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NOTE ON THE TEXT

The paper On Fluctuating Functions, by Sir William Rowan Hamilton, appeared in
volume 19 of the Transactions of the Royal Irish Academy, published in 1843.

The following obvious typographical errors have been corrected:—
in article 8, an upper limit of integration of ∞ has been added to the integral which in

the original publication was printed as
∫

0

dα
sinβα

α(1 + α2)
;

in article 13, the right hand side of equation (d′′′) was printed in the original publication
as (α− x)−1ψk−1(α−x) ;

a full stop (period) has been inserted after equation (dIX).

David R. Wilkins
Dublin, June 1999
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[Transactions of the Royal Irish Academy, vol. xix (1843), pp. 264–321.]

The paper now submitted to the Royal Irish Academy is designed chiefly to invite at-
tention to some consequences of a very fertile principle, of which indications may be found in
Fourier’s Theory of Heat, but which appears to have hitherto attracted little notice, and in
particular seems to have been overlooked by Poisson. This principle, which may be called
the Principle of Fluctuation, asserts (when put under its simplest form) the evanescence of
the integral, taken between any finite limits, of the product formed by multiplying together
any two finite functions, of which one, like the sine or cosine of an infinite multiple of an
arc, changes sign infinitely often within a finite extent of the variable on which it depends,
and has for its mean value zero; from which it follows, that if the other function, instead of
being always finite, becomes infinite for some particular values of its variable, the integral
of the product is to be found by attending only to the immediate neighbourhood of those
particular values. The writer is of opinion that it is only requisite to develope the foregoing
principle, in order to give a new clearness, and even a new extension, to the existing theory
of the transformations of arbitrary functions through functions of determined forms. Such is,
at least, the object aimed at in the following pages; to which will be found appended a few
general observations on this interesting part of our knowledge.

[1.] The theorem, discovered by Fourier, that between any finite limits, a and b, of any
real variable x, any arbitrary but finite and determinate function of that variable, of which
the value varies gradually, may be represented thus,

fx =
1
π

∫ b

a

dα

∫ ∞
0

dβ cos(βα− βx) fα, (a)

with many other analogous theorems, is included in the following form:

fx =
∫ b

a

dα

∫ ∞
0

dβ φ(x, α, β) fα; (b)

the function φ being, in each case, suitably chosen. We propose to consider some of the
conditions under which a transformation of the kind (b) is valid.
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[2.] If we make, for abridgment,

ψ(x, α, β) =
∫ β

0

dβ φ(x, α, β), (c)

the equation (b) may be thus written:

fx =
∫ b

a

dαψ(x, α,∞) fα. (d)

This equation, if true, will hold good, after the change of fα, in the second member, to
fα+ fα; provided that, for the particular value α = x, the additional function fα vanishes;
being also, for other values of α, between the limits a and b, determined and finite, and
gradually varying in value. Let then this function f vanish, from α = a to α = λ, and from
α = µ to α = b; λ and µ being included, either between a and x, or between x and b; so that
x is not included between λ and µ, though it is included between a and b. We shall have,
under these conditions,

0 =
∫ µ

λ

dαψ(x, α,∞) fα; (e)

the function f, and the limits λ and µ, being arbitrary, except so far as has been above
defined. Consequently, unless the function of α, denoted here by ψ(x, α,∞), be itself = 0, it
must change sign at least once between the limits α = λ, α = µ, however close these limits
may be; and therefore must change sign indefinitely often, between the limits a and x, or
x and b. A function which thus changes sign indefinitely often, within a finite range of a
variable on which it depends, may be called a fluctuating function. We shall consider now a
class of cases, in which such a function may present itself.

[3.] Let nα be a real function of α, continuous or discontinuous in value, but always
comprised between some finite limits, so as never to be numerically greater than ±c, in which
c is a finite constant; let

mα =
∫ α

0

dαnα; (f)

and let the equation
mα = a, (g)

in which a is some finite constant, have infinitely many real roots, extending from −∞ to
+∞, and such that the interval αn+1−αn, between any one root αn and the next succeeding
αn+1, is never greater than some finite constant, b. Then,

0 = mαn+1 −mαn =
∫ αn+1

αn

dαnα; (h)

and consequently the function nα must change sign at least once between the limits α = αn
and α = αn+1; and therefore at least m times between the limits α = αn and α = αn+m, this
latter limit being supposed, according to the analogy of this notation, to be the mth root of
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the equation (g), after the root αn. Hence the function nβα, formed from nα by multiplying
α by β, changes sign at least m times between the limits α = λ, α = µ, if*

λ > β−1αn, µ < β−1αn+m;

the interval µ− λ between these limits being less than β−1(m+ 2)b, if

λ > β−1αn−1, µ < β−1αn+m+1;

so that, under these conditions, (β being > 0,) we have

m > −2 + βb−1(µ− λ).

However small, therefore, the interval µ − λ may be, provided that it be greater than 0,
the number of changes of sign of the function nβα, within this range of the variable α, will
increase indefinitely with β. Passing then to the extreme or limiting supposition, β = ∞,
we may say that the function n∞α changes sign infinitely often within a finite range of the
variable α on which it depends; and consequently that it is, in the sense of the last article,
a fluctuating function. We shall next consider the integral of the product formed by
multiplying together two functions of α, of which one is n∞α, and the other is arbitrary, but
finite, and shall see that this integral vanishes.

[4.] It has been seen that the function nα changes sign at least once between the limits
α = αn, α = αn+1. Let it then change sign k times between those limits, and let the k
corresponding values of α be denoted by αn,1, αn,2, . . . αn,k. Since the function nα may be
discontinuous in value, it will not necessarily vanish for these k values of α; but at least it will
have one constant sign, being throughout not < 0, or else throughout not > 0, in the interval
from α = αn to α = αn,1; it will be, on the contrary, throughout not > 0, or throughout not
< 0, from αn,1 to αn,2; again, not < 0, or not > 0, from αn,2 to αn,3; and so on. Let then
nα be never < 0 throughout the whole of the interval from αn,i to αn,i+1; and let it be > 0
for at least some finite part of that interval; i being some integer number between the limits
0 and k, or even one of those limits themselves, provided that the symbols αn,0, αn,k+1 are
understood to denote the same quantities as αn, αn+1. Let fα be a finite function of α, which
receives no sudden change of value, at least for that extent of the variable α, for which this
function is to be employed; and let us consider the integral∫ αn,i+1

αn,i

dαnαfα. (i)

Let F 8 be the algebraically least, and F 88 the algebraically greatest value of the function fα,
between the limits of integration; so that, for every value of α between these limits, we shall
have

fα − f
8 < 0, f

88 − fα < 0;

* These notations > and < are designed to signify the contradictories of > and <; so
that “a > b” is equivalent to “a not > b,” and “a < b” is equivalent to “a not < b.”
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these values f
8 and f

88, of the function fα, corresponding to some values α8n,i and α88n,i of the
variable α, which are not outside the limits αn,i and αn,i+1. Then, since, between these latter
limits, we have also

nα < 0,

we shall have ∫ αn,i+1

αn,i

dαnα(fα − f
8) < 0;∫ αn,i+1

αn,i

dαnα(f88 − fα) < 0;

 (k)

the integral (i) will therefore be not < sn,if
8, and not > sn,if

88, if we put, for abridgment,

sn,i =
∫ αn,i+1

αn,i

dαnα; (l)

and consequently this integral (i) may be represented by sn,if′, in which

f
′ < f

8, f
′ > f

88,

because, with the suppositions already made, sn,i > 0. We may even write

f
′ > f

8, f
′ < f

88,

unless it happen that the function fα has a constant value through the whole extent of the
integration; or else that it is equal to one of its extreme values, f

8 or f
88, throughout a finite

part of that extent, while, for the remaining part of the same extent, that is, for all other
values of α between the same limits, the factor nα vanishes. In all these cases, f

′ may be
considered as a value of the function fα, corresponding to a value α′n,i of the variable α
which is included between the limits of integration; so that we may express the integral (i)
as follows: ∫ αn,i+1

αn,i

dαnαfα = sn,ifα′
n,i

; (m)

in which
α′n,i > αn,i, < αn,i+1. (n)

In like manner, the expression (m), with the inequalities (n), may be proved to hold good, if
nα be never > 0, and sometimes < 0, within the extent of the integration, the integral sn,i
being in this case < 0; we have, therefore, rigorously,∫ αn+1

αn

dαnαfα = sn,0fα′n,0 + sn,1fα′n,1 + · · ·+ +sn,kfα′
n,k
. (o)

But also, we have, by (h)
0 = sn,0 + sn,1 + · · ·+ sn,k; (p)
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the integral in (o) may therefore be thus expressed, without any loss of rigour:∫ αn+1

αn

dαnαfα = sn,0∆n,0 + · · ·+ sn,k∆n,k, (q)

in which
∆n,i = fα′

n,i
− fαn ; (r)

so that ∆n,i is a finite difference of the function fα, corresponding to the finite difference
α′n,i − αn of the variable α, which latter difference is less than αn+1 − αn, and therefore less
than the finite constant b of the last article. The theorem (q) conducts immediately to the
following, ∫ β−1αn+1

β−1αn

dαnβαfα = β−1(sn,0δn,0 + · · ·+ sn,kδn,k), (s)

in which
δn,i = fβ−1α′

n,i
− fβ−1αn ; (t)

so that, if β be large, δn,i is small, being the difference of the function fα corresponding
to a difference of the variable α, which latter difference is less than β−1b. Let ±δn be the
greatest of the k + 1 differences δn,0, . . . δn,k, or let it be equal to one of those differences
and not exceeded by any other, abstraction being made of sign; then, since the k + 1 factors
sn,0, . . . sn,k are alternately positive and negative, or negative and positive, the numerical
value of the integral (s) cannot exceed that of the expression

±β−1(sn,0 − sn,1 + sn,2 − · · ·+ (−1)ksn,k)δn. (u)

But, by the definition (l) of sn,i, and by the limits ±c of value of the finite function nα, we
have

±sn,i > (αn,i+1 − αn,i)c; (v)

therefore
±(sn,0 − sn,1 + · · ·+ (−1)ksn,k) > (αn+1 − αn)c; (w)

and the following rigorous expression for the integral (s) results:∫ β−1αn+1

β−1αn

dαnβαfα = θnβ
−1(αn+1 − αn)cδn; (x)

θn being a factor which cannot exceed the limits ±1. Hence, if we change successively n to
n + 1, n + 2, . . . n + m − 1, and add together all the results, we obtain this other rigorous
expression, for the integral of the product nβαfα, extended from α = β−1αn to α = β−1αn+m:∫ β−1αn+m

β−1αn

dαnβαfα = θβ−1(αn+m − αn)cδ; (y)

in which δ is the greatest of the m quantities δn, δn+1, . . ., or is equal to one of those quantities,
and is not exceeded by any other; and θ cannot exceed ±1. By taking β sufficiently large,
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and suitably choosing the indices n and n + m, we may make the limits of integration in
the formula (y) approach as nearly as we please to any given finite values, a and b; while,
in the second member of that formula, the factor β−1(αn+m − αn) will tend to become the
finite quantity b − a, and θc cannot exceed the finite limits ±c; but the remaining factor δ
will tend indefinitely to 0, as β increases without limit, because it is the difference between
two values of the function fα, corresponding to two values of the variable α of which the
difference diminishes indefinitely. Passing then to the limit β = ∞, we have, with the same
rigour as before: ∫ b

a

dαn∞αfα = 0; (z)

which is the theorem that was announced at the end of the preceding article. And although it
has been here supposed that the function fα receives no sudden change of value, between the
limits of integration; yet we see that if this function receive any finite number of such sudden
changes between those limits, but vary gradually in value between any two such changes,
the foregoing demonstration may be applied to each interval of gradual variation of value
separately; and the theorem (z) will still hold good.

[5.] This theorem (z) may be thus written:

lim
β=∞

∫ b

a

dαnβαfα = 0; (a′)

and we may easily deduce from it the following:

lim
β=∞

∫ b

a

dαnβ(α−x)fα = 0; (b′)

the function fα being here also finite, within the extent of the integration, and x being
independent of α and β. For the reasonings of the last article may easily be adapted to
this case; or we may see, from the definitions in article [3.], that if the function nα have the
properties there supposed, then nα−x will also have those properties. In fact, if nα be always
comprised between given finite limits, then nα−x will be so too; and we shall have, by (f),∫ α

0

dαnα−x =
∫ α−x

−x
dαnα = mα−x −m−x; (c′)

in which m−x is finite, because the suppositions of the third article oblige mα to be always
comprised between the limits a± bc; so that the equation∫ α

0

dαnα−x = a−m−x, (d′)

which is of the form (g), has infinitely many real roots, of the form

α = x+ αn, (e′)
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and therefore of the kind assumed in the two last articles. Let us now examine what happens,
when, in the first member of the formula (b′), we substitute, instead of the finite factor fα,
an expression such as (α− x)−1fα, which becomes infinite between the limits of integration,
the value of x being supposed to be comprised between those limits, and the function fα
being finite between them. That is, let us inquire whether the integral∫ b

a

dαnβ(α−x)(α− x)−1fα, (f ′)

(in which x > a, < b), tends to any and to what finite and determined limit, as β tends to
become infinite.

In this inquiry, the theorem (b′) shows that we need only attend to those values of α
which are extremely near to x, and are for example comprised between the limits x∓ ε, the
quantity ε being small. To simplify the question, we shall suppose that for such values of
α, the function fα varies gradually in value; we shall also suppose that n0 = 0, and that
nαα

−1 tends to a finite limit as α tends to 0, whether this be by decreasing or by increasing;
although the limit thus obtained, for the case of infinitely small and positive values of α, may
possibly differ from that which corresponds to the case of infinitely small and negative values
of that variable, on account of the discontinuity which the function nα may have. We are
then to investigate, with the help of these suppositions, the value of the double limit:

lim
ε=0

. lim
β=∞

.

∫ x+ε

x−ε
dαnβ(α−x)(α− x)−1fα; (g′)

this notation being designed to suggest, that we are first to assume a small but not evanescent
value of ε, and a large but not infinite value of β, and to effect the integration, or conceive
it effected, with these assumptions; then, retaining the same value of ε, make β larger and
larger without limit; and then at last suppose ε to tend to 0, unless the result corresponding
to an infinite value of β shall be found to be independent of ε. Or, introducing two new
quantites y and η, determined by the definitions

y = β(α− x), η = βε, (h′)

and eliminating α and β by means of these, we are led to seek the value of the double limit
following:

lim
ε=0

. lim
η=∞

.

∫ η

−η
dy nyy

−1fx+εη−1y; (i′)

in which η tends to ∞, before ε tends to 0. It is natural to conclude that since the sought
limit (g′) can be expressed under the form (i′), it must be equivalent to the product

fx ×
∫ ∞
−∞

dy nyy
−1; (k′)

and in fact it will be found that this equivalence holds good; but before finally adopting this
conclusion, it is proper to consider in detail some difficulties which may present themselves.
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[6.] Decomposing the function fx+εη−1y into two parts, of which one is independent of
y, and is = fx, while the other part varies with y, although slowly, and vanishes with that
variable; it is clear that the formula (i′) will be decomposed into two corresponding parts,
of which the first conducts immediately to the expression (k′); and we are now to inquire
whether the integral in this expression has a finite and determinate value. Admitting the
suppositions made in the last article, the integral∫ ζ

−ζ
dy nyy

−1

will have a finite and determinate value, if ζ be finite and determinate; we are therefore
conducted to inquire whether the integrals∫ −ζ

−∞
dy nyy

−1,

∫ ∞
ζ

dy nyy
−1,

are also finite and determinate. The reasonings which we shall employ for the second of these
integrals, will also apply to the first; and to generalize a little the question to which we are
thus conducted, we shall consider the integral∫ ∞

a

dαnαfα; (l′)

fα being here supposed to denote any function of α which remains always positive and finite,
but decreases continually and gradually in value, and tends indefinitely towards 0, while α
increases indefinitely from some given finite value which is not greater than a. Applying
to this integral (l′) the principles of the fourth article, and observing that we have now
fα′

n,i
< fαn , α′n,i being > αn, and αn being assumed < a; and also that

±(sn,0 + sn,2 + · · ·) = ∓(sn,1 + sn,3 + · · ·) > 1
2bc; (m′)

we find
±
∫ αn+1

αn

dαnαfα <
1
2bc(fαn − fαn+1); (n′)

and consequently

±
∫ αn+m

αn

dαnαfα <
1
2bc(fαn − fαn+m). (o′)

This latter integral is therefore finite and numerically less than 1
2bc fαn , however great the

upper limit αn+m may be; it tends also to a determined value as m increases indefinitely,
because the part which corresponds to values of α between any given value of the form αn+m

and any other of the form αn+m+p is included between the limits ±1
2bc fαn+m , which limits

approach indefinitely to each other and to 0, as m increases indefinitely. And in the integral
(l′), if we suppose the lower limit of a to lie between αn−1 and αn, while the upper limit,
instead of being infinite, is at first assumed to be a large but finite quantity b, lying between
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αn+m and αn+m+1, we shall only thereby add to the integral (o′) two parts, an initial and a
final, of which the first is evidently finite and determinate, while the second is easily proved
to tend indefinitely to 0 as m increases without limit. The integral (l′) is therefore itself finite
and determined, under the conditions above supposed, which are satisfied, for example, by
the function fα = α−1, if a be > 0. And since the suppositions of the last article render also
the integral ∫ a

0

dαnαα
−1

determined and finite, if the value of a be such, we see that with these suppositions we may
write

$8 =
∫ ∞

0

dαnαα
−1, (p′)

$8 being itself a finite and determined quantity. By reasonings almost the same we are led
to the analogous formula

$88 =
∫ 0

−∞
dαnαα

−1; (q′)

and finally to the result

$ = $8 +$88 =
∫ ∞
−∞

dαnαα
−1; (r′)

in which $88 and $ are also finite and determined. The product (k′) is therefore itself
determinate and finite, and may be represented by $fx.

[7.] We are next to introduce, in (i′), the variable part of the function f , namely

fx+εη−1y − fx,

which varies from fx−ε to fx+ε, while y varies from −η to +η, and in which ε may be any
quantity > 0. And since it is clear, that under the conditions assumed in the fifth article,

lim
ε=0

. lim
η=∞

.

∫ ζ

−ζ
dy nyy

−1(fx+εη−1y − fx) = 0, (s′)

if ζ be any finite and determined quantity, however large, we are conducted to examine
whether this double limit vanishes when the integration is made to extend from y = ζ to
y = η. It is permitted to suppose that fα continually increases, or continually decreases,
from α = x to α = x+ ε; let us therefore consider the integral∫ η

ζ

dαnαfαgα, (t′)

in which the function fα decreases, while gα increases, but both are positive and finite, within
the extent of the integration.
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By reasonings similar to those of the fourth article, we find under these conditions,

±
∫ αn+1

αn

dαnαfαgα < bc(fαngαn+1 − fαn+1gαn); (u′)

and therefore

± 1
bc

∫ αn+m

αn

dαnαfαgα < fαn+m−1gαn+m − fαn+1gαn

+(fαn − fαn+2)gαn+1 + (fαn+2 − fαn+4)gαn+3 + &c.
+(fαn+1 − fαn+3)gαn+2 + (fαn+3 − fαn+5)gαn+4 + &c.

 (v′)

This inequality will still subsist, if we increase the second member by changing, in the positive
products on the second and third lines, the factors g to their greatest value gαn+m ; and, after
adding the results, suppress the three negative terms which remain in the three lines of these
expression, and change the functions f, in the first and third lines, to their greatest value
fαn . Hence,

±
∫ αn+m

αn

dαnαfαgα < 3bc fαngαn+m ; (w′)

this integral will therefore ultimately vanish, if the product of the greatest values of the
functions f and g tend to the limit 0. Thus, if we make

fα = α−1, gα = ±(fx+εη−1α − fx),

the upper sign being taken when fα increases from α = x to α = x + ε; and if we suppose
that ζ and η are of the forms αn and αn+m; we see that the integral (t′) is numerically less
than 3bcα−1

n (fx+ε − fx), and therefore that it vanishes at the limit ε = 0. It is easy to see
that the same conclusion holds good, when we suppose that η does not coincide with any
quantity of the form αn+m, and where the limits of integration are changed to −η and −ζ.
We have therefore, rigorously,

lim
ε=0

. lim
η=∞

.

∫ η

−η
dy nyy

−1(fx+εη−1y − fx) = 0, (x′)

nowithstanding the great and ultimately infinite extent over which the integration is con-
ducted. The variable part of the function f may therefore be suppressed in the double limit
(i′), without any loss of accuracy; and that limit is found to be exactly equal to the expression
(k′); that is, by the last article, to the determined product $fx. Such, therefore, is the value
of the limit (g′), from which (i′) was derived by the transformation (h′); and such finally is
the limit of the integral (f′), proposed for investigation in the fifth article. We have, then,
proved that under the conditions of that article,

lim
β=∞

.

∫ b

a

dαnβ(α−x)(α− x)−1fα = $fx; (y′)
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and consequently that the arbitrary but finite and gradually varying function fx, between
the limits x = a, x = b, may be transformed as follows:

fx = $−1

∫ b

a

dαn∞(α−x)(α− x)−1fα; (z′)

which is a result of the kind denoted by (d) in the second article, and includes the theorem (a)
of Fourier. For all the suppositions made in the foregoing articles, respecting the form of
the function n, are satisfied by assuming this function to be the sine of the variable on which
it depends; and then the constant $, determined by the formula (r′), becomes coincident
with π, that is, with the ratio of the circumference to the diameter of a circle, or with the
least positive root of the equation

sinx
x

= 0.

[8.] The known theorem just alluded to, namely, that the definite integral (r′) becomes
= π, when nα = sinα, may be demonstrated in the following manner. Let

a =
∫ ∞

0

dα
sinβα
α

;

b =
∫ ∞

0

dα
cosβα
1 + α2

;

then these two definite integrals are connected with each other by the relation

a =

(∫ β

0

dβ − d

dβ

)
b,

because ∫ β

0

dβ b =
∫ ∞

0

dα
sinβα

α(1 + α2)
,

− d

dβ
b =

∫ ∞
0

dα
α sinβα
1 + α2

;

and all these integrals, by the principles of the foregoing articles, receive determined and
finite (that is, not infinite) values, whatever finite or infinite value may be assigned to β.
But for all values of β > 0, the value of a is constant; therefore, for all such values of β, the
relation between a and b gives, by integration,

e−β

{(∫ β

0

dβ + 1

)
b− a

}
= const.;

and this constant must be = 0, because the factor of e−β does not tend to become infinite
with β. That factor is therefore itself = 0, so that we have

a =

(∫ β

0

dβ + 1

)
b, if β > 0.
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Comparing the two expressions for a, we find

b +
d

dβ
b = 0, if β > 0;

and therefore, for all such values of β,

beβ = const.

The constant in this last result is easily proved to be equal to the quantity a, by either of
the two expressions already established for that quantity; we have therefore

b = ae−β ,

however little the value of β may exceed 0; and because b tends to the limit
π

2
as β tends to

0, we find finally, for all values of β greater than 0,

a =
π

2
, b =

π

2
e−β .

These values, and the result ∫ ∞
−∞

dα
sinα
α

= π,

to which they immediately conduct, have long been known; and the first relation, above
mentioned, between the integrals a and b, has been employed by Legendre to deduce the
former integral from the latter; but it seemed worth while to indicate a process by which that
relation may be made to conduct to the values of both those integrals, without the necessity
of expressly considering the second differential coefficient of b relative to β, which coefficient
presents itself at first under an indeterminate form.

[9.] The connexion of the formula (z′) with Fourier’s theorem (a), will be more dis-
tinctly seen, if we introduce a new function pα defined by the condition

nα =
∫ α

0

dα pα, (a′′)

which is consistent with the suppositions already made respecting the function nα. According
to those suppositions the new function pα is not necessarily continuous, nor even always finite,
since its integral nα may be discontinuous; but pα is supposed to be finite for small values
of α, in order that nα may vary gradually for such values, and may bear a finite ratio to α.
The value of the first integral of pα is supposed to be always comprised between given finite
limits, so as never to be numerically greater than ±c; and the second integral,

mα =
(∫ α

0

dα

)2

pα, (b′′)

12



becomes infinitely often equal to a given constant, a, for values of α which extend from
negative to positive infinity, and are such that the interval between any one and the next
following is never greater than a given finite constant, b. With these suppositions respecting
the otherwise arbitrary function pα, the theorems (z) and (z′) may be expressed as follows:

lim
β=∞

.

∫ b

a

dα

(∫ βα

0

dγ pγ

)
fα = 0; (a)

and

fx = $−1

∫ b

a

dα

∫ ∞
0

dβ pβ(α−x)fα; (x > a, < b) (b)

$ being determined by the equation

$ =
∫ ∞
−∞

dα

∫ 1

0

dβ pβα. (c′′)

Now, by making
pα = cosα,

(a supposition which satisfies all the conditions above assumed), we find, as before

$ = π,

and the theorem (b) reduces itself to the less general formula (a), so that it includes the
theorem of Fourier.

[10.] If we suppose that x coincides with one of the limits, a or b, instead of being
included between them, we find easily, by the foregoing analysis,

fa = $8−1

∫ b

a

dα

∫ ∞
0

dβ pβ(α−a)fα; (d′′)

fb = $88−1

∫ b

a

dα

∫ ∞
0

dβ pβ(α−b)fα; (e′′)

in which

$8 =
∫ ∞

0

dα

∫ 1

0

dβ pβα; (f ′′)

$88 =
∫ 0

−∞
dα

∫ 1

0

dβ pβα; (g′′)

so that, as before,
$ = $8 +$88.

13



Finally, when x is outside the limits a and b, the double integral in (b) vanishes; so that

0 =
∫ b

a

dα

∫ ∞
0

dβ pβ(α−x)fα, if x < a or > b. (h′′)

And the foregoing theorems will still hold good, if the function fα receive any number of
sudden changes of value, between the limits of integration, provided that it remain finite
between them; except that for those very values α8 of the variable α, for which the finite
function fα receives any such sudden variation, so as to become = f 8 for values of α infinitely
little greater than α8, after having been = f 88 for values infinitely little less than α8, we shall
have, instead of (b), the formula

ω8f 8 + ω88f 88 =
∫ b

a

dα

∫ ∞
0

dβ pβ(α−α8)fα. (i′′)

[11.] If pα be not only finite for small values of α, but also vary gradually for such values,
then, whether α be positive or negative, we shall have

lim
α=0

.nαα
−1 = p0; (k′′)

and if the equation
nα−x = 0 (l′′)

have no real root α, except the root α = x, between the limits a and b, nor any which

coincides with either of those limits, then we may change fα to
(α− x)p0

nα−x
fα, in the formula

(z′), and we shall have the expression:

fx = $−1
p0

∫ b

a

dαn∞(α−x)n
−1
α−xfα. (m′′)

Instead of the infinite factor in the index, we may substitute any large number, for example,
an uneven integer, and take the limit with respect to it; we may, therefore, write

fx = $−1
p0 lim

n=∞

∫ b

a

dα

∫ (2n+1)(α−x)

0

dα pα∫ α−x

0

dα pα

fα. (n′′)

Let ∫ (2n+1)α

(2n−1)α

dα pα = qα,n

∫ α

0

dα pα; (o′′)

then

1 + qα,1 + qα,2 + · · ·+ qα,n =

∫ (2n+1)α

0

dα pα∫ α

0

dα pα

, (p′′)

14



and the formula (n′′) becomes

fx = $−1
p0

(∫ b

a

dα fα +
∑ ∞

(n)1

∫ b

a

dαqα−x,nfα

)
; (c)

in which development, the terms corresponding to large values of n are small. For example,
when pα = cosα, then

$ = π, p0 = 1, qα,n = 2 cos 2nα,

and the theorem (c) reduces itself to the following known result:

fx = π−1

(∫ b

a

dα fα + 2
∑ ∞

(n)1

∫ b

a

dα cos(2nα− 2nx)fα

)
; (q′′)

in which it is supposed that x > a, x < b, and that b − a > π, in order that α − x may be
comprised between the limits ±π, for the whole extent of the integration; and the function
fα is supposed to remain finite within the same extent, and to vary gradually in value, at
least for values of the variable α which are extremely near to x. The result (q′′) may also be
thus written:

fx = π−1
∑ ∞

(n)−∞

∫ b

a

dα cos(2nα− 2nx)fα; (r′′)

and if we write
α =

β

2
, x =

y

2
, f y

2
= φy,

it becomes

φy =
1

2π

∑ ∞

(n)−∞

∫ 2b

2a

dβ cos(nβ − ny)φβ , (s′′)

the interval between the limits of integration relatively to β being now not greater than 2π,
and the value of y being included between those limits. For example, we may assume

2a = −π, 2b = π,

and then we shall have, by writing α, x, and f , instead of β, y, and φ,

fx =
1

2π

∑ ∞

(n)−∞

∫ π

−π
dα cos(nα− nx)fα, (t′′)

in which x > −π, x < π. It is permitted to assume the function fα such as to vanish when
α < 0, > −π; and then the formula (t′′) resolves itself into the two following, which (with a
slightly different notation) occur often in the writings of Poisson, as does also the formula
(t′′):

1
2

∫ π

0

dα fα +
∑ ∞

(n)1

∫ π

0

dα cos(nα− nx)fα = πfx; (u′′)

1
2

∫ π

0

dα fα +
∑ ∞

(n)1

∫ π

0

dα cos(nα+ nx)fα = 0; (v′′)
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x being here supposed > 0, but < π; and the function fα being arbitrary, but finite, and
varying gradually, from α = 0 to α = π, or at least not receiving any sudden change of value
for any value x of the variable α, to which the formula (u′′) is to be applied. It is evident that
the limits of integration in (t′′) may be made to become ∓l, l being any finite quantity, by

merely multiplying nα− nx under the sign cos., by
π

l
, and changing the external factor

1
2π

to
1
2l

; and it is under this latter form that the theorem (t′′) is usually presented by Poisson:

who has also remarked, that the difference of the two series (u′′) and (v′′) conducts to the
expression first assigned by Lagrange, for developing an arbitrary function between finite
limits, in a series of sines of multiples of the variable on which it depends.

[12.] In general, in the formula (m′′), from which the theorem (c) was derived, in order
that x may be susceptible of receiving all values > a and < b (or at least all for which the
function fx receives no sudden change of value), it is necessary, by the remark made at the
beginning of the last article, that the equation∫ α

0

dα pα = 0, (w′′)

should have no real root α different from 0, between the limits ∓(b− a). But it is permitted
to suppose, consistently with this restriction, that a is < 0, and that b is > 0, while both are
finite and determined; and then the formula (m′′), or (c) which is a consequence of it, may
be transformed so as to receive new limits of integration, which shall approach as nearly as
may be desired to negative and positive infinity. In fact, by changing α to λα, x to λx, and
fλx to fx, the formula (c) becomes

fx = λ$−1
p0

(∫ λ−1b

λ−1a

dα fα +
∑ ∞

(n)1

∫ λ−1b

λ−1a

dαqλα−λx,nfα

)
; (x′′)

in which λ−1a will be large and negative, while λ−1b will be large and positive, if λ be
small and positive, because we have supposed that a is negative, and b positive; and the new
variable x is only obliged to be > λ−1a and < λ−1b, if the new function fx be finite and vary
gradually between these new and enlarged limits. At the same time, the definition (o′′) shows
that p0qλα−λx,n will tend indefinitely to become equal to 2p2nλ(α−x); in such a manner that

lim
λ=0

.
p0qλα−λx,n

2p2nλ(α−x)
= 1, (y′′)

at least if the function p be finite and vary gradually. Admitting then that we may adopt the

following ultimate transformation of a sum into an integral, at least under the sign
∫ ∞
−∞

dα,

lim
λ=0

.2λ
(

1
2p0 +

∑ ∞

(n)1
p2nλ(α−x)

)
=
∫ ∞

0

dβ pβ(α−x), (z′′)
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we shall have, as the limit of (x′′), this formula:

fx = $−1

∫ ∞
−∞

dα

∫ ∞
0

dβ pβ(α−x)fα; (d)

which holds good for all real values of the variable x, at least under the conditions lately
supposed, and may be regarded as an extension of the theorem (b), from finite to infinite
limits. For example, by making p a cosine, the theorem (d) becomes

fx = π−1

∫ ∞
−∞

dα

∫ ∞
0

dβ cos(βα− βx)fα, (a′′′)

which is a more usual form than (a) for the theorem of Fourier. In general, the deduction
in the present article, of the theorem (d) from (c), may be regarded as a verification of
the analysis employed in this paper, because (d) may also be obtained from (b), by making
the limits of integration infinite; but the demonstration of the theorem (b) itself, in former
articles, was perhaps more completely satisfactory, besides that it involved fewer suppositions;
and it seems proper to regard the formula (d) as only a limiting form of (b).

[13.] This formula (d) may also be considered as a limit in another way, by introducing,
under the sign of integration relatively to β, a factor fkβ such that

f0 = 1, f∞ = 0, (b′′′)

in which k is supposed positive but small, and the limit taken with respect to it, as follows:

fx = lim
k=0

.$−1

∫ ∞
−∞

dα

(∫ ∞
0

dβ pβ(α−x)fkβ

)
fα. (e)

It is permitted to suppose that the function f decreases continually and gradually, at a finite
and decreasing rate, from 1 to 0, while the variable on which it depends increases from 0 to
∞; the first differential coefficient f

′ being thus constantly finite and negative, but constantly
tending to 0, while the variable is positive and tends to∞. Then, by the suppositions already
made respecting the function p, if α− x and k be each different from 0, we shall have∫ β

0

dβ pβ(α−x)fkβ = fkβnβ(α−x)(α− x)−1 − k(α− x)−1

∫ β

0

dβ nβ(α−x)f
′
kβ ; (c′′′)

and therefore, because f∞ = 0, while n is always finite, the integral relative to β in the
formula (e) may be thus expressed:∫ β

0

dβ pβ(α−x)fkβ = (α− x)−1ψk−1(α−x), (d′′′)

the function ψ being assigned by the equation

ψλ = −
∫ ∞

0

dγ nλγf
′
γ . (e′′′)
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For any given value of λ, the value of this function ψ is finite and determinate, by the
principles of the sixth article; and as λ tends to ∞, the function ψ tends to 0, on account
of the fluctuation of n, and because f

′ tends to 0, while γ tends to ∞; the integral (d′′′)
therefore tends to vanish with k, if α be different from x; so that

lim
k=0

.

∫ ∞
0

dβ pβ(α−x)fkβ = 0, if α >< x. (f ′′′)

On the other hand, if α = x, that integral tends to become infinite, because we have, by
(b′′′),

lim
k=0

.p0

∫ ∞
0

dβ fkβ =∞. (g′′′)

Thus, while the formula (d′′′) shows that the integral relative to β in (e) is a homogeneous
function of α − x and k, of which the dimension is negative unity, we see also, by (f′′′) and
(g′′′), that this function is such as to vanish or become infinite at the limit k = 0, according
as α − x is different from or equal to zero. When the difference between α and x, whether
positive or negative, is very small and of the same order as k, the value of the last mentioned
integral (relative to β) varies very rapidly with α; and in this way of considering the subject,
the proof of the formula (e) is made to depend on the verification of the equation

$−1

∫ ∞
−∞

dλψλλ
−1 = 1. (h′′′)

But this last verification is easily effected; for when we substitute the expression (e′′′) for ψλ,
and integrate first relatively to λ, we find, by (r′),∫ ∞

−∞
dλnλγλ

−1 = $; (i′′′)

it remains then to show that

−
∫ ∞

0

dγ f
′
γ = 1; (k′′′)

and this follows immediately from the conditions (b′′′). For example, when p is a cosine, and
f a negative neperian exponential, so that

pα = cosα, fα = e−α,

then, making λ = k−1(α− x), we have∫ ∞
0

dβ e−kβ cos(βα− βx) = (α− x)−1ψλ;

ψλ =
∫ ∞

0

dγ e−γ sinλγ =
λ

1 + λ2
;
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and

$−1

∫ ∞
−∞

dλψλλ
−1 = π−1

∫ ∞
−∞

dλ

1 + λ2
= 1.

It is nearly thus that Poisson has, in some of his writings, demonstrated the theorem of
Fourier, after putting it under a form which differs only slightly from the following:

fx = π−1 lim
k=0

∫ ∞
−∞

dα

∫ ∞
0

dβ e−kβ cos(βα− βx)fα; (l′′′)

namely, by substituting for the integral relative to β its value

k

k2 + (α− x)2
;

and then observing that, if k be very small, this value is itself very small, unless α be
extremely near to x, so that fα may be changed to fx; while, making α = x + kλ, and
integrating relatively to λ between limits indefinitely great, the factor by which this function
fx is multiplied in the second member of (l′′′), is found to reduce itself to unity.

[14.] Again, the function fα retaining the same properties as in the last article for
positive values of α, and being further supposed to satisfy the condition

f−α = fα, (m′′′)

while k is still supposed to be positive and small, the formula (d) may be presented in this
other way, as the limit of the result of two integrations, of which the first is to be effected
with respect to the variable α:

fx = lim
k=0

.$−1

∫ ∞
0

dβ

∫ ∞
−∞

dα fkαpβ(α−x)fα. (f)

Now it often happens that if the function fα be obliged to satisfy conditions which determine
all its values by means of the arbitrary values which it may have for a given finite range, from
α = a to α = b, the integral relative to α in the formula (f) can be shown to vanish at the
limit k = 0, for all real and positive values of β, except those which are roots of a certain
equation

Ωρ = 0; (g)

while the same integral is, on the contrary, infinite, for these particular values of β; and then
the integration relatively to β will in general change itself into a summation relatively to the
real and positive roots ρ of the equation (g), which is to be combined with an integration
relatively to α between the given limits a and b; the resulting expression being of the form

fx =
∑

ρ

∫ b

a

dαφx,α,ρfα. (h)
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For example, in the case where p is a cosine, and f a negative exponential, if the conditions
relative to the function f be supposed such as to conduct to expressions of the forms∫ ∞

0

dα e−hαfα =
ψ(h)
φ(h)

, (n′′′)

∫ −∞
0

dα ehαfα =
ψ(−h)
φ(−h)

, (o′′′)

in which h is any real or imaginary quantity, independent of α, and having its real part
positive; it will follow that∫ ∞

−∞
dα e−k

√
α2

(cosβα−
√
−1 sinβα)fα =

ψ(β
√
−1 + k)

φ(β
√
−1 + k)

− ψ(β
√
−1− k)

φ(β
√
−1− k)

, (p′′′)

in which
√
α2 is = α or −α, according as α is > or < 0, and the quantities β and k are real,

and k is positive. The integral in (p′′′), and consequently also that relative to α in (f), in
which, now

pα = cosα, fα = e−k
√
α2
,

will therefore, under these conditions, tend to vanish with k, unless β be a root ρ of the
equation

φ(ρ
√
−1) = 0, (q′′′)

which here corresponds to (g); but the same integral will on the contrary tend to become
infinite, as k tends to 0, if β be a root of the equation (q′′′). Making therefore β = ρ + kλ,
and supposing kλ to be small, while ρ is a real and positive root of (q′′′), the integral (p′′′)
becomes

k−1

1 + λ2
(aρ −

√
−1bρ), (r′′′)

in which aρ and bρ are real, namely,

aρ =
ψ(ρ
√
−1)

φ′(ρ
√
−1)

+
ψ(−ρ

√
−1)

φ′(−ρ
√
−1)

,

bρ =
√
−1
(
ψ(ρ
√
−1)

φ′(ρ
√
−1)

− ψ(−ρ
√
−1)

φ′(−ρ
√
−1)

)
;

 (s′′′)

φ′ being the differential coefficient of the function φ. Multiplying the expression (r′′′) by
π−1 dβ (cosβx +

√
−1 sinβx), which may be changed to π−1k dλ (cos ρx +

√
−1 sin ρx); in-

tegrating relatively to λ between indefinitely great limits, negative and positive; taking the
real part of the result, and summing it relatively to ρ; there results,

fx =
∑

ρ
(aρ cos ρx+ bρ sin ρx); (t′′′)
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a development which has been deduced nearly as above, by Poisson and Liouville, from the
suppositions (n′′′), (o′′′), and from the theorem of Fourier presented under a form equivalent
to the following:

fx = lim
k=0

.π−1

∫ ∞
0

dβ

∫ ∞
−∞

dα e−k
√
α2

cos(βα− βx)fα; (u′′′)

and in which it is to be remembered that if 0 be a root of the equation (q′′′), the corresponding
terms in the development of fx must in general be modified by the circumstance, that in
calulating these terms, the integration relatively to λ extends only from 0 to ∞.

For example, when the function f is obliged to satisfy the conditions

f−α = fα, fl−α = −fl+α, (v′′′)

the suppositions (n′′′) (o′′′) are satisfied; the functions φ and ψ being here such that

φ(h) = ehl + e−hl,

ψ(h) =
∫ l

0

dα (eh(l−α) − eh(α−l))fα;

therefore the equation (q′′′) becomes in this case

cos ρl = 0, (w′′′)

and the expressions (s′′′) for the coefficients of the development (t′′′) reduce themselves to
the following:

aρ =
2
l

∫ l

0

dα cos ρα fα; bρ = 0; (x′′′)

so that the method conducts to the following expression for the function f , which satisfies
the conditions (v′′′),

fx =
2
l

∑ ∞

(n)1
cos

(2n− 1)πx
2l

∫ l

0

dα cos
(2n− 1)πα

2l
fα; (y′′′)

in which fα is arbitrary from α = 0 to α = l, except that fl must vanish. The same method
has been applied, by the authors already cited, to other and more difficult questions; but it
will harmonize better with the principles of the present paper to treat the subject in another
way, to which we shall now proceed.

[15.] Instead of introducing, as in (e) and (f), a factor which has unity for its limit,
we may often remove the apparent indeterminateness of the formula (d) in another way,
by the principles of fluctuating functions. For if we integrate first relatively to α between
indefinitely great limits, negative and positive, then, under the conditions which conduct
to developments of the form (h), we shall find that the resulting function of β is usually a
fluctuating one, of which the integral vanishes, except in the immediate neighbourhood of
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certain particular values determined by an equation such as (g); and then, by integrating only
in such immediate neighbourhood, and afterwards summing the results, the development (h)
is obtained. For example, when p is a cosine, and when the conditions (v′′′) are satisfied by
the function f , it is not difficult to prove that∫ 2ml+l

−2ml−l
dα cos(βα− βx)fα =

2 cos(2mβl + βl +mπ)
cosβl

cosβx
∫ l

0

dα cosβαfα; (z′′′)

m being here an integer number, which is to be supposed large, and ultimately infinite. The
equation (g) becomes therefore, in the present question and by the present method, as well
as by that of the last article,

cos ρl = 0;

and if we make β = ρ + γ, ρ being a root of this equation, we may neglect γ in the second
member of (z′′′), except in the denominator

cosβl = − sin ρl sin γl,

and in the fluctuating factor of the numerator

cos(2mβl + βl +mπ) = − sin ρl sin(2mγl + γl);

consequently, multiplying by π−1 dγ, integrating relatively to γ between any two small limits
of the forms ∓ε, and observing that

lim
m=∞

.
2
π

∫ ε

−ε
dγ

sin(2mlγ + lγ)
sin lγ

=
2
l
,

the development

fx =
2
l

∑
ρ

cos ρx
∫ l

0

dα cos ρα fα,

which coincides with (y′′′), and is of the form (h), is obtained.

[16.] A more important application of the method of the last article is suggested by the
expression which Fourier has given for the arbitrary initial temperature of a solid sphere,
on the supposition that this temperature is the same for all points at the same distance from
the centre. Denoting the radius of the sphere by l, and that of any layer or shell of it by α,
while the initial temperature of the same layer is denoted by α−1fα, we have the equations

f0 = 0, f ′l + νfl = 0, (aIV )

which permit us to suppose

fα + f−α = 0, f ′l+α + f ′l−α + ν(fl+α + fl−α) = 0; (bIV )
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ν being here a constant quantity not less than −l−1, and f ′ being the first differential coef-
ficient of the function f , which function remains arbitrary for all values of α greater than 0,
but not greater than l. The equations (bIV ) give

(β cosβl + ν sinβl)
∫ l+α

l−α
dα sinβα fα

= (β sinβl − ν cosβl)
∫ α+l

α−l
dα cosβα fα − cosβα (fα+l + fα−l); (cIV )

so that

(ρ sin ρl − ν cos ρl)
∫ α+l

α−l
dα cos ρα fα = cos ρα (fα+l + fα−l), (dIV )

if ρ be a root of the equation
ρ cos ρl + ν sin ρl = 0. (eIV )

This latter equation is that which here corresponds to (g); and when we change β to ρ+ γ,
γ being very small, we may write, in the first member of (cIV ),

β cosβl + ν sinβl = γ{(1 + νl) cos ρl + ρl sin ρl}, (fIV )

and change β to ρ in all the terms of the second member, except in the fluctuating factor
cosβα, in which α is to be made extremely large. Also, after making cosβα = cos ρα cos γα−
sin ρα sin γα, we may suppress cos γα in the second member of (cIV ), before integrating with
respect to γ, because by (dIV ) the terms involving cos γα tend to vanish with γ, and because

γ−1 cos γα changes sign with γ. On the other hand, the integral of
dγ sin γα

γ
is to be replaced

by π, though it be taken only for very small values, negative and positive, of γ, because α is
here indefinitely large and positive. Thus in the present question, the formula

fx =
1
π
. lim
α=∞

.

∫ ∞
0

dβ

∫ l+α

l−α
dα sinβα fα, (gIV )

(which is obtained from (a′′′) by suppressing the terms which involve cosβx, on account of
the first condition (bIV ),) may be replaced by a sum relative to the real and positive roots
of the equation (eIV ); the term corresponding to any one such root being

rρ sin ρx
(1 + νl) cos ρl − ρl sin ρl

, (hIV )

if we suppose ρ > 0, and make for abridgment

rρ = (ν cos ρl − ρ sin ρl)
∫ α+l

α−l
dα sin ρα fα + sin ρα (fα+l + fα−l). (iIV )
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The equations (bIV ) show that the quantity rρ does not vary with α, and therefore that it
may be rigorously thus expressed:

rρ = 2(ν cos ρl − ρ sin ρl)
∫ l

0

dα sin ρα fα; (kIV )

we have also, by (eIV ), ρ being > 0,

2(ν cos ρl − ρ sin ρl)
cos ρl + l(ν cos ρl − ρ sin ρl)

=
2ρ

ρl − sin ρl cos ρl
. (lIV )

And if we set aside the particular case where

νl + 1 = 0, (mIV )

the term corresponding to the root
ρ = 0, (nIV )

of the equation (eIV ), vanishes in the development of fx; because this term is, by (gIV ),

x

π

∫ β

0

dβ

(
β

∫ l+α

l−α
dα sinβα fα

)
, (oIV )

α being very large, and β small, but both being positive; and unless the condition (mIV ) be
satisfied, the equation (cIV ) shows that the quantity to be integrated in (oIV ), with respect
to β, is a finite and fluctuating function of that variable, so that its integral vanishes, at the
limit α =∞. Setting aside then the case (mIV ) which corresponds physically to the absence
of exterior radiation, we see that the function fx, which represents the initial temperature of
any layer of the sphere multiplied by the distance x of that layer from the centre, and which
is arbitrary between the limits x = 0, x = l, that is, between the centre and the surface,
(though it is obliged to satisfy at those limits the conditions (aIV )), may be developed in the
following series, which was discovered by Fourier, and is of the form (h):

fx =
∑

ρ

2ρ sin ρx
∫ l

0

dα sin ρα fα

ρl − sin ρl cos ρl
; (pIV )

the sum extending only to those roots of the equation (eIV ) which are greater than 0. In the
particular case (mIV ), in which the root (nIV ) of the equation (eIV ) must be employed, the
term (oIV ) becomes, by (cIV ) and (dIV ),

3x
πl3

{∫ α+l

α−l
dα fααc− l(fα+l + fα−l)αc

}
, (qIV )
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in which, at the limit here considered,

c =
∫ ∞

0

dθ
vers θ
θ2

=
π

2
; (rIV )

but also, by the equations (bIV ), (mIV ),∫ α+l

α−l
dα fαα− l(fα+l + fα−l)α = 2

∫ l

0

dα fαα; (sIV )

the sought term of fx becomes, therefore, in the present case,

3x
l3

∫ l

0

dα fαα, (tIV )

and the corresponding term in the expression of the temperature x−1fx is equal to the mean
initial temperature of the sphere; a result which has been otherwise obtained by Poisson,
for the case of no exterior radiation, and which might have been anticipated from physical
considerations. The supposition

νl + 1 < 0, (uIV )

which is inconsistent with the physical conditions of the question, and in which Fourier’s

development (pIV ) may fail, is excluded in the foregoing analysis.

[17.] When a converging series of the form (h) is arrived at, in which the coefficients φ
of the arbitrary function f , under the sign of integration, do not tend to vanish as they
correspond to larger and larger roots ρ of the equation (g); then those coefficients φx,α,ρ
must in general tend to become fluctuating functions of α, as ρ becomes larger and larger.
And the sum of those coefficients, which may be thus denoted,∑

ρ
φx,α,ρ = ψx,α,ρ, (i)

and which is here supposed to be extended to all real and positive roots of the equation (g),
as far as some given root ρ, must tend to become a fluctuating function of α, and to have
its mean value equal to zero, as ρ tends to become infinite, for all values of α and x which
are different from each other, and are both comprised between the limits of the integration
relative to α; in such a manner as to satisfy the equation∫ µ

λ

dαψx,α,∞fα = 0, (k)

which is of the form (e), referred to in the second article; provided that the arbitrary function f
is finite, and that the quantities λ, µ, x, α are all comprised between the limits a and b, which
enter into the formula (h); while α is, but x is not, comprised also between the new limits λ
and µ. But when α = x, the sum (i) tends to become infinite with ρ, so that we have

ψx,x,∞ =∞, (l)
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and ∫ x+ε

x−ε
dαψx,α,∞fα = fx, (m)

ε being here a quantity indefinitely small. For example, in the particular question which
conducts to the development (y′′′), we have

φx,α,ρ =
2
l

cos ρx cos ρα, (vIV )

and

ρ =
(2n− 1)π

2l
; (wIV )

therefore, summing relatively to ρ, or to n, from n = 1 to any given positive value of the
integer number n, we have, by (i),

ψx,α,ρ =
sin

nπ(α− x)
l

2l sin
π(α− x)

2l

+
sin

nπ(α+ x)
l

2l sin
π(α+ x)

2l

; (xIV )

and it is evident that this sum tends to become a fluctuating function of α, and to satisfy the
equation (k), as ρ, or n, tends to become infinite, while α and x are different from each other,
and are both comprised between the limits 0 and l. On the other hand, when α becomes
equal to x, the first part of the expression (xIV ) becomes =

n

l
, and therefore tends to become

infinite with n, so that the equation (l) is true. And the equation (m) is verified by observing,
that if x > 0, < l, we may omit the second part of the sum (xIV ), as disappearing in the
integral through fluctuation, while the first part gives, at the limit,

lim
n=∞

∫ x+ε

x−ε
dα

sin
nπ(α− x)

l

2l sin
π(α− x)

2l

fα = fx. (yIV )

If x be equal to 0, the integral is to be taken only from 0 to ε, and the result is only half as
great, namely,

lim
n=∞

.

∫ ε

0

dα
sin

nπα

l

2l sin
πα

2l

fα = 1
2f0; (zIV )

but, in this case, the other part of the sum (xIV ) contributes an equal term, and the whole
result is f0. If x = l, the integral is to be taken from l − ε to l, and the two parts of the
expression (xIV ) contribute the two terms 1

2fl and − 1
2fl, which neutralize each other. We

may therefore in this way prove, à posteriori, by consideration of fluctuating functions, the
truth of the development (y′′′) for any arbitrary but finite function fx, and for all values
of the real variable x from x = 0 to x = l, the function being supposed to vanish at the
latter limit; observing only that if this function fx undergo any sudden change of value, for
any value x8 of the variable between the limits 0 and l, and if x be made equal to x8 in the
development (y′′′), the process shows that this development then represents the semisum of
the two values which the function f receives, immediately before and after it undergoes this
sudden change.
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[18.] The same mode of à posteriori proof, through the consideration of fluctuating
functions, may be applied to a great variety of other analogous developments, as has indeed
been indicated by Fourier, in a passage of his Theory of Heat. The spirit of Poisson’s

method, when applied to the establishment, à posteriori, of developments of the form (h)
would lead us to multiply, before the summation, each coefficient φx,α,ρ by a factor fk,ρ

which tends to unity as k tends to 0, but tends to vanish as ρ tends to∞; and then instead of
a generally fluctuating sum (i), there results a generally evanescent sum (k being evanescent),
namely, ∑

ρ

fk,ρφx,α,ρ = χx,α,k,ρ, (n)

which conducts to equations analogous to (k) (l) (m), namely,

lim
k=0

∫ µ

λ

dαχx,α,k,∞fα = 0; (o)

lim
k=0

χx,x,k,∞ =∞; (p)

lim
k=0

∫ x+ε

x−ε
dαχx,α,k,∞fα = fx. (q)

It would be interesting to inquire what form the generally evanescent function χ would take
immediately before its vanishing when

fk,ρ = e−kρ,

and
φx,α,ρ =

2ρ sin ρx sin ρα
ρl − sin ρl cos ρl

,

ρ being a root of the equation
ρl cotan ρl = const.,

and the constant in the second member being supposed not greater than unity.

[19.] The development (c), which, like (h), expresses an arbitrary function, at least
between given limits, by a combination of summation and integration, was deduced from
the expression (m′′) of the eleventh article, which conducts also to many other analogous
developments, according to the various ways in which the factor with the infinite index,
n∞(α−x), may be replaced by an infinite sum, or other equivalent form. Thus, if, instead of
(o′′), we establish the following equation,∫ 2nα

(2n−2)α

dα pα = rα,n

∫ α

0

dα pα, (aV )

we shall have, instead of (c), the development:

fx = $−1
p0

∑ ∞

(n)1

∫ b

a

dαrα−x,nfα; (r)
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which, when p is a cosine, reduces itself to the form,

fx =
2
π

∑ ∞

(n)1

∫ b

a

dα cos(2n− 1 . α− x)fα, (bV )

x being > a, < b, and b− a being not > π; and easily conducts to the known expression

fx =
1
l

∑ ∞

(n)1

∫ l

−l
dα cos

(2n− 1)π(α− x)
2l

fα, (cV )

which holds good for all values of x between −l and +l. By supposing fα = f−α, we are
conducted to the expression (y′′′); and by supposing fα = −f−α we are conducted to this
other known expression,

fx =
2
l

∑ ∞

(n)1
sin

(2n− 1)πx
2l

∫ l

0

dα sin
(2n− 1)πα

2l
fα; (dV )

which holds good even at the limit x = l, by the principles of the seventeenth article, and
therefore offers the following transformation for the arbitrary function fl:

fl = −2
l

∑ ∞

(n)1
(−1)n

∫ l

0

dα sin
(2n− 1)πα

2l
fα. (eV )

For example, by making fα = αi, and supposing i to be an uneven integer number; effecting
the integration indicated in (eV ), and dividing both members by li, we find the following
relation between the sums of the reciprocals of even powers of odd whole numbers:

1 = [i]1ω2 − [i]3ω4 + [i]5ω6 − · · · ; (fV )

in which
[i]k = i(i− 1)(i− 2) · · · (i− k + 1); (gV )

and

ω2k = 2
(

2
π

)2k∑ ∞

(n)1
(2n− 1)−2k; (hV )

thus
1 = ω2 = 3ω2 − 3 . 2 . 1 . ω4 = 5ω2 − 5 . 4 . 3ω4 + 5 . 4 . 3 . 2 . 1ω6, (iV )

so that
ω2 = 1, ω4 = 1

3 , ω6 = 2
15 . (kV )

Again, by making fα = αi, but supposing i = an uneven number 2k, we get the following
additional term in the second member of the equation (fV ),

(−1)k[2k]2kω2k+1, (lV )
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in which

ω2k+1 = −2
(

2
π

)2k+1∑ ∞

(n)1
(−1)n(2n− 1)−2k−1; (mV )

thus
1 = ω1 = 2ω2 − 2 . 1ω3 = 4ω2 − 4 . 3 . 2ω4 + 4 . 3 . 2 . 1ω5, (nV )

so that
ω1 = 1, ω3 = 1

2 , ω5 = 5
24 . (oV )

Accordingly, if we multiply the values (kV ) by
π2

8
,
π4

32
,
π6

128
, we get the known values for

the sums of the reciprocals of the squares, fourth powers, and sixth powers of the odd whole

numbers; and if we multiply the values (oV ) by
π

4
,
π3

16
,
π5

64
, we get the known values for the

sums of the reciprocals of the first, third, and fifth powers of the same odd numbers, taken
however with alternately positive and negative signs. Again, if we make fα = sinα, in (eV ),
and divide both members of the resulting equation by cos l, we get this known expression for
a tangent,

tan l =
∑ ∞

(n)−∞

2
(2n− 1)π − 2l

; (pV )

which shows that, with the notation (hV ),

tan l = ω2l
1 + ω4l

3 + ω6l
5 + · · · ; (qV )

so that the coefficients of the ascending powers of the arc in the development of its tangent
are connected with each other by the relations (f5), which may be briefly represented thus:

√
−1 = (1 +

√
−1d0)2k−1 tan 0; (rV )

the second member of this symbolic equation being supposed to be developed, and d
i
0 tan 0

being understood to denote the value which the ith differential coefficient of the tangent of
α, taken with respect to α, acquires when α = 0; thus

1 = d0 tan 0 = 3d0 tan 0− d
3
0 tan 0 = 5d0 tan 0− 10d

3
0 tan 0 + d

5
0 tan 0. (sV )

Finally, if we make fα = cosα, and attend to the expression (pV ), we obtain, for the secant
of an arc l, the known expression:

sec l =
∑ ∞

(n)−∞

2(−1)n+1

(2n− 1)π − 2l
; (tV )

which shows that, with the notation (mV ),

sec l = ω1l
0 + ω3l

2 + ω5l
4 + · · · , (uV )

and therefore, by the relations of the form (nV ),
√
−1(1− (

√
−1d0)2k sec 0) = (1 +

√
−1d0)2k tan 0; (vV )

thus
1 = sec 0 = 2d0 tan 0− d

2
0 sec 0 = 4d0 tan 0− 4d

3
0 tan 0 + d

4
0 sec 0. (wV )

Though several of the results above deduced are known, the writer does not remember to
have elsewhere seen the symbolic equations (rV ), (vV ), as expressions for the laws of the
coefficients of the developments of the tangent and secant, according to ascending powers of
the arc.
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[20.] In the last article, the symbol r was such, that

∑ n

(n)1
rα,n = n2nαn

−1
α ; (xV )

and in article [11.], we had

1 +
∑ n

(n)1
qα,n = n2nα+αn

−1
α . (yV )

Assume, now, more generally,
∇βsα,β = nβαn

−1
α ; (zV )

and let the operation ∇β admit of being effected after, instead of before, the integration
relatively to α; the expression (m′′) will then acquire this very general form:

fx = $−1
p0∇∞

∫ b

a

dα sα−x,βfα; (s)

which includes the transformations (c) and (r), and in which the notation ∇∞ is designed
to indicate that after performing the operation ∇β we are to make the variable β infinite,
according to some given law of increase, connected with the form of the operation denoted
by ∇.

[21.] In order to deduce the theorems (c), (r), (s), we have hitherto supposed (as was
stated in the twelfth article), that the equation nα = 0 has no real root different from 0
between the limits ∓(b − a), in which a and b are the limits of the integration relative to
a, between which latter limits it is also supposed that the variable x is comprised. If these
conditions be not satisfied, the factor n

−1
α−x, in the formula (m′′), may become infinite within

the proposed extent of integration, for values of α and x which are not equal to each other;
and it will then be necessary to change the first member of each of the equations (m′′), (c),
(r), (s), to a function different from fx, but to be determined by similar principles. To
simplify the question, let it be supposed that the function nα receives no sudden change of
value, and that the equation

nα = 0, (aV I)

which coincides with (w′′) has all its real roots unequal. These roots must here coincide with
the quantities αn,i of the fourth and other articles, for which the function nα changes sign;
but as the double index is now unnecessary, while the notation αn has been appropriated to
the roots of the equation (g), we shall denote the roots of the equation (aV I), in their order,
by the symbols

ν−∞, . . . ν−1, ν0, ν1, . . . ν∞; (bV I)

and choosing ν0 for that root of (aV I) which has already been supposed to vanish, we shall
have

ν0 = 0, (cV I)
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while the other roots will be > or < 0, according as their indices are positive or negative.
If the differential coefficient pα be also supposed to remain always finite, and to receive no
sudden change of value in the immediate neighbourhood of any root ν of (aV I), we shall have,
for values of α in that neighbourhood, the limiting equation:

lim
α=ν

.nα(α− ν)−1 = pν ; (dV I)

and pν will be different from 0, because the real roots of the equation (aV I) have been
supposed unequal. Conceive also that the integral∫ ∞

−∞
dαnα+βνα

−1 = $ν,β (eV I)

tends to some finite and determined limit, which may perhaps be different for different roots ν,
and therefore may be thus denoted,

$ν,∞ = $ν , (fV I)

as β tends to∞, after the given law referred to at the end of the last article. Then, by writing

α = x+ ν + β−1y, (gV I)

and supposing β to be very large, we easily see, by reasoning as in former articles, that the
part of the integral ∫ b

a

dαnβ(α−x)n
−1
α−xfα, (hV I)

which corresponds to values of α − x in the neighbourhood of the root ν, is very nearly
expressed by

$νp
−1
ν fx+ν ; (iV I)

and that this expression is accurate at the limit. Instead of the equation (s), we have therefore
now this other equation:

∑
ν
$νp

−1
ν fx+ν = ∇∞

∫ b

a

dα sα−x,βfα; (t)

the sum in the first member being extended to all those roots ν of the equation (aV I), which
satisfy the conditions

x+ ν > a, < b. (kV I)

If one of the roots ν should happen to satisfy the condition

x+ ν = a, (lV I)

the corresponding term in the first member of (t) would be, by the same principles,

$8νp
−1
ν fa, (mV I)
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in which
$8ν = lim

β=∞

∫ ∞
0

dαnα+βνα
−1. (nV I)

And if a root ν of (aV I) should satisfy the condition

x+ ν = b, (oV I)

the corresponding term in the first member of (t) would then be

$88νp
−1
ν fb, (pV I)

in which

$88ν = lim
β=∞

∫ 0

−∞
dαnα+βνα

−1. (qV I)

Finally, if a value of x+ν satisfy the conditions (kV I), and if the function f undergo a sudden
change of value for this particular value of the variable on which that function depends, so that
f = f 88 immediately before, and f = f 8 immediately after the change, then the corresponding
part of the first member of the formula (t) is

p
−1
ν ($8νf

8 +$88νf
88). (rV I)

And in the formulæ for $ν , $8ν , $88ν , it is permitted to write

nα+βνα
−1 =

∫ 1

0

dtptα+βν . (sV I)

[22.] One of the simplest ways of rendering the integral (eV I) determinate at its limit,
is to suppose that the function pα is of the periodical form which satisfies the two following
equations,

p−α = pα, pα+p = −pα; (tV I)

p being some given positive constant. Multiplying these equations by dα, and integrating
from α = 0, we find, by (a′′),

n−α + nα = 0, nα+p + nα = np; (uV I)

therefore
np = n p

2
+ n− p2 = 0, (vV I)

and
nα+p = −nα, nα+2p = nα, &c. (wV I)

Consequently, if the equations (tV I) be satisfied, the multiples (by whole numbers) of p will
all be roots of the equation (aV I); and reciprocally that equation will have no other real
roots, if we suppose that the function pα, which vanishes when α is any odd multiple of

p

2
,
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preserves one constant sign between any one such multiple and the next following, or simply
between α = 0 and α =

p

2
. We may then, under these conditions, write

νi = ip, (xV I)

i being any integer number, positive or negative, and νi denoting generally, as in (bV I), any
root of the equation (aV I). And we shall have∫ ∞

−∞
dαnα+kpα

−1 = (−1)k$, (yV I)

k being any integer number, and $ still retaining the same meaning as in the former articles.
Also, for any integer value of k,

pkp = (−1)kp0. (zV I)

These things being laid down, let us resume the integral (eV I), and let us suppose that the
law by which β increases to ∞ is that of coinciding successively with the several uneven
integer numbers 1, 3, 5, &c., as was supposed in deducing the formula (c). Then βν in (eV I)
will be an odd or even multiple of p, according as ν is the one or the other, so that we shall
have by (xV I), (yV I), the following determined expression for the sought limit (fV I):

$νi = (−1)i$; (aV II)

but also, by (xV I), (zV I),
pνi = (−1)ip0; (bV II)

therefore
$νp

−1
ν = $p

−1
0 , (cV II)

the value of this expression being thus the same for all the roots of (aV I). At the same time,
in (iV I),

fx+ν = fx+ip; (dV II)

the equation (t) becomes therefore now

∑
i
fx+ip = $−1

p0∇∞
∫ b

a

dα sα−x,βfα, (u)

β tending to infinity by passing through the successive positive odd numbers, and i receiving
all integer values which allow x+ip to be comprised between the limits a and b. If any integer
value of i render x+ ip equal to either of these limits, the corresponding term of the sum in
the first member of (u) is to be 1

2fa, or 1
2fb; and if the function f receive any sudden change

of value between the same limits of integration, corresponding to a value of the variable which
is of the form x+ ip, the term introduced thereby will be of the form 1

2f
8 + 1

2f
88.

For example, when
pα = cosα, $ = π, p = π, (eV II)
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we obtain the following known formula, instead of (r′′),

∑
i
fx+iπ = π−1

∑ ∞

(n)−∞

∫ b

a

dα cos(2nα− 2nx) fα; (fV II)

which may be transformed in various ways, by changing the limits of integration, and in
which halves of functions are to be introduced in extreme cases, as above.

On the other hand, if the law of increase of β be, as in (r), that of coinciding successively
with large and larger even numbers, then

$ν = $, pν = ∓p0, (gV II)

and the equation (t) becomes

∑
i
(−1)ifx+iπ = $−1

p0∇∞
∫ b

a

dα sα−x,βfα. (v)

For example, in the case (eV II), we obtain this extension of formula (bV ),

∑
i
(−1)ifx+iπ = π−1

∑ ∞

(n)−∞

∫ b

a

dα cos(2n− 1 . α− x) fα. (hV II)

We may verify the equations (fV II) (hV II) by remarking that both members of the former
equation remain unchanged, and that both members of the latter are changed in sign, when x
is increased by π. A similar verification of the equations (u) and (v) requires that in general
the expression

∇∞
∫ b

a

dα sα−x,βfα (iV II)

should either receive no change, or simply change its sign, when x is increased by p, according
as β tends to ∞ by coinciding with large and odd or with large and even numbers.

[23.] In all the examples hitherto given to illustrate the general formulæ of this paper,
it has been supposed for the sake of simplicity, that the function p is a cosine; and this
supposition has been sufficient to deduce, as we have seen, a great variety of known results.
But it is evident that this function p may receive many other forms, consistently with the
suppositions made in deducing those general formulæ; and many new results may thus be
obtained by the method of the foregoing articles.

For instance, it is permitted to suppose

pα = 1, if α2 < 1; (kV II)

p1 = 0; (lV II)

pα+2 = −pα; (mV II)
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and then the equations (tV I) of the last article, with all that were deduced from them, will
still hold good. We shall now have

p = 2; (nV II)

and the definite integral denoted by$, and defined by the equation (r′), may now be computed
as follows. Because the function nα changes sign with α, we have

$ = 2
∫ ∞

0

dαnαα
−1; (oV II)

but
nα = α, from α = 0 to α = 1;
. . . 2− α, . . . 1 . . . 3;
. . . α− 4, . . . 3 . . . 4;

}
(pV II)

and
nα+4 = nα. (qV II)

Hence ∫ 4

0

dαnαα
−1 = 6 log 3− 4 log 4, (rV II)

the logarithms being Napierian; and generally, if m be any positive integer number, or zero,

∫ 4m+4

4m

dαnαα
−1 =

∫ 4

0

nα(α+ 4m)−1

= 4m log(4m)− (8m+ 2) log(4m+ 1)
+(8m+ 6) log(4m+ 3)− (4m+ 4) log(4m+ 4)

=
∑ ∞

(k)1

1− 2−2k

k(k + 1
2 )

(2m+ 1)−2k. (sV II)

But, by (hV ), ∑ ∞

(m)0
(2m+ 1)−2k = 1

2

(π
2

)2k

ω2k, (tV II)

if k be any integer number > 0; therefore

$ =
∑ ∞

(k)1

1− 2−2k

k(k + 1
2 )

(π
2

)2k

ω2k; (uV II)

ω2k being by (qV ) the coefficient of x2k−1 in the development of tanx. From this last property,
we have ∑ ∞

(k)1

ω2kx
2k

k(k + 1
2 )

=
4
x

(∫ x

0

dx

)2

tanx =
4
x

∫ x

0

dx log secx; (vV II)
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therefore, substituting successively the values x =
π

2
and x =

π

4
, and subtracting the result

of the latter substitution from that of the former, we find, by (uV II),

$ =
8
π

(∫ π
2

π
4

−
∫ π

4

0

)
dx log secx

=
8
π

∫ π
2

π
4

dx log tanx

=
8
π

∫ π
4

0

dx log cotanx. (wV II)

Such, in the present question, is an expression for the constant $; its numerical value may be
approximately calculated by multiplying the Napierian logarithm of ten by the double of the
average of the ordinary logarithms of the cotangents of the middles of any large number of
equal parts into which the first octant may be divided; thus, if we take the ninetieth part of

the sum of the logarithms of the cotangents of the ninety angles
1◦

4
,

3◦

4
,

5◦

4
, . . .

177◦

4
,

179◦

4
,

as given by the ordinary tables, we obtain nearly, as the average of these ninety logarithms,
the number 0, 5048; of which the double, being multiplied by the Napierian logarithm of ten,
gives, nearly, the number 2, 325, as an approximate value of the constant $. But a much
more accurate value may be obtained with little more trouble, by computing separately the
doubles of the part (rV II), and of the sum of (sV II) taken from m = 1 to m = ∞; for thus
we obtain the expression

$ = 12 log 3− 8 log 4 + 2
∑ ∞

(k)1

1− 2−2k

k(k + 1
2 )

∑ ∞

(m)1
(2m+ 1)−2k, (xV II)

in which each sum relative to m can be obtained from known results, and the sum relative
to k converges tolerably fast; so that the second line of the expression (xV II) is thus found
to be nearly = 0, 239495, while the first line is nearly = 2, 092992; and the whole value of the
expression (xV III) is nearly

$ = 2, 332487. (yV II)

There is even an advantage in summing the double of the expression (sV II) only from m = 2
to m = ∞, because the series relative to k converges then more rapidly; and having thus

found 2
∫ ∞

8

dαnαα
−1, it is only necessary to add thereto the expression

2
∫ 8

0

dαnαα
−1 = 12 log 3− 20 log 5 + 28 log 7− 16 log 8. (zV II)

The form of the function p and the value of the constant $ being determined as in the
present article, it is permitted to substitute them in the general equations of this paper;
and thus to deduce new transformations for portions of arbitrary functions, which might
have been employed instead of those given by Fourier and Poisson, if the discontinuous
function p, which receives alternately the values 1, 0, and −1, had been considered simpler
in its properties than the trigonometrical function cosine.

36



[24.] Indeed, when the conditions (tV I) are satisfied, the function px can be developed
according to cosines of the odd multiples of

πx

p
, by means of the formula (y′′′), which here

becomes, by changing l to
p

2
, and f to p,

px =
∑ ∞

(n)1
a2n−1 cos

(2n− 1)πx
p

, (aV III)

in which

a2n−1 =
4
p

∫ p
2

0

dα cos
(2n− 1)πα

p
pα; (bV III)

the function nx at the same time admitting a development according to sines of the same
odd multiples, namely

nx =
p

π

∑ ∞

(n)1

a2n−1

2n− 1
sin

(2n− 1)πx
p

; (cV III)

and the constant $ being equal to the following series,

$ = p
∑ ∞

(n)1

a2n−1

2n− 1
. (dV III)

Thus, in the case of the last article, where p = 2, and pα = 1 from α = 0 to α = 1, we have

a2n−1 =
4
π

(−1)n+1

2n− 1
; (eV III)

px =
4
π

(
cos

πx

2
− 3−1 cos

3πx
2

+ 5−1 cos
5πx

2
− · · ·

)
; (fV III)

nx =
8
π2

(
sin

πx

2
− 3−2 sin

3πx
2

+ 5−2 sin
5πx

2
− · · ·

)
; (gV III)

$ =
8
π

(1−2 − 3−2 + 5−2 − 7−2 + · · ·); (hV III)

so that, from the comparision of (wV II) and (hV III), the folowing relation results:∫ π
4

0

dx log cotx =
∑ ∞

(n)0
(−1)n(2n+ 1)−2. (iV III)

But most of the suppositions made in former articles may be satisfied, without assuming for
the function p the periodical form assigned by the conditions (tV I). For example, we might
assume

pα =
4
π

∫ π

0

dθ sin θ2 cos(2α sin θ); (kV III)
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which would give, by (a′′) and (b′′),

nα =
2
π

∫ π

0

dθ sin θ sin(2α sin θ); (lV III)

mα =
1
π

∫ π

0

dθ vers(2α sin θ); (mV III)

and finally, by (r′)

$ = 2
∫ π

0

dθ sin θ = 4. (nV III)

This expression (kV III) for pα satisfies all the conditions of the ninth article; for it is clear

that it gives a value to nα, which is numerically less than
4
π

; and the equation

mα = 1, (oV III)

which is of the form (g), is satisfied by all the infinitely many real and unequal roots of the
equation ∫ π

0

dθ (2α sin θ) = 0, (pV III)

which extend from α = −∞ to α = ∞, and of which the interval between any one and the
next following is never greater than π, nor even so great; because (as it is not difficult to
prove) these several roots are contained in alternate or even octants, in such a manner that
we may write

αn >
nπ

2
− π

4
, <

nπ

2
. (qV III)

We may, therefore, substitute the expression (kV III) for p, in the formulæ (a), (b), (c), &c.;
and we find, by (b), if x > a, < b,

fx = π−1

∫ b

a

dα

∫ ∞
0

dβ

∫ π

0

dθ sin θ2 cos{2β(α− x) sin θ}fα; (rV III)

that is,

fx =
1

2π
lim
β=∞

∫ π

0

dθ sin θ
∫ b

a

dα sin{2β(α− x) sin θ}(α− x)−1fα; (sV III)

a theorem which may be easily proved à posteriori, by the principles of fluctuating functions,
because those principles show, that (if x be comprised between the limits of integration) the
limit relative to β of the integral relative to α, in (sV III), is equal to πfx. In like manner, the
theorem (c), when applied to the present form of the function p, gives the following other
expression for the arbitrary function fx:

fx = 1
2

∫ b

a

dα fα +
∑ ∞

(n)1

∫ b

a

dα fα

∫ π

0

dθ sin θ sin(2(α− x) sin θ) cos(4n(α− x) sin θ)∫ π

0

dθ sin θ sin(2(α− x) sin θ)
;

(tV III)
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x being between a and b, and b − a being not greater than the least positive root ν of the
equation

1
ν

∫ π

0

dθ sin θ sin(2ν sin θ) = 0. (uV III)

And if we wish to prove, à posteriori, this theorem of transformation (tV III), by the same
principles of fluctuating functions, we have only to observe that

1 + 2
∑ ∞

(n)1
cos 2ny =

sin(2ny + y)
sin y

, (vV III)

and therefore that the second member of (tV III) may be put under the form

lim
n=∞

∫ b

a

dα fα

∫ π

0

dθ sin θ sin((4n+ 2)(α− x) sin θ)

2
∫ π

0

dθ sin θ sin(2(α− x) sin θ)
; (wV III)

in which the presence of the fluctuating factor

sin((4n+ 2)(α− x) sin θ),

combined with the condition that α−x is numerically less than the least root of the equation
(uV III), shows that we need only attend to values of α indefinitely near to x, and may
therefore write in the denominator,∫ π

0

dθ sin θ sin(2(α− x) sin θ) = π(α− x); (xV III)

for thus, by inverting the order of the two remaining integrations, that is by writing∫ b

a

dα

∫ π

0

dθ . . . =
∫ π

0

dθ

∫ b

a

dα . . . , (yV III)

we find first

lim
n=∞

∫ b

a

dα fα
sin((4n+ 2)(α− x) sin θ)

2π(α− x)
= 1

2fx, (zV III)

for every value of θ between 0 and π, and of x between a and b; and finally,

1
2fx

∫ π

0

dθ sin θ = fx.

[25.] The results of the foregoing articles may be extended by introducing, under the
functional signs n, p, a product such as βγ, instead of βα, γ being an arbitrary function of
α; and by considering the integral ∫ b

a

dαnβγfα, (aIX)
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in which f is any function which remains finite between the limits of integration. Since γ is
a function of α, it may be denoted by γα, and α will be reciprocally a function of γ, which
may be denoted thus:

α = φγα . (bIX)

While α increases from a to b, we shall suppose, at first, that the function γα increases
constantly and continuously from γa to γb, in such a manner as to give always, within this
extent of variation, a finite and determined and positive value to the differential coefficient
of the function φ, namely,

dα

dγ
= φ′γ . (cIX)

We shall also express, for abridgment, the product of this coefficient and of the function f by
another function of γ, as follows,

φ′γfα = ψ. (dIX)

Then the integral (aIX) becomes ∫ γb

γa

dγ nβγψγ ; (eIX)

and a rigorous expression for it may be obtained by the process of the fourth article, namely(∫ β−1αn

γa

+
∫ γb

β−1αn+m

)
dγ nβγψγ + θβ−1(αn+m − αn)cδ; (fIX)

in which, as before, αn, αn+m are suitably chosen roots of the equation (g); c is a finite
constant; θ is included between the limits ±1; and δ is the difference between two values
of the function ψγ , corresponding to two values of the variable γ of which the difference
is less than β−1b, b being another finite constant. The integral (aIX) therefore diminishes
indefinitely when β increases indefinitely; and thus, or simply by the theorem (z) combined
with the expression (eIX), we have, rigorously, at the limit, without supposing here that n0

vanishes, ∫ b

a

dαn∞γfα = 0. (w)

The same conclusion is easily obtained, by reasonings almost the same, for the case where
γ continually decreases from γa to γb, in such a manner as to give, within this extent of
variation, a finite and determined and negative value to the differential coefficient (cIX).
And with respect to the case where the function γ is for a moment stationary in value, so
that its differential coefficient vanishes between the limits of integration, it is sufficient to
observe that although ψ in (eIX) becomes then infinite, yet f in (aIX) remains finite, and the
integral of the finite product dαnβγfα, taken between infinitely near limits, is zero. Thus,
generally, the theorem (w), which is an extension of the theorem (z), holds good between any
finite limits a and b, if the function f be finite between those limits, and if, between the same
limits of integration, the function γ never remain unchanged throughout the whole extent of
any finite change of α.
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[26.] It may be noticed here, that if β be only very large, instead of being infinite, an
approximate expression for the integral (aIX) may be obtained, on the same principles, by
attending only to values of α which differ very little from those which render the coefficient
(cIX) infinite. For example, if we wish to find an approximate expression for a large root of
the equation (pV III), or to express approximately the function

fβ =
1
π

∫ π

0

dα cos(2β sinα), (gIX)

when β is a large positive quantity, we need only attend to values of α which differ little from
π

2
; making then

sinα = 1− y2, dα =
2 dy√
2− y2

, (hIX)

and neglecting y2 in the denominator of this last expression, the integral (gIX) becomes

fβ = aβ cos 2β + bβ sin 2β, (iIX)

in which, nearly,

aβ =
√

2
π

∫ ∞
−∞

dy cos(2βy2) =
1√
2πβ

;

bβ =
√

2
π

∫ ∞
−∞

dy sin(2βy2) =
1√
2πβ

;

 (kIX)

so that the large values of β which make the function (gIX) vanish are nearly of the form

nπ

2
− π

8
, (lIX)

n being an integer number; and such is therefore the approximate form of the large roots
αn of the equation (pV III): results which agree with the relations (qV III), and to which
Poisson has been conducted, in connexion with another subject, and by an entirely different
analysis.

The theory of fluctuating functions may also be employed to obtain a more close ap-
proximation; for instance, it may be shown, by reasonings of the kind lately employed, that
the definite integral (gIX) admits of being expressed (more accurately as β is greater) by the
following semiconvergent series, of which the first terms have been assigned by Poisson:

fβ =
1√
πβ

∑ ∞

(i)1
[0]−i([−1

2 ]i)2(4β)−i cos
(

2β − π

4
− iπ

2

)
; (mIX)

and in which, according to a known notation of factorials,

[0]−i = 1−1 . 2−1 . 3−1 . . . . i−1;

[− 1
2 ]i =

−1
2
.
−3
2
.
−5
2
· · · 1− 2i

2
.

 (nIX)
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For the value β = 20, the 3 first terms of the series (mIX) give

f20 =
(

1− 9
204800

)
cos 86◦ 49′ 52′′√

20π
+

1
320

sin 86◦ 49′ 52′′√
20π

= 0, 0069736 + 0, 0003936 = +0, 0073672.

 (oIX)

For the same value of β, the sum of the first sixty terms of the ultimately convergent series

fβ =
∑ ∞

(i)0
([0]−i)2(−β2)i (pIX)

gives
f20 = +7 447 387 396 709 949, 9657957

−7 447 387 396 709 949, 9584289
= +0, 0073668.

 (qIX)

The two expressions (mIX) (pIX) therefore agree, and we may conclude that the following
numerical value is very nearly correct:

1
π

∫ π

0

dα cos(40 sinα) = +0, 007367. (rIX)

[27.] Resuming the rigorous equation (w), and observing that∫ ∞
0

dβ pβγ = lim
β=∞

.nβγγ
−1
α , (sIX)

we easily see that in calculating the definite integral∫ b

a

dα

∫ β

0

dβ pβγfα, (tIX)

in which the function f is finite, it is sufficient to attend to those values of α which are not
only between the limits a and b, but are also very nearly equal to real roots x of the equation

γx = 0. (uIX)

The part of the integral (tIX), corresponding to values of α in the neighbourhood of any
one such root x, between the above-mentioned limits, is equal to the product

fx
γ′x
×
∫ ∞
−∞

dα
nβγ′x(α−x)

α− x
, (vIX)

in which β is indefinitely large and positive, and the differential coefficient γ′x of the function γ
is supposed to be finite, and different from 0. A little consideration shows that the integral in
this last expression is = ±$, $ being the same constant as in former articles, and the upper
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or lower sign being taken according as γ′x is positive or negative. Denoting then by
√
γ′2x the

positive quantity, which is = +γ′x or = −γ′x, according as γ′x is > 0 or < 0, the part (vIX) of
the integral (tIX) is

$fx√
γ′2x

; (wIX)

and we have the expression ∫ b

a

dα

∫ ∞
0

dβ pβγfα = $
∑
x

fx√
γ′2x

, (xIX)

the sum being extended to all those roots x of the equation (uIX) which are > a but < b. If
any root of that equation should coincide with either of these limits a or b, the value of α in
its neighbourhood would introduce, into the second member of the expression (xIX), one or
other of the terms

$8fa
γ′a

,
−$88fa
γ′a

,
$88fb
γ′b

,
−$8fb
γ′b

; (yIX)

the first to be taken when γa = 0, γ′a > 0; the second when γa = 0, γ′a < 0; the third when
γb = 0, γ′b > 0; and the fourth when γb = 0, γ′b < 0. If, then, we suppose for simplicity, that
neither γa nor γb vanishes, the expression (xIX) conducts to the theorem∑

x
fx = $−1

∫ b

a

dα

∫ ∞
0

dβ pβγfα
√
γ′2α ; (x)

and the sign of summation may be omitted, if the equation γx = 0 have only one real root
between the limits a and b. For example, that one root itself may then be expressed as follows:

x = $−1

∫ b

a

dα

∫ ∞
0

dβ pβγα
√
γ′2α ; (zIX)

The theorem (x) includes some analogous results which have been obtained by Cauchy, for
the case when p is a cosine.

[28.] It is also possible to extend the foregoing theorem in other ways; and especially
be applying similar reasonings to functions of several variables. Thus, if γ, γ(1) . . . be each a
function of several real variables α, α(1) . . .; if p and n be still respectively functions of the
kinds supposed in former articles, while p

(1), n
(1), . . . are other functions of the same kinds;

then the theorem (w) may be extended as follows:∫ b

a

dα

∫ b(1)

a(1)
dα(1) . . . n∞γn

(1)

∞γ(1) . . . fα,α(1),... = 0, (y)

the function f being finite for all values of the variables α, α(1), . . ., within the extent of the
integrations; and the theorem (x) may be thus extended:∑

fx,x(1),... = $−1$(1)−1 . . .

∫ b

a

dα

∫ b(1)

a(1)
dα(1) . . .

∫ ∞
0

dβ

∫ ∞
0

dβ(1) . . . pβγp
(1)

β(1)γ(1) . . .

. . . fα,α(1),...

√
l2;


(z)
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in which, according to the analogy of the foregoing notation,

$(i) =
∫ ∞
−∞

dα

∫ 1

0

dβ p
(i)
βα; (aX)

and l is the coefficient which enters into the expression, supplied by the principles of the
transformation of multiple integrals,

l dα dα(1) . . . = dγ dγ(1) . . . ; (bX)

while the summation in the first member is to be extended to all those values of x, x(1), . . .
which, being respectively between the respective limits of integration relatively to the vari-
ables α, α(1), . . . are values of those variables satisfying the system of equations

γx,x(1),... = 0, γ
(1)

x,x(1),...
= 0, . . . . (cX)

And thus may other remarkable results of Cauchy be presented under a generalized form.
But the theory of such extensions appears likely to suggest itself easily enough to any one
who may have considered with attention the remarks already made; and it is time to conclude
the present paper by submitting a few general observations on the nature and history of this
important branch of analysis.

Lagrange appears to have been the first who was led (in connexion with the celebrated
problem of vibrating cords) to assign, as the result of a species of interpolation, an expres-
sion for an arbitrary function, continuous or discontinuous in form, between any finite limits,
by a series of sines of multiples, in which the coefficients are definite integrals. Analogous
expressions, for a particular class of rational and integral functions, were derived by Daniel

Bernouilli, through successive integrations, from the results of certain trigonometric sum-
mations, which he had characterized in a former memoir as being incongruously true. No
farther step of importance towards the improvement of this theory seems to have been made,
till Fourier, in his researches on Heat, was led to the discovery of his well-known theorem,
by which any arbitrary function of any real variable is expressed, between finite or infinite
limits, by a double definite integral. Poisson and Cauchy have treated the same subject
since, and enriched it with new views and applications; and through the labours of these,
and, perhaps, of other writers, the theory of the development or transformation of arbitrary
functions, through functions of determined forms, has become one of the most important and
interesting departments of modern algebra.

It must, however, be owned that some obscurity seems still to hang over the subject,
and that a farther examination of its principles may not be useless or unnecessary. The
very existence of such transformations as in this theory are sought for and obtained, appears
at first sight paradoxical; it is difficult at first to conceive the possibility of expressing a
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perfectly arbitrary function through any series of sines or cosines; the variable being thus
made the subject of known and determined operations, whereas it had offered itself originally
as the subject of operations unknown and undetermined. And even after this first feeling of
paradox is removed, or relieved, by the consideration that the number of the operations of
known form is infinite, and that the operation of arbitrary form reappears in another part of
the expression, as performed on an auxiliary variable; it still requires attentive consideration
to see clearly how it is possible that none of the values of this new variable should have any
influence on the final result, except those which are extremely nearly equal to the variable
originally proposed. This latter difficulty has not, perhaps, been removed to the complete
satisfaction of those who desire to examine the question with all the diligence its importance
deserves, by any of the published works upon the subject. A conviction, doubtless, may be
attained, that the results are true, but something is, perhaps, felt to be still wanting for the
full rigour of mathematical demonstration. Such has, at least, been the impression left on
the mind of the present writer, after an attentive study of the reasonings usually employed,
respecting the transformations of arbitrary functions.

Poisson, for example, in treating this subject, sets out, most commonly, with a series
of cosines of multiple arcs; and because the sum is generally indeterminate, when continued
to infinity, he alters the series by multiplying each term by the corresponding power of
an auxiliary quantity which he assumes to be less than unity, in order that its powers may
diminish, and at last vanish; but in order that the new series may tend indefinitely to coincide
with the old one, he conceives, after effecting its summation, that the auxiliary quantity tends
to become unity. The limit thus obtained is generally zero, but becomes on the contrary
infinite when the arc and its multiples vanish; from which it is inferred by Poisson, that
if this arc be the difference of two variables, an original and an auxiliary, and if the series
be multiplied by any arbitrary function of the latter variable, and integrated with respect
thereto, the effect of all the values of that variable will disappear from the result, except the
effect on those which are extremely nearly equal to the variable originally proposed.

Poisson has made, with consummate skill, a great number of applications of this
method; yet it appears to present, on close consideration, some difficulties of the kind above
alluded to. In fact, the introduction of the system of factors, which tend to vanish before
the integration, as their indices increase, but tend to unity, after the integration, for all finite
values of those indices, seems somewhat to change the nature of the question, by the intro-
duction of a foreign element. Nor is it perhaps manifest that the original series, of which the
sum is indeterminate, may be replaced by the convergent series with determined sum, which
results from multiplying its terms by the powers of a factor infinitely little less than unity;
while it is held that to multiply by the powers of a factor infinitely greater than unity would
give an useless or even false result. Besides there is something unsatisfactory in employing an
apparently arbitrary contrivance for annulling the effect of those terms of the proposed series
which are situated at a great distance from the origin, but which do not themselves originally
tend to vanish as they become more distant therefrom. Nor is this difficulty entirely removed,
when integration by parts is had recourse to, in order to show that the effect of these distant
terms is insensible in the ultimate result; because it then becomes necessary to differentiate
the arbitrary function; but to treat its differential coefficient as always finite, is to diminish
the generality of the inquiry.

Many other processes and proofs are subject to similar or different difficulties; but there
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is one method of demonstration employed by Fourier, in his separate Treatise on Heat,
which has, in the opinion of the present writer, received less notice than it deserves, and of
which it is proper here to speak. The principle of the method here alluded to may be called
the Principle of Fluctuation, and is the same which was enunciated under that title in the
remarks prefixed to this paper. In virtue of this principle (which may thus be considered as
having been indicated by Fourier, although not expressly stated by him), if any function,
such as the sine or cosine of an infinite multiple of an arc, changes sign infinitely often within
a finite extent of the variable on which it depends, and has for its mean value zero; and if
this, which may be called a fluctuating function, be multiplied by any arbitrary but finite
function of the same variable, and afterwards integrated between any finite limits; the integral
of the product will be zero, on account of the mutual destruction or neutralization of all its
elements.

It follows immediately from this principle, that if the factor by which the fluctuating
function is multiplied, instead of remaining always finite, becomes infinite between the limits
of integration, for one or more particular values of the variable on which it depends; it is
then only necessary to attend to values in the immediate neighbourhood of these, in order
to obtain the value of the integral. And in this way Fourier has given what seems to be
the most satisfactory published proof, and (so to speak) the most natural explanation of the
theorem called by his name; since it exhibits the actual process, one might almost say the
interior mechanism, which, in the expression assigned by him, destroys the effect of all those
values of the auxiliary variable which are not required for the result. So clear, indeed, is this
conception, that it admits of being easily translated into geometrical constructions, which
have accordingly been used by Fourier for that purpose.

There are, however, some remaining difficulties connected with this mode of demonstra-
tion, which may perhaps account for the circumstance that it seems never to be mentioned,
nor alluded to, in any of the historical notices which Poisson has given on the subject of
these transformations. For example, although Fourier, in the proof just referred to, of the
theorem called by his name, shows clearly that in integrating the product of an arbitrary
but finite function, and the sine or cosine of an infinite multiple, each successive positive
portion of the integral is destroyed by the negative portion which follows it, if infinitely small
quantities be neglected, yet he omits to show that the infinitely small outstanding difference
of values of the positive and negative portions, corresponding to the single period of the
trigonometrical function introduced, is of the second order; and, therefore, a doubt may arise
whether the infinite number of such infinitely small periods, contained in any finite interval,
may not produce, by their accumulation, a finite result. It is also desirable to be able to state
the argument in the language of limits, rather than that of infinitesimals, and to exhibit,
by appropriate definitions and notations, what was evidently foreseen by Fourier, that the
result depends rather on the fluctuating than on the trigonometric character of the auxiliary
function employed.

The same view of the question had occurred to the present writer, before he was aware
that indications of it were to be found among the published works of Fourier; and he still
conceives that the details of the demonstration to which he was thus led may be not devoid
of interest and utility, as tending to give greater rigour and clearness to the proof and the
conception of a widely applicable and highly remarkable theorem.

Yet, if he did not suppose that the present paper contains something more than a mere
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expansion or improvement of a known proof of a known result, the Author would scarcely
have ventured to offer it to the Transactions* of the Royal Irish Academy. It aims not merely
to give a more perfectly satisfactory demonstration of Fourier’s celebrated theorem than
any which the writer has elsewhere seen, but also to present that theorem, and many others
analogous thereto, under a greatly generalized form, deduced from the principle of fluctuation.
Functions more general than sines or cosines, yet having some correspondent properties, are
introduced throughout; and constants, distinct from the ratio of the circumference to the
diameter of a circle, present themselves in connexion therewith. And thus, if the intention of
the writer have been in any degree accomplished, it will have been shown, according to the
opinion expressed in the remarks prefixed to this paper, that the development of the important
principle above referred to gives not only a new clearness, but also (in some respects) a new
extension, to this department of science.

* The Author is desirous to acknowledge, that since the time of his first communicating
the present paper to the Royal Irish Academy, in June, 1840, he has had an opportunity of
entirely rewriting it, and that the last sheet is only now passing through the press, in June,
1842. Yet it may be proper to mention that the theorems (A) (B) (C), which sufficiently
express the character of the communication, were printed (with some slight differences of
notation) in the year 1840, as part of the Proceedings of the Academy for the date prefixed
to this paper.
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