 2z;

v3 =
V (3)

V (1)6
− 4z − 4(v1 + v2)2

2z + v1
;


(N′′)
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v0, v1, v2, v3, being the four arbitrary constants introduced by the four integrations. The
functions V (0), V (1), V (2), V (3), are therefore of the form

V (0) = z + v0; V (1) =
1

2z + v1
; V (2) =

v2 − 2z
(2z + v1)4

;

V (3) =
4z + v3

(2z + v1)6
+

4(v1 + v2)2

(2z + v1)7
;

 (O′′)

and these forms for the coefficients of the development (H′′), agree perfectly with the devel-
opment (C′′) or (E′′), when we establish the following relations between the constants:

v0 = −W (0); v1 = 2A; v2 = −16w4; v3 = 8(16w4 − 8w6 −A) : (P′′)

we see, therefore, that the present method of integration confirms the former results.

Connexion of the Longitudinal Aberration, in a System of Revolution, with the
Development of the Characteristic Function V .

9. To give now an example of the optical use of the development which has been thus
obtained, let us consider its connexion with the aberrations of the near rays, from the principal
or central focus. We have already remarked that the constant A denotes the distance of the
origin of coordinates, upon the central ray, beyond this principal focus, in such a manner
that the focal ordinate is = −A. For the ordinate Z, of intersection of any near ray with the
central ray, we have by the fourth of the equations (C), of the present Supplement,

Z =
1

µ(α2 + β2)
δW

δγ
, (Q′′)

if we form the coefficient of
δW

δγ
by putting W under the form of a homogeneous function of

α, β, γ, of the dimension zero, with the help of the relation α2 + β2 + γ2 = 1, and then by
differentiating this function, as if α, β, were constant, and γ the only variable. Employing

therefore for
W

µ
the development

W

µ
= W (0) +

A(α2 + β2)
2(α2 + β2 + γ2)

+ Σ(i)
∞
0

w2i+4(α2 + β2)i+2

(α2 + β2 + γ2)i+2
, (R′′)

which is of the homogeneous form required, and, after differentiating for γ, making α2 +β2 +
γ2 = 1, we find for the ordinate Z,

Z = −A+A(1− γ)− γ Σ(i)
∞
0 (2i+ 4)w2i+4(α2 + β2)i+1, (S′′)

a series of which the term −A being the ordinate of the central focus, the remainder is the
longitudinal aberration: γ is the cosine of the angle which the near ray makes with the central
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ray, and α2 + β2 is the square of the sine of that angle. If therefore we denote the aberration
Z +A by Λ, we may develope Λ in a series of the form

Λ = L(α2 + β2) + L1(α2 + β2)2 + &c., (T′′)

in which
L = 1

2A− 4w4, L1 = 1
8A+ 2w4 − 6w6. (U′′)

And if by these relations (U′′), we eliminate w4, w6 from the approximate expression
(E′′), we find the following formula:

V = µ(z −W (0)) +
µη

2(z +A)
+

µη2

4(z +A)3

(
L

z +A
− 1

2

)
+

µη3

12(z +A)5

{
2L1 − 5L
z +A

+
6L2

(z +A)2
+ 3

4

}
, (V′′)

which shews the connexion in a system of revolution between the development of the longi-
tudinal aberration Λ, and that of the characteristic function V .

Changes of a System of Revolution, produced by Ordinary Refraction.

10. Suppose now that the rays of this system of revolution fall upon a refracting surface
of revolution, having for axis the axis of the system, and having for equation

z = z0 + z1η + z2η
2 + z3η

3 + &c., (W′′)

in which η is still = x2 + y2 = the square of the perpendicular distance of a point x y z,
from the axis; and let µ′ be the refracting index of the new medium into which the rays pass
after refraction. It is evident that in this new medium, the rays will compose a new system
of revolution, symmetric about the same axis as before; and we may in general suppose the
characteristic function V ′ of this new system, which is analogous to V of the old, developed
in a series similar to (V′′),

V ′ = µ′(z −W ′(0)) +
µ′η

2(z +A′)
+

µ′η2

4(z +A′)3

(
L′

z +A′
− 1

2

)
+

µ′η3

12(z +A′)5

{
2L′1 − 5L′

z +A′
+

6L′2

(z +A′)2
+ 3

4

}
: (X′′)

the constants A′ L′ L′1 being similar to A L L1, in such a manner that the ordinate Z ′ of
intersection of the axis with a near ray, is

Z ′ = −A′ + L′(α′2 + β′2) + L′1(α′2 + β′2)2, (Y′′)

if α′2 +β′2 denote the square of the sine of the angle which the near ray makes with the axis,
and if we neglect the sixth power of this sine. To connect the new and old constants in the
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development of the characteristic function, we have, by the nature of this function, and by
the principles of my former memoirs, the condition

0 = ∆V = V ′ − V ; (Z′′)

which is to be satisfied for all the points of the refracting surface, and which may therefore be
differentiated, considering ∆V as a function of z, η, namely the difference of the developments
(V′′) (X′′), and considering z as itself a function of η, assigned by the equation of the refracting
surface (W′′). In this manner we find, transposing the symbols ∆, d,

0 = ∆
dV

dη
+
dz

dη
∆
dV

dz
;

0 = ∆
d2V

dη2
+ 2

dz

dη
∆
d2V

dz dη
+
(
dz

dη

)2

∆
d2V

dz2
+
d2z

dη2
∆
dV

dz
;

0 = ∆
d3V

dη3
+ 3

dz

dη
∆

d3V

dz dη2
+ 3

(
dz

dη

)2

∆
d3V

dz2 dη
+
(
dz

dη

)3

∆
d3V

dz3

+ 3
d2z

dη2
∆
d2V

dz dη
+ 3

dz

dη

d2z

dη2
∆
d2V

dz2
+
d3z

dη3
∆
dV

dz
;


(A′′′)

and, making after the differentiations η = 0, we have

z = z0;
dz

dη
= z1;

d2z

dη2
= 2z2;

d3z

dη3
= 6z3;

∆
dV

dz
= ∆µ; ∆

d2V

dz2
= 0; ∆

d3V

dz3
= 0;

∆
dV

dη
= 1

2∆ .
µ

z +A
; ∆

d2V

dz dη
= 1

2∆ .
−µ

(z +A)2
; ∆

d3V

dz2 dη
= ∆ .

µ

(z +A)3
;

∆
d2V

dη2
= ∆

{
µL

2(z +A)4
− µ

4(z +A)3

}
; ∆

d3V

dz dη2
= ∆

{
−2µL

(z +A)5
+

3µ
4(z +A)4

}
;

∆
d3V

dη3
= ∆ .

µ

(z +A)5

(
2L1 − 5L
2(z +A)

+
3L2

(z +A)2
+ 3

8

)
.


(B′′′)

We have therefore, Ist, for the change of −A, the ordinate of the central focus,

0 = ∆
µ

z +A
+ 2z1 ∆µ : (C′′′)

IInd, for the change of L, the first or principal coefficient of aberration,

0 = ∆
{

2µL
(z +A)4

− µ

(z +A)3

}
− 4z1 ∆ .

µ

(z +A)2
+ 8z2 ∆µ : (D′′′)

IIIrd, for the change of L1, the coefficient of the fourth power of the sine of the angular
aberration, in the expression of the longitudinal,

0 = ∆ .
µ

(z +A)5

(
2L1 − 5L
2(z +A)

+
3L2

(z +A)2
+ 3

8

)
+ 3z1 ∆ .

µ

(z +A)4

(
−2L
z +A

+ 3
4

)
+ 3z2

1 ∆ .
µ

(z +A)3
− 3z2 ∆ .

µ

(z +A)2
+ 6z3 ∆µ; (E′′′)
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z being the ordinate of the point of central incidence. With respect to the present meaning of
the sign ∆, we may remark, that the first of the three equations (C′′′) (D′′′) (E′′′) is equivalent
to the following:

µ

z +A
+ 2z1µ =

µ′

z +A′
+ 2z1µ

′; (F′′′)

and the two others are to be similarly interpreted.

Example; Spheric Refraction; Mr. Herschel’s Formula for the Aberration of a thin Lens.

11. These general equations for refracting surfaces of revolution may be adapted to the
case of a refracting spheric surface, by making

z1 =
1
2r

; z2 =
1

8r3
; z3 =

1
16r5

; (G′′′)

the two first, for example, becoming

0 = ∆
(

µ

z +A
+
µ

r

)
; (H′′′)

0 = ∆
(

2µL
(z +A)4

− µ

(z +A)3
− 2µ
r(z +A)2

+
µ

r3

)
; (I′′′)

which contain under a convenient form, the known theorems for the change of a central focus,
and of the principal coefficient of aberration, by refraction of a spheric surface; r being the
radius of this surface, and being considered as positive or negative, according as the convexity
or concavity is turned towards the incident rays.

If, for instance, we consider an infinitely thin lens in vacuo, having µ for its refractive
index, and having r, r′, for the radii of its two spheric surfaces, (positive when those surfaces
are convex towards the incident rays,) we may take the point of central incidence for origin,
and the equation (H′′′) will become,

0 =
µ

A′
− 1
A

+
µ− 1
r

; 0 =
1
A′′
− µ

A′
+

1− µ
r′

, (K′′′)

−A, −A′, −A′′, being the ordinates of the central focus in the three successive states of the
system; and similarly, (I′′′) will give

0 =
2µL′

A′4
− 2L
A4
−
(
µ

A′3
− 1
A3

)
−
(

2µ
rA′2

− 2
rA2

)
+
µ− 1
r3

;

0 =
2L′′

A′′4
− 2µL′

A′4
−
(

1
A′′3

− µ

A′3

)
−
(

2
r′A′′2

− 2µ
r′A′2

)
+

1− µ
r′3

;

 (L′′′)

L, L′, L′′, being the three successive values of the principal coefficient of aberration. Adding
the two equations (L′′′), the intermediate coefficient L′ disappears, and we find,

0 =
2L′′

A′′4
− 2L
A4
−
(

1
A′′3

− 1
A3

)
+

2µ
A′2

(
1
r′
− 1
r

)
−
(

2
r′A′′2

− 2
rA2

)
+ (µ− 1)

(
1
r3
− 1
r′3

)
,

(M′′′)
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in which, by (K′′′),

1
A′

=
1
µA
− µ− 1

µr
;

1
A′′

=
1
A

+ (µ− 1)
(

1
r′
− 1
r

)
; (N′′′)

and therefore,

L′′

A′′4
− L

A4
=
(
µ− 1

2

)(
1
r′
− 1
r

)(
M (0) +

M (1)

A
+
M (2)

A2

)
, (O′′′)

if we put for abridgment

M (0) =
µ2

r′2
+

1 + 2µ− 2µ2

r′r
+

2
µ
− 2µ+ µ2

r2
;

M (1) =
1 + 3µ
r′

+

4
µ

+ 3− 3µ

r
;

M (2) =
2
µ

+ 3.


(P′′′)

It is easy to see that the formula (O′′′) agrees with the expression for the spherical
aberration of an infinitely thin lens, which Mr. Herschel has deduced by reasonings of a
different kind, in his memoir “On Aberrations of Compound Lenses and Object-Glasses,”
published in the second part of the Philosophical Transactions for the year 1821; and in his
excellent “Treatise on Light,” published in the Encyclopædia Metropolitana.

The elegance of this formula of Mr. Herschel, and the important consequences which he
has obtained from it, have induced us to shew how the same expression may be derived from
the development of the characteristic function of an ordinary system of revolution, assigned
in the present Supplement. The same form of development, and those other forms which we
have assigned in the same Supplement, for systems not of revolution, contain the solution of
other optical problems, of which we hope to treat hereafter.

23


