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The paper On some Extensions of Quaternions, by Sir William Rowan Hamilton, ap-
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The articles of this paper appeared as follows:—

section i. articles 1–6 Supplementary 1854 vol. vii (1854), pp. 492–499,
section ii. articles 7–16 August 1854 vol. viii (1854), pp. 125–137,
section iii. articles 17–25 October 1854 vol. viii (1854), pp. 261–269,
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section v. articles 30–36 April 1855 vol. ix (1855), pp. 280–290.

(Articles 1–6 appeared in the supplementary number of the Philosophical Magazine which
appeared in the middle of 1854.)

Some errata noted by Hamilton have been corrected.
The headings ‘Section I.’, ‘Section II.’ and ‘Section III.’ were not included for the first

three sections of the original text, but analogous headings were included for the final two
sections.

The paper On some Extensions of Quaternions, is included in The Mathematical Papers
of Sir William Rowan Hamilton, vol. iii (Algebra), edited for the Royal Irish Academy by H.
Halberstam and R. E. Ingram (Cambridge University Press, Cambridge, 1967).
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On some Extensions of Quaternions*. By Sir William Rowan Hamilton,

LL.D., M.R.I.A., F.R.A.S., Corresponding Member of the French Institute,
Hon. or Corr. Member of several other Scientific Societies in British and For-
eign Countries, Andrews’ Professor of Astronomy in the University of Dublin,
and Royal Astronomer of Ireland†.

[The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science,
4th series, vol. vii (1854), pp. 492–99, vol. viii (1854), pp. 125–37, 261–9,

vol. ix (1855), pp. 46–51, 280–90.]

Section I.

[1.] Conceive that in the polynomial expressions,

P = ι0x0 + ι1x1 + . . .+ ιnxn = Σιx,
P′ = ι0x

′
0 + ι1x

′
1 + . . .+ ιnx

′
n = Σιx′,

P′′ = ι0x
′′
0 + ι1x

′′
1 + . . .+ ιnx

′′
n = Σιx′′,

 (1)

the symbols x0 . . . xn, which we shall call the constituents of the polynome P, and in like
manner that the constituents x′0 . . . x

′
n of P′, and x′′0 . . . x

′′
n of P′′, are subject to all the

usual rules of algebra, and to no others; but that the other symbols ι0 . . . ιn, by which those
constituents of each polynome are here symbolically multiplied, are not all subject to all
those usual rules: and that, on the contrary, these latter symbols are subject, as a system,
to some peculiar laws, of comparison and combination. More especially, let us conceive, in
the first place, that these n + 1 symbols, of the form ιf , are and must remain unconnected
with each other by any linear relation, with ordinary algebraical coefficients; whence it will
follow that an equality between any two polynomial expressions of the present class requires
that all their corresponding constituents should be separately equal, or that

if P′ = P, then x′0 = x0, x
′
1 = x1, . . . x

′
n = xn : (2)

and therefore, in particular, that the evanescence of any one such polynome P requires the
vanishing of each constituent separately; so that

if P = 0, then x0 = 0, x1 = 0, . . . xn = 0. (3)

* See the work entitled, “Lectures on Quaternions,” by the present writer. (Hodges and
Smith, Dublin, 1853.)
† Communicated by the Author.
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In the second place, we shall suppose that all the usual rules of addition and subtraction
extend to these new polynomes, and to their terms; and that the symbols ι, like the symbols x,
are distributive in their operation; whence it will follow that

P′ ± P = ι0(x′0 ± x0) + . . .+ ιn(x′n ± xn), (4)

or that
Σιx′ ± Σιx = Σι(x′ ± x) : (5)

and as a further connexion with common algebra, we shall conceive that each separate symbol
of the form ι may combine commutatively as a factor with each of the form x, and with every
other algebraic quantity, so that ιx = xι, and that therefore the polynome P may be thus
written,

P = x0ι0 + x1ι1 + . . .+ xnιn = Σxι. (6)

But, third, instead of supposing that the symbols ι combine thus in general commuta-
tively, among themselves, as factors or as operators, we shall distinguish generally between
the two inverted (or opposite) products, ιι′ and ι′ι, or ιf ιg and ιgιf ; and shall conceive that
all the (n+ 1)2 binary products (ιι′), including squares (ι2 = ιι), of the n+ 1 symbols ι, are
defined as being each equal to a certain given or originally assumed polynome, of the general
form (1), by (n+ 1)2 equations of the following type,

ιf ιg = (fg0)ι0 + (fg1)ι1 + . . .+ (fgh)ιh + . . .+ (fgn)ιn; (7)

the (n+1)3 coefficients, or constituents, of the form (fgh), which we shall call the “constants
of multiplication,” being so many given, or assumed, algebraic constants, of which some may
vanish, and which we do not here suppose to satisfy generally the relation, (fgh) = (gfh).
And thus the product of any two given polynomes, P and P′, of the form (1), combined in
a given order as factors, becomes equal to a third given polynome, P′′, of the same general
form,

P′′ = PP′ = Σxf ιf . Σx′gιg = Σx′′hιh; (8)

the summations extending still from 0 to n, and the constituent x′′h of the product admitting
of being thus expressed:

x′′h = Σ(fgh)xfx′g. (9)

As regards the subjection of the symbols ι to the associative law of multiplication, expressed
by the formula,

ι . ι′ι′′ = ιι′ . ι′′,

we shall make no supposition at present.

[2.] As a first simplification of the foregoing very general* conception, let it be now
supposed that

ι0 = 1; (10)

* Some account of a connected conception respecting Sets, considered as including Quater-
nions, may be found in the Preface to the Lectures already cited.
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the n other symbols, ι1, ι2, . . . ιn, being thus the only ones which are not subject to all the
ordinary rules of algebra. Then because

ι0ιg = ιg, ιf ι0 = ιf , (11)

it will follow that if either of the two indices f and g be = 0, the constant of multiplication
(fgh) is either = 1 or = 0, according as h is equal or unequal to the other of those two indices;
and we may write,

(0fh) = (f0h) = 0, if h >< f ; (12)

(0ff) = (f0f) = 1. (13)

With this simplification, the number of the arbitrary or disposable constants of the form
(fgh), which are not thus known already to have the value 0 or 1, is reduced from (n + 1)3

to (n+ 1)n2; because we may now suppose that f and g are each > 0, or that they vary only
from 1 to n. For we may write,

P = p+$, P′ = p′ +$′, (14)

where
p = ι0x0 = x0, $ = ι1x1 + . . .+ ιfxf + . . .+ ιnxn,

p′ = ι0x
′
0 = x′0, $′ = ι1x

′
1 + . . .+ ιgx

′
g + . . .+ ιnx

′
n;

}
(15)

and then, by observing that p and p′ are symbols of the usual and algebraical kind, shall have
this expression for the product of two polynomes:

P′′ = PP′ = (p+$)(p′ +$′) = pp′ + p$′ + p′$ +$$′; (16)

where the last term, or partial product, $$′, is now the only one for which any peculiar rules
are required.

[3.] When the polynome P has thus been decomposed into two parts, p and $, of which
the one (p) is subject to all the usual rules of algebraical calculation, but the other ($)
to peculiar rules; and when these two parts are thus in such a sense heterogeneous, that an
equation between two such polynomes resolves itself immediately into two separate equations,
one between parts of the one kind, and the other between parts of the other kind; so that

if P = P′, or p+$ = p′ +$′, then p = p, and $ = $′; (17)

we shall call the former part (p) the scalar part, or simply the scalar, of the polynome P,
and shall denote it, as such, by the symbol S .P, or SP; and we shall call the latter part ($)
the vector part, or simply the vector, of the same polynome, and shall denote this other
part by the symbol V .P, or VP: these names (scalar and vector), and these characteristics (S
and V), being here adopted as an extension of the phraseology and notation of the Calculus
of Quaternions*, in which such scalars and vectors receive useful geometrical interpretations.

* See Lectures, passim.
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From the same calculus we shall here borrow also the conception and the sign of conjugation;
and shall say that any two polynomes (such as those represented by p + $ and p − $) are
conjugate, if they have equal scalars (p), but opposite vectors (±$): and if either of these
two polynomes be denoted by P, then the symbol K .P, or KP, shall be employed to represent
the other; K being thus used (as in quaternions) as the characteristic of conjunction. With
these notations, and with the recent significations of p and $,

p = S(p+$), $ = V(p+$), p−$ = K(p+$); (18)

or, writing P and P′ for p+$ and p−$,

P′ = KP, if SP′ = SP, and VP′ = −VP; (19)

and generally, for any polynome P, of the kind here considered,

P = SP + VP, KP = SP−VP. (20)

We may also propose to call the n symbols ι1 . . . ιn by the general name of vector-units,
as the symbol ι0 has been equated in (10) to the scalar-unit, or to 1; and may call that
equation (10) the unit-law, or more fully, the law of the primary unit.

[4.] Already, from these few definitions and notations, a variety of symbolical conse-
quences can be deduced, which have indeed already occurred in the Calculus of Quaternions,
but which are here taken with enlarged significations, and without reference to interpretation
in geometry. For example, in the general equations (20), we may abstract from the operand,
that is, from the polynome P, and may write more briefly (as in quaternions),

1 = S + V, K = S−V; (21)

whence
S = 1

2 (1 + K), V = 1
2 (1−K); (22)

or more fully,
SP = 1

2 (P + P′), VP = 1
2 (P− P′), if P′ = KP. (23)

Again, since (with the recent meanings of p and $),

Sp = p, Vp = 0, Kp = p, S$ = 0, V$ = $, K$ = −$,
S(p−$) = p, V(p−$) = −$, K(p−$) = p+$,

}
(24)

we may write

SSP = SP, VSP = 0 = SVP, VVP = VP,
SKP = SP = KSP, VKP = −VP = KVP, KKP = P;

}
(25)
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or more concisely,
S2 = S, VS = SV = 0, V2 = V,

SK = KS = S, VK = KV = −V, K2 = 1.

}
(26)

The operations, S, V, K are evidently distributive,

SΣ = ΣS, VΣ = ΣV, KΣ = ΣK; (27)

and hence it is permitted to multiply together any two of the equations (21), (22), or to
square any one of them, as if S, V, K were ordinary algebraical symbols, and the results must
be found to be consistent with those equations themselves, and with the relations (26). Thus,
squaring and multiplying the equations (21), we obtain

12 = (S + V)2 = S2 + V2 + 2SV = S + V = 1,

K2 = (S−V)2 = S2 + V2 − 2SV = S + V = 1,

1K = (S + V)(S−V) = S2 −V2 = S−V = K;

 (28)

and the equations (22) give similarly,

S2 = 1
4 (1 + K)2 = 1

4 (1 + K2 + 2K) = 1
2 (1 + K) = S;

V2 = 1
4 (1−K)2 = 1

4 (1 + K2 − 2K) = 1
2 (1−K) = V;

SV = VS = 1
4 (1 + K)(1−K) = 1

4 (1−K2) = 1
4 (1− 1) = 0.

 (29)

Again, if we multiply (22) by K, we get

KS = 1
2K(1 + K) = 1

2 (K + K2) = 1
2 (K + 1) = S,

KV = 1
2K(1−K) = 1

2 (K−K2) = 1
2 (K− 1) = −V;

}
(30)

all which results are seen to be symbolically true, and other verifications of this sort may
easily be derived, among which the following may be not unworthy of notice:

(S±V)2m = 1, (S±V)2m+1 = S±V,
(

1±K
2

)m
=

1±K
2

, (31)

where m is any positive whole number.

[5.] As a second simplification of the general conception of polynomes of the form (1),
which will tend to render the laws of their operations on each other still more analogous
to those of the quaternions, let it be now conceived that the choice of the “constants of
multiplication,” (fgh), is restricted by the following condition, which may be called the “Law
of Conjugation:”

K . ιι′ = ι′ι, or K . ιf ιg = ιgιf ; (32)

namely the condition that, “opposite (or inverted) products of any two of the n symbols
ι1, . . . ιn, shall always be conjugate polynomes.” The indices f and g being still supposed
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to be each > 0, the constants of multiplication (fgh), which had remained arbitrary and
disposable in [2.], after that first simplification which consisted in supposing ι0 = 1, come
now to be still further reduced in number, from (n + 1)n2 to 1

2n(n2 + 1). For we have now,
by operating with S on the equation (32), the following formula of relation between those
constants,

(fg0) = (gf0); (33)

and by comparing coefficients of ιh, this other formula is obtained,

−(fgh) = (gfh), if h > 0; (34)

whence
(ffh) = 0, if h > 0. (35)

Writing, for conciseness,
(fg0) = (fg), (ff) = (f), (36)

the squares, ι2, of the n vector-units ι, will thus reduce themselves to so many constant
scalars,

ι21 = (1), ι22 = (2), . . . ι2f = (f), . . . ι2n = (n); (37)

and besides these, we shall have (n+ 1)× n(n− 1)
2

= 1
2 (n3 − n) other scalars, as constants

of multiplication; namely the constituents (fgh) of the polynomial expansions of all the
binary products ιι′ or ιf ιg, of unequal vector-units, taken in any one selected order, for
instance so that g > f ; it being unnecessary now, on account of the formulæ of relation
(33), (34), to attend also to the opposite order of the two factors, if the object be merely
to determine the number of the independent constants, which number is thus found to be
n + 1

2 (n3 − n) = 1
2 (n3 + n), as above stated. Such then is the number of the constants of

multiplication, including n of the form (f), and 1
2n(n − 1) of the form (fg), besides others

of the form (fgh), which remain still arbitrary, or disposable, after satisfying, first, the Unit-
Law, ι0 = 1, and, second, the Law of Conjugation, K . ιι′ = ι′ι.

[6.] From this law of conjugation, (32), several general consequences follow. For, first,
we see from it that “the square of every vector is a scalar,” which may be thus expanded:

$ = (ι1x1 + . . .+ ιnxn)2 = (1)x2
1 + (2)x2

2 + . . .+ (n)x2
n

+ 2(12)x1x2 + 2(13)x1x3 + . . .+ 2(fg)xfxg + . . . ;

}
(38)

that is, more briefly,
(Σιx)2 = Σ(e)x2

e + 2Σ(fg)xfxg, (39)

the summations extending to values of the indices > 0 and g being > f . In the second place,
and more generally, “inverted products of any two vectors are equal to conjugate polynomes;”
or in symbols,

$′$ = K . $$′, (40)

6



whatever two vectors may be denoted by $ and $′. In fact, these two products have (accord-
ing to the definition [3.] of conjugates) one common scalar part, but opposite vector parts,

S . $′$ = S . $$′ = Σ(e)xex′e + Σ(fg)(xfx′g + xgx
′
f );

−V . $′$ = V . $$′ = Σ(fgh)(xfx′g − xgx′f )ιh :

}
(41)

whence also we may write, as in quaternions,

S . $$′ = 1
2 ($$′ +$′$), V . $$′ = 1

2 ($$′ −$′$). (42)

And, thirdly, the result (40) may be still further generalized as follows: “The conjugate of the
product of any two polynomes is equal to the product of their conjugates, taken in an inverted
order ;” or in symbols,

K . PP′ = KP′ .KP. (43)

In fact, we have now, by (16), (24), (27) and (40),

KP′′ = K . PP′ = K . (p+$)(p′ +$′)
= K(pp′ + p$′ + p′$ +$$′)
= pp′ − p$′ − p′$ +$′$

= (p′ −$′)(p−$) = KP′ .KP, (44)

as asserted in (43). It follows also, fourthly, that “the product of any two conjugate polynomes
is a scalar, independent of their order, and equal to the difference of the squares of the scalar
and vector parts of either of them;” for,

if P′ = KP then PP′ = (p+$)(p−$) = p2 −$2; (45)

where $2 is, by (38) or (39), a scalar. And if we agree to call the square root (taken with
a suitable sign) of this scalar product of two conjugate polynomes, P and KP, the common
tensor of each, and to denote it by the symbol TP; if also we give the name of versor to
the quotient of a polynome divded by its own tensor, and denote this quotient by the symbol
UP: we shall then be able to establish several general formulæ, as extensions from the theory
of quaternions. For we shall have

TP = TKP =
√

(PKP) = {(SP)2 − (VP)2} 1
2 ; (46)

T(p±$) = (p2 −$2)
1
2 ; Tp = (p2)

1
2 , T$ = (−$2)

1
2 ; (47)

UP =
P√

(PKP)
, U(p±$) =

p±$
(p2 −$2)

1
2

; (48)

P = TP .UP = UP . TP; (49)

TUP = UTP = 1; TTP = TP; UUP = UP : (50)
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with some other connected equations. But, although the chief terms (such as scalar, vector,
conjugate, tensor, versor), and the main notations answering thereto (namely S, V, K, T,
U), of the calculus of quaternions, along with several general formulæ resulting, come thus to
receive extended significations, as applying to certain polynomial expressions which involve
n vector-units, and for which as many as 1

2 (n3 + n) constants of multiplication are still left
arbitrary and disposable; yet it must be observed, that we have not hitherto established any
modular property of either of the two functions, which have been called above the tensor and
versor of a polynome; nor any associative law, for the multiplication of three such polynomes
together.

Observatory of Trinity College, Dublin,
June 6, 1854.
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Section II.

[7.] Let us now consider generally the associative law of multiplication, which may be
expressed by the formula already mentioned but reserved in [1.],

ι . ι′ι′′ = ιι′ . ι′′; (51)

or by this other equation,
ιe . ιf ιg = ιeιf . ιg : (52)

and let us inquire into the conditions under which this law shall be fulfilled, for any 3 unequal
or equal symbols of the form ι.

If the conception of the polynomial expression

P = Σιx = ι0x0 + ι1x1 + . . .+ ιnxn, (1)

be no further restricted than it was in [1.], then each of the three indices e, f , g, in the
equation (52), may receive any one of the n + 1 values from 0 to n; so that there are in
this case (n + 1)3 associative conditions of this form (52), whereof each, by comparison of
the coefficients of the n + 1 symbols ι, breaks itself up into n + 1 separate equations, of the
ordinary algebraical kind, making in all no fewer than (n + 1)4 algebraical relations, to be
satisfied, if possible, by the (n+1)3 constants of multiplication, of the form (fgh): respecting
which constants, it will be remembered that the general formula has been established,

ιf ιg = (fg0)ι0 + . . .+ (fgh)ιh + . . .+ (fgn)ιn. (7)

We may therefore substitute, in (52), the expressions,

ιf ιg = Σh(fgh)ιh, ιeιf = Σh(efh)ιh,
ιeιh = Σk(ehk)ιk, ιhιg = Σk(hgk)ιk;

}
(53)

and then, by comparing coefficients of ιk, this associative formula (52) breaks itself up, as
was just now remarked, into (n+ 1)4 equations between the (n+ 1)3 constants, which are all
included in the following*:

Σh(fgh)(ehk) = Σh(efh)(hgk); (54)

where the four indices e f g k may each separately receive any one of the n+ 1 values from 0
to n, and the summations relatively to h are performed between the same limits.

* This formula (54) may be deduced from the equation (214) in p. 239 of the writer’s “Re-
searches respecting Quaternions”, published in the Transactions of the Royal Irish Academy,
vol. xxi, part 2, by changing there the letters r s t r′ s′ to f h g e k, and substituting the sym-
bol (fgh) for ng,f,h. Or the same formula (54) may be derived from one given in page (30) of
the Preface to the same author’s Lectures on Quaternions, (Dublin, Hodges and Smith, 1853),
by writing g f e k instead of f g g′ h′, and changing each of the two symbols 1g,f,h, 1′g,f,h, to
(fgh). But the general reductions of the present paper have not been hitherto published.
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[8.] Introducing next the simplification (10) of article [2.], or supposing ι0 = 1, which has
been seen to reduce the number of the constants of multiplication from (n+ 1)3 to (n+ 1)n2,
we find that the number of equations to be satisfied by them is reduced in a still greater
ratio, namely from (n + 1)4 to (n + 1)n3. For, if we suppose the index g to become 0, and
observe that each of the constants (f0h) and (0fh) is equal, by (12) and (13), to 0 or to 1,
according as h is unequal or equal to f , we shall see that the sum in the left-hand member
of the formula (54) reduces itself to the term (efk): but such is also in this case the value
of the right-hand sum in the same formula, because in calculating that sum we need attend
only to the value h = k, if g be still = 0. In like manner, if f = 0, each sum reduces itself
to (egk); and if e = 0, the two sums become each = (fgk). If then any one of these three
indices, e, f , g, be = 0, the formula (54) is satisfied: which might indeed have been foreseen,
by observing that, in each of these three cases, one factor of each member of the equation (52)
becomes = 1. We may therefore henceforth suppose that each of the three indices, e, f , g,
varies only from 1 to n, or that

e > 0, f > 0, g > 0; (55)

while k may still receive any value from 0 to n, and h still varies in the summations between
these latter limits: and thus the number of equations, supplied by the formula (54), between
the constants (fgh), is reduced, as was lately stated, to (n+ 1)n3; while the number of those
constants themselves had been seen to be reduced to (n + 1)n2, by the same supposition
ι0 = 1.

[9.] Additional reductions are obtained by introducing the law of conjugation (32), or by
supposing K . ιf ιg = ιgιf , with the consequences already deduced from that law or equation
in [5.]. Using Σ′ to denote a summation relatively to h from 1 to n, and taking separately
the two cases where k = 0 and where k > 0, we have, for the first case, by (54),

Σ′(efh)(gh) = Σ′(fgh)(eh); (56)

and for the second case,

(ef)(g0k)− (fg)(e0k) = Σ′{(efh)(ghk) + (fgh)(ehk)}. (57)

No new conditions would be obtained by interchanging e and g; but if we cyclically change
efg to fge, each of the two sums (56) is seen to be equal to another of the same form; and
two new equations are obtained from (57), by adding which thereto we find,

0 = Σ′{(efh)(ghk) + (fgh)(ehk) + (geh)(fhk)}; (58)

and therefore,
(fg)(e0k)− (ef)(g0k) = Σ′(geh)(fhk). (59)

When e = f , the equations (56) and (59) become, respectively,

0 = Σ′(fh)(fgh), (60)
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and
(fg)(f0k)− (f)(g0k) = Σ′(gfh)(fhk); (61)

which are identically satisfied, if we suppose also f = g; the properties [5.] of the symbols
(fgh) being throughout attended to: while, by the earlier properties [2.], the symbol (e0k)
or (0ek) is equal to 0 or to 1, according as e and k are unequal or equal to each other. And
no equations distinct from these are obtained by supposing e = g, or f = g, in (56) and
(59). The associative conditions for which k = 0 are, therefore, in number, n(n − 1) of the
form (60), and 1

3n(n−1)(n−2) of the form (56); or 1
3 (n3−n) in all. And the other associative

conditions, for which k > 0, are, in number, n2(n−1) of the form (61), and 1
2n

2(n−1)(n−2)
of the form (59), or 1

2 (n4−n3) in all. It will, however, be found that this last number admits
of being diminished by 1

2 (n2−n), namely by one for each of the symbols of the form (fg); and
that if, before or after this reduction, the associative equations for which k > 0 be satisfied,
then those other 1

3 (n3−n) conditions lately mentioned, for which k = 0, are satisfied also, as
a necessary consequence. The total number of the equations of association, included in the
formula (54), will thus come to be reduced to

1
2 (n4 − n3)− 1

2 (n2 − n), or to 1
2n(n− 1)(n2 − 1);

but it may seem unlikely that even so large a number of conditions as this can be satisfied
generally, by the 1

2n(n2 + 1) constants of multiplication [5.]. Yet I have found, not only for
the case n = 2, in which we have thus 5 constants and 3 equations, but also for the cases
n = 3 and n = 4, for the former of which we have 15 constants and 24 equations, while for
the latter we have 34 constants and 90 equations, that all these associative conditions can be
satisfied: even in such a manner as to leave some degree of indetermination in the results, or
some constants of multiplication disposable.

[10.] Without expressly introducing the symbols (fgh), results essentially equivalent to
the foregoing may be deduced in the following way, with the help of the characteristics [3.]
of operation, S, V, K. The formula of association (51) may first be written thus*:

ιSι′ι′′ + ιVι′ι′′ = Sιι′ . ι′′ + Vιι′ . ι′′; (62)

in which the symbols Sιι′ and Vιι′ are used to denote concisely, without a point interposed,
the scalar and vector parts of the product ιι′, but a point is inserted, after those symbols,
and before ι′′, in the second member, as a mark of multiplication: so that, in this abridged
notation, Sιι′ . ι′′ and Vιι′ . ι′′ denote the products which might be more fully expressed as
(S . ιι′) × ι′′ and (V . ιι′) × ι′′; while it has been thought unnecessary to write any point in
the first member, where the factor ι occurs at the left hand. Operating on (62) by S and V,
we find the two following equations of association, which are respectively of the scalar and
vector kinds:

S(ιVι′ι′′ − ι′′Vιι′) = 0; (63)

* There is here a slight departure from the notation of the Lectures on Quaternions, by the
suppression of certain points, which circumstance in the present connexion cannot produce
ambiguity.
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V(ιVι′ι′′ + ι′′Vιι′) = ι′′ Sιι′ − ιSι′ι′′; (64)
because the law (32) of conjugation, ι′ι = Kιι′, gives, by (41),

S$′$ = +S$$′, V$′$ = −V$$′.

For the same reason, no essential change is made in either of the two equations, (63), (64), by
interchanging ι and ι′′; but if we cyclically permute the three vector-units, ι ι′ ι′′, then (63)
gives

S(ιVι′ι′′) = S(ι′Vι′′ι) = S(ι′′Vιι′); (65)
and there arise three equations of the form (64), which give, by addition,

V(ιVι′ι′′ + ι′Vι′′ι+ ι′′Vιι′) = 0; (66)

and therefore conduct to three other equations, of the form*

V(ιVι′ι′′) = ι′′ Sιι′ − ι′ Sι′′ι. (67)

Equating ι′′ to ι, the two equations (65) reduce themselves to the single equation,

S(ιVιι′) = 0; (68)

and the formula (67) becomes

V(ιVιι′) = ι2ι′ − ιSιι′ : (69)

both which results become identities, when we further equate ι′ to ι. And no equations of
condition, distinct from these, are obtained by supposing ι′′ = ι′, or ι′ = ι, in (65) and (67).
The number of the symbols ι being still supposed = n, and therefore by [5.] the number of
the constants which enter into the expressions of their n2 binary products (including squares)
being = 1

2 (n3 + n), these constants are thus (if possible) to be made to satisfy 1
3 (n3 − n)

associative and scalar equations of condition, obtained through (63), from the comparison
of the scalar parts of the two ternary products, ι . ι′ι′′ and ιι′ . ι′′; namely, n(n − 1) scalar
equations of the form (68) and 1

3n(n − 1)(n − 2) such equations, of the forms (65). And
the same constants of multiplication must also (if the associative law is to be fulfilled) be so
chosen as to satisfy 1

2 (n3 − n2) vector equations, equivalent each to n scalar equations, or in
all to 1

2 (n4 − n3) scalar conditions, obtained through (64) from the comparison of the vector
parts of the same two ternary products (51); namely, n(n − 1) vector equations of the form
(69), and 1

2n(n − 1)(n − 2) other vector equations, included in the formula (64). This new
analysis therefore confirms completely the conclusion of the foregoing paragraph respecting
the general existence of 1

2 (n4−n3) + 1
3 (n3−n) associative and scalar equations of condition,

between the 1
2 (n3 + n) disposable constants of multiplication, when the general conception

of the polynomial expression P of [1.] is modified by the suppositions, ι0 = 1 in [2.], and
ι′ι = Kιι′ in [5.]. At least the analysis of the present paragraph [10.] confirms what has been
lately proved in [9.], that the number of conditions of association can be reduced so far ; but the
same analysis will also admit of being soon applied, so as to assist in proving the existence of
those additional and general reductions which have been lately mentioned without proof, and
which depress the number of conditions to be satisfied to 1

2 (n4−n3)− 1
2 (n2−n). Meanwhile

it may be useful to exemplify briefly the foregoing general reasonings for the cases n = 2,
n = 3, that is, for trinomial and quadrinomial polynomes.

* This formula is one continually required in calculating with quaternions (compare page li
of the Contents, prefixed to the author’s Lectures).
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[11.] For the case n = 2, the two distinct symbols of the form ι may be denoted simply
by ι and ι′; and the equations of association to be satisfied are all included in these two,

ι . ιι′ = ι2ι′, ι′ . ι′ι = ι′2ι; (70)

which give, when we operate on them by S and V, two scalar equations of the form (68),
and two vector equations of the form (69), equivalent on the whole to six scalar equations of
condition, between the five constants of multiplication, (1) (2) (12) (121) (122), if we write,
on the plan of the preceding articles,

ι2 = (1), ι′2 = (2), Sιι′ = (12), Vιι′ = −Vι′ι = (121)ι+ (122)ι′. (71)

From (68), or from (60), or in so easy a case by more direct and less general considerations,
we find that the comparison of the scalar parts of the products (70) conducts to the two
equations,

0 = (121)(1) + (122)(12) = (122)(2) + (121)(12). (72)

From (69), or (61), we find that the comparison of the vector parts of the same products (70)
gives immediately four scalar equations, which however are seen to reduce themselves to the
three following:

(121)(122) = −(12); (122)2 = (1); (121)2 = (2); (73)

the first of these occurring twice. And it is clear that the equations (72) are satisfied, as soon
as we assign to (1), (2) and (12) the values given by (73). If then we write, for conciseness,

(121) = a, (122) = b, (74)

we shall have, for the present case (n = 2), the values,

(1) = b2, (2) = a2, (12) = −ab. (75)

And hence, (writing κ instead of ι′,) we see that the trinome*,

P = z + ιx+ κy, (76)

where x y z are ordinary variables, will possess all the properties of those polynomial ex-
pressions which have been hitherto considered in this paper, and especially the associative
property, if we establish the formula of multiplication,

(ιx+ κy)(ιx′ + κy′) = (bx− ay)(bx′ − ay′) + (aι+ bκ)(xy′ − yx′); (77)

wherein a and b are any two constants of the ordinary and algebraical kind. In this trinomial
system,

z′′ + ιx′′ + κy′′ = (z + ιx+ κy)(z′ + ιx′ + κy′), (78)

* I am not aware that this trinomial expression (76), with the formula of multiplication
(77), coincides with any of the triplet-forms of Professor De Morgan, or of Messrs. John and
Charles Graves: but it is given here merely by way of illustration.
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if
x′′ = zx′ + z′x+ a(xy′ − yx′),
y′′ = zy′ + z′y + b(xy′ − yx′),
z′′ = zz′ + (bx− ay)(bx′ − ay′);

 (79)

we have therefore the two modular relations,

z′′ + bx′′ − ay′′ = (z + bx− ay)(z′ + bx′ − ay′),
z′′ − bx′′ + ay′′ = (z − bx+ ay)(z′ − bx′ + ay′);

}
(80)

that is to say, the functions z ± (bx − ay) are two linear moduli of the system. A general
theory with which this result is connected will be mentioned a little further on. Geometrical
interpretations (of no great interest) might easily be proposed, but they would not suit the
plan of this communication.

[12.] For the case n = 3, or for the quadrinome

P = x0 + ι1x1 + ι2x2 + ι3x3, (81)

we may assume
ι21 = a1, ι22 = a2, ι23 = a3,

Sι2ι3 = b1, Sι3ι1 = b2, Sι1ι2 = b3,

}
(82)

and
Vι2ι3 = −Vι3ι2 = ι1l1 + ι2m3 + ι3n2,

Vι3ι1 = −Vι1ι3 = ι2l2 + ι3m1 + ι1n3,

Vι1ι2 = −Vι2ι1 = ι3l3 + ι1m2 + ι2n1;

 (83)

and then the 1
2 (n4 − n3) = 27 scalar equations of condition, included in the vector form,

V(ι . ι′ι′′) = V(ιι′ . ι′′), (84)

are found on trial to reduce* themselves to 24; which, after elimination of the 6 constants
of the forms here denoted by a and b, or previously by (f) and (fg), furnish 18 equations
of condition between the 9 other constants, of the forms here marked l, m, n, or previously
(fgh); and these 18 equations may be thus arranged†:

0 = l1(n1 −m1) = l2(n2 −m2) = l3(n3 −m3),
0 = l2(n1 −m1) = l3(n2 −m2) = l1(n3 −m3),
0 = l3(n1 −m1) = l1(n2 −m2) = l2(n3 −m3);

 (85)

* The reason of this reduction is exhibited by the general analysis in [14.].
† For it is found that each of the three constants (eff) + (fgg) must give a null product,

when it is multiplied by any one of the constants (e′f ′g′), or by any one of these other
constants (e′′f ′′f ′′) − (e′′g′′g′′); if each of the three systems, efg, e′f ′g′, e′′f ′′g′′, represent,
in some order or other, but not necessarily in one common order, the system of the three
unequal indices, 1, 2, 3.
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0 = n2
1 −m2

1 = n2
2 −m2

2 = n2
3 −m2

3,

0 = (n2 +m2)(n1 −m1) = (n3 +m3)(n2 −m2) = (n1 +m1)(n3 −m3),
0 = (n3 +m3)(n1 −m1) = (n1 +m1)(n2 −m2) = (n2 +m2)(n3 −m3);

 (86)

they are therefore satisfied, without any restriction on l1 l2 l3, by our supposing

n1 = m1, n2 = m2, n3 = m3; (87)

but if we do not adopt this supposition, they require us to admit this other system of equa-
tions,

0 = l1 = l2 = l3 = n1 +m1 = n2 +m2 = n3 +m3. (88)

Whichever of these two suppositions, (87), (88), we adopt, there results a corresponding
system of values of the six recently eliminated constants, of the forms a and b, or (f) and
(fg); and it is found* that these values satisfy, without any new supposition being required,
the 1

3 (n3 − n) = 8 scalar equations, included in the general form

S(ι . ι′ι′′) = S(ιι′ . ι′′), (89)

which are required for the associative property.

[13.] In this manner I have been led to the two following systems of associative quadrino-
mials, which may be called systems (A) and (B); both possessing all those general properties
of the polynomial expression P, which have been considered in the present paper; and one of
them including the quaternions.

For the system (A), the quadrinomial being still of the form (81), or of the following
equivalent form,

Q = w + ιx+ κy + λz, (90)

where wxy z are what were called in [1.] the constituents, the laws of the vector-units ι κ λ
are all included in this formula of multiplication for any two vectors, such as

ρ = ιx+ κy + λz, ρ′ = ιx′ + κy′ + λz′ : (91)

(A) . . . ρρ′ = (m2
1 − l2l3)xx′ + (l1m1 −m2m3)(yz′ + zy′)

+ (m2
2 − l3l1)yy′ + (l2m2 −m3m1)(zx′ + xz′)

+ (m2
3 − l1l2)zz′ + (l3m3 −m1m2)(xy′ + yx′)

+ (ιl1 + κm3 + λm2)(yz′ − zy′)
+ (κl2 + λm1 + ιm3)(zx′ − xz′)
+ (λl3 + ιm2 + κm1)(xy′ − yx′); (92)

* This fact of calculation is explained by the general analysis of [15.]. The values of a and
b may be deduced from the formulæ, a1 = m2

1− l2l3, b1 = l1m1−m2n3, with others cyclically
formed from these.
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and it is clear that Quaternions* are simply that particular case of such quadrinomes (A),
for which the six arbitrary constants l1 . . . m3 and the three vector-units ι κ λ receive the
following values:

l1 = l2 = l3 = 1, m1 = m2 = m3 = 0, ι = i, κ = j, λ = k. (93)

For the other associative quadrinomial system (B), which we may call for distinction
tetrads, if we retain the expressions (90), (91), we must replace the formula of vector-
multiplication (92) by one of the following form:

(B) . . . ρρ′ = (lx+my + nz)(lx′ +my′ + nz′)
+ (κn− λm)(yz′ − zy′) + (λl − ιn)(zx′ − xz′)
+ (ιm− κl)(xy′ − yx′); (94)

involving thus only three arbitrary constants, l mn, besides the three vector-units, ι κ λ; and
apparently having no connexion with the quaternions, beyond the circumstance that one
common analysis [12.] conducts to both the quadrinomes (A) and the tetrads (B).

As regards certain modular properties of these two quadrinomial systems, we shall shortly
derive them as consequences of the general theory of polynomes of the form P, founded on
the principles of the foregoing articles.

[14.] In general, the formula (59) gives, by [2.], the two following equations, which may
in their turn replace it, and are, like it, derived from the comparison of the vector parts of
the general associative formula, or from the supposition that k > 0 in (54):

(fg) = Σ(geh)(fhe), if e >< g; (95)

0 = Σ(geh)(fhk), if k >< e, k >< g; (96)

the summation extending in each from h = 1 to h = n. Interchanging f and g in (95), we
have

(gf) = Σ(feh)(ghe), if e >< f ; (97)

and making g = f , in either (95) or (97), we obtain the equation,

(f) = Σ(feh)(fhe), if e >< f. (98)

For each of the n symbols (f), there are n− 1 distinct expressions of this last form, obtained
by assigning different values to e; and when these expressions are equated to each other, there
result n(n− 2) equations between the symbols of the form (fgh). For each of the 1

2n(n− 1)
symbols of the form (fg), where f and g are unequal, there are n − 1 expressions (95), and
n− 1 other expressions of the form (97), because, by (33) and (36), (gf) = (fg); and thus it
might seem that there should arise, by equating these 2n−2 expressions for each symbol (fg),

* See the author’s Lectures, or the Philosophical Magazine for July, 1844, in which the
first printed account of quaternions was given.
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as many as 2n − 3 equations from each, or 1
2n(n − 1)(2n − 3) equations in all between the

symbols (fgh). But if we observe that the sums of the n − 1 expressions (95) for (fg), and
of the n− 1 expressions (97) for (gf) are, respectively,

(n− 1)(fg) = ΣeΣh(geh)(fhe), (n− 1)(gf) = ΣeΣh(feh)(ghe); (99)

where the summations may all be extended from 1 to n, because (ffh) and (ggh) are each
= 0, by (35), since h > 0; and that these two double sums (99) are equal; we shall see that
the formula

(gf) = (fg), (100)

though true, gives no information respecting the symbols (fgh): or is not to be counted as
a new and distinct equation, in combination with the n − 1 equations (95), and the n − 1
equations (97). In other words, the comparison of the sums (99) shows that we may confine
ourselves to equating separately to each other, for each pair of unequal indices f and g, the
n − 1 expressions (95) for the symbol (fg), and the n − 1 other expressions (97) for the
symbol (gf), without proceeding afterwards to equate an expression of the one set to an
expression of the other set. We may therefore suppress, as unnecessary, an equation of the
form (100), for each of the 1

2n(n − 1) symbols of the form (fg), or for each pair of unequal
indices f and g, as was stated by anticipation towards the close of paragraph [9.]. There
remain, however, 2(n − 2) equations of condition, between the symbols (fgh), derived from
each of those 1

2n(n− 1) pairs; or as many as n(n− 1)(n− 2) equations in all, obtained in this
manner from (95) and (97), regarded as separate formulæ. Thus, without yet having used
the formula (96), we obtain, with the help of (98), by elimination of the symbols (f), (fg),
(gf), through the comparison of n − 1 expressions for each of those n2 symbols, n2(n − 2)
equations of condition, homogeneous and of the second dimension, between the symbols of
the form (fgh). And without any such elimination, the formula (96) gives immediately
1
2n

2(n−1)(n−2) other equations of the same kind between the same set of symbols; because
after choosing any pair of unequal indices e and g, we may combine this pair with any one of
the n values of the index f , and with any one of the n−2 values of k, which are unequal both
to e and to g. There are therefore, altogether, 1

2n
2(n+ 1)(n− 2) homogeneous equations of

the second dimension, obtained by comparison of the vector parts of the general formula of
association, to be satisfied by the 1

2n
2(n− 1) symbols of the form (fgh).

[15.] To prove now, generally, that when the vector parts of the associative formula
are thus equal, the scalar parts of the same formula are necesarily equal also, or that the
system of conditions (56) in [9.] is included in the system (57) or (59); we may conveniently
employ the notations S and V, and pursue the analysis of paragraph [10.], so as to show that
the system of equations (65), including (68), results from the system (67), including (69);
or that if the formula (84) be satisfied for every set of three unequal or equal vector-units,
ι ι′ ι′′, then, for every such set, the formula (89) is satisfied also. For this purpose, I remark
that the formula of vector-association (67), when combined with the distributive principle of
multiplication [1.], and of operation with S and V [5.], gives generally, as in quaternions, the
transformation

VρVστ = τ Sρσ − σ Sρτ ; (101)
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where ρ, σ, τ may denote any three vectors, and the symbol VρVστ is used to signify concisely
the vector part of the product ρ×V(στ); whence also we may derive by (41) this other general
transformation,

V(Vστ . ρ) = σ Sρτ − τ Sρσ. (102)

If then we write
Vστ = ρ′, Vτρ = σ′, Vρσ = τ ′, (103)

and introduce another arbitrary vector $, we shall have

Vρ′$ = σ Sτ$ − τ Sσ$; (104)

and therefore
VρVρ′$ = τ ′ Sτ$ + σ′ Sσ$; (105)

but also
VρVρ′$ = $ Sρρ′ − ρ′ Sρ$; (106)

whence
$ Sρρ′ = ρ′ Sρ$ + σ′ Sσ$ + τ ′ Sτ$, (107)

and consequently
Sρρ′ = Sσσ′ = Sττ ′; (108)

but this is precisely by (103) the formula of scalar-association (65), stated in its most general
form. The general dependence of (65) on (67), or of (56) on (57), is therefore proved to
exist; and the 1

3 (n3 − n) associative conditions, for which k = 0 in (54), are seen to be
consequences of 1

2 (n4 − n3) other conditions for which k > 0; or even of those conditions
diminished in number by 1

2 (n2 − n), according to what was stated by anticipation in [9.],
and has been proved by the analysis of [14.]. This result is the more satisfactory, because
otherwise the conditions of association would essentially involve a system of homogeneous
equations of the third dimension relatively to the symbols (fgh), obtained by substituting in
(56) the expressions (95) or (97) for the symbols of the form (fg), including the values (98)
of the symbols (f). But we see now (as above stated) that the total number of distinct
conditions may be reduced to 1

2 (n4−n3)− 1
2 (n2−n), between the total number 1

2 (n3 +n) of
constants of multiplication; or finally, after the elimination of the 1

2 (n2 + n) symbols of the
forms (f) and (fg), to a system of homogeneous equations of the second dimension, namely,
those determined in [14.], of which the number amounts (as in that paragraph) to

1
2 (n4 − n3)− n2 = 1

2n
2(n+ 1)(n− 2), (109)

between the symbols (fgh), whereof the number is

1
2 (n3 + n)− 1

2 (n2 + n) = 1
2n

2(n− 1). (110)

[16.] For example, when n = 2, the two constants (121) and (122) have been seen in
[11.] to be unresticted by any condition. When n = 3, we have 9 constants, lately denoted
by l1 l2 l3 m1m2m3 n1 n2 n3, wherewith to satisfy 18 homogeneous equations of the second

18



dimension, namely those marked (85) and (86) in [12.]; which it has been seen to be possible to
do, in two distinct ways (A) and (B), and even so as to leave some of the constants arbitrary,
in each of the two resulting systems, of associative quadrinomes and tetrads. A similar result
has been found by me to hold good for the case n = 4, or for the case of associative quines,
such as

P = w + ιx+ κy + λz + µu, (111)

involving four vector-units ι κ λµ, which obey the laws of conjugation (32), and of associa-
tion (51). For although there are in this case only 24 = 1

2n
2(n − 1) constants of the form

(fgh), to satisfy 80 = 1
2n

2(n+ 1)(n−2) homogeneous equations of the second dimension, yet
I have found that the forms* of these equations are such as to allow this to be done in various
ways, and even without entirely determining the constants. And it appears not impossible
that similar results may be obtained for higher values of n; or that associative† polynomes
of higher orders than quines may be discovered.

Observatory of Trinity College, Dublin,
July 4, 1854.

* The subject may be illustrated by the very simple remark, that although the four equa-
tions tx = 0, ty = 0, ux = 0, uy = 0, are such that no three of them include the fourth, since
we might (for example) satisfy the three first alone by supposing t = 0, x = 0, yet they can
all four be satisfied together by supposing either x = 0, y = 0, or t = 0, u = 0. Compare the
equations (85) or (86), which are of the forms tx = 0, ty = 0, tz = 0, ux = 0, uy = 0, uz = 0,
vx = 0, vy = 0, vz = 0. In the theory of quines, however, the forms are not quite so simple.
† The octaves, or octonomial expressions, which Mr. Cayley published in the Philosophical

Magazine for March 1845, and which had been previously but privately communicated to me
by Mr. J. T. Graves about the end of 1843, after my communication to him of the quaternions,
are not associative polynomes. Thus in Mr. Cayley’s notation, the four following of his seven
types, (123) (624) (176) (734), give ι1 . ι2ι4 = ι1ι6 = −ι7, but ι1ι2 . ι4 = ι3ι4 = +ι7; or with
Mr. Graves’s symbols, the triads i j k, i o n, j l n, k l o, give i.jl = in = −o, but ij.l = kl = +o.
See note to page (61) of the Preface to my Lectures. It was my perceiving this latter property
of Mr. Graves’s symbols in 1844, which chiefly discouraged me from pursuing the study of
those octaves, as a species of extensions of the quaternions, which Mr. Graves as well as
Mr. Cayley had designed them to be, and which in one sense no doubt they are.
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Section III.

[17.] The following remarks may be useful, as serving to illustrate and develope the gen-
eral analysis contained in some of the preceding paragraphs, especially in [14.] and as adapted
to give some assistance towards any future study of associative polynomes, such as quines, of
an order higher than quadrinomes, but subject like them to the law of conjugation (32).

The expression (98) may be thus more fully written:

(f) = (fee)2 + (feg)(fge) + Σ8(feh)(fhe); (112)

where e f g h are all supposed to be unequal; the summation Σ8 being performed relatively
to h, for all those n− 3 values of the latter, which are distinct from each of the three former
indices. Interchanging e and g, and subtracting, we eliminate the symbol (f), and obtain the
following formula:

I. . . . (fee)2 − (fgg)2 = Σ8{(fgh)(fhg)− (feh)(fhe)}; (113)

which type I. includes generally n(n− 2) distinct and homogeneous equations, of the second
dimension, with 2(n− 2) terms in each, between the 1

2n
2(n− 1) symbols of the form (fgh).

Thus, for the case of quadrinomials (n = 3), by writing, in agreement with (82) and (83),

a1 = (1), b1 = (23), l1 = (231), m1 = (313), n1 = (122), (114)

and suppressing the sum Σ8, we have by (112) the two expressions (compare a note to [12.]):

a1 = m2
1 − l2l3 = n2

1 − l2l3; (115)

together with four others formed from these, by cyclical permutation of the indices 1, 2, 3;
and we are thus conducted, by elimination of the three symbols a1, a2, a3, to three equations
of the form n2

1 = m2
1; that is, to the 3 equations on the first line of (86), involving each

2 terms. For quines (n = 4), if we make also, with the same permitted permutations,

a4 = (4), c1 = (14), p1 = (234),
r1 = (141), s1 = (142), t1 = (143), u1 = (144),

}
(116)

the index h receives one value under each sign of summation Σ8, and the resulting formulæ
may be thus written:

(a1 + l3l2 + p2t1 − s1p3 = )n2
1 + p2t1 = m2

1 − s1p3 = u2
1 + l3l2; (117)

(a4 − s1t2 − s2t3 − s3t1 = ) r2
1 − s2t3 = r2

2 − s3t1 = r2
3 − s1t2; (118)

where the line (117) is equivalent to three lines of the same form: so that the elimination of
a1 . . . a4 conducts here to 8 equations, of 4 terms each, between the 24 symbols of the form
(fgh), or l1 . . . u3, as by the general theory it ought to do. For polynomes of higher orders
(n > 4), we have the analogous equations,

(f)− (feg)(fge)− (fgk)(fkg)− (fke)(fek)
= (fee)2 − (fgk)(fkg) + Σ8(feh)(fhe)
= (fgg)2 − (fke)(fek) + Σ88(fgh)(fhg)
= (fkk)2 − (feg)(fge) + Σ88(fkh)(fhk); (119)

where h, under Σ88, receives only n − 4 values, being distinct from each of the four unequal
indices, e f g k.
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[18.] By changing e to f in (95), and attending to the properties of the symbols (fgh),
we obtain the expression

(fg) = Σ(fgh)(hff); (120)

where f and g are unequal, and the summation Σ extends from h = 1 to h = n. The term
for which h = f vanishes, and the formula (120) may be thus more fully written:

(fg)− (fge)(eff) = (fgg)(gff) + Σ8(fgh)(hff); (121)

where the letters e f g denote again some three unequal indices, and the summation Σ8 is
performed as in the foregoing paragraph. But also, by (97) and (100),

(fg)− (fge)(eff) = (fee)(gee) + Σ8(feh)(ghe); (122)

subtracting, therefore, (122) from (121), we eliminate the symbol (fg), and obtain the type

II. . . . (fee)(gee)− (fgg)(gff) = Σ8{(fgh)(hff)− (feh)(ghe)}; (123)

which represents in general a system of n(n− 1)(n− 2) distinct and homogeneous equations
of the second dimension, containing each 2(n− 2) terms, and derived by eliminations of the
kind last mentioned, from the formulæ (95), (97), (100), in a manner agreeable to the analysis
of paragraph [14.]. Indeed, it was shown in that paragraph, that the equation

(gf) = (fg), (100),

though known from earlier and simpler principles to be true, might be regarded as included
in (95) and (97); but this need not prevent us from using that equation in combination with
the others, whenever it may seem advantageous to do so: and other combinations of them
may with its help be formed, which are occasionally convenient, or even sometimes necessary,
although the general results of the elimination of the symbols (fg) are sufficiently represented
by the recent type II., or by the formula (123). For example, a subordinate type, including
only 1

2n(n− 1)(n− 2) distinct equations, of 2(n− 2) terms each, between the symbols (fgh),
may thus be formed, by subtracting (95) from (97), under the condition that e f g shall still
denote some three unequal indices; namely,

0 = Σ{(feh)(ghe)− (geh)(fhe)}; (124)

or more fully, but at the same time with the suppression of a few parentheses, which do not
appear to be at this stage essential to clearness,

(fge)(eff + egg) = Σ8(geh . fhe− feh . ghe) : (125)

this last formula admitting also of being obtained from (122), by interchanging f and g,
and subtracting. Again, a type which is in general still more subordinate, as including only
1
2n(n − 1) distinct equations, of 2(n − 2) terms each, may be derived by the same process
from (120); namely the type,

0 = Σ(fgh)(hff + hgg); (126)
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or in a slightly more expanded form,

(fge)(eff + egg) = Σ8(gfh)(hff + hgg); (127)

which may also be easily derived, in the same way, from (121). It will, however, be found,
by pursuing a little further the analysis of [14.], that the equations of this last type, (126) or
(127), are always consequences of the equations of the intermediate type, (124) or (125); the
sum of the n − 2 equations of the form (125), which answer to the various values of e that
remain when f and g have been selected, being in fact equivalent to the formula (126). It
will also be found, by the same kind of analysis, that the intermediate equations of the type
(124) or (125) are generally deducible from those of the form (123). But on the subject of
these general reductions, connected with the elimination of the symbols (fg) or (gf), it may
be proper to add a few words.

[19.] Let us admit, at least as temporary abridgements, the notations

[fg] = Σ(fgh . hff); [fge] = Σ(fhe . geh); (128)

where e, f , g are any three unequal indices, and h varies under Σ, as before, from 1 to n.
Then the formula (95) gives n − 1 distinct equivalents for the symbol (fg), of which one is
by (120) of the form [fg], and the n− 2 others are each of the form [fge]; in such a manner
that we may write, instead of (95), with these last notations, the system of the two formulæ,

(fg) = [fg], (fg) = [fge]; (129)

whereof the latter is equivalent to a system of n− 2 equations: and of course, instead of (97),
we may in like manner write

(gf) = [gf ], (gf) = [gfe]. (130)

The equations (99) may now be thus presented:

(n− 1)(fg) = [fg] + Σ8[fge] = ΣΣ(fhe . geh);
(n− 1)(gf) = [gf ] + Σ8[gfe] = ΣΣ(feh . ghe);

}
(131)

where e under the sign Σ′ is distinct from each of the two indices f and g; but, under the
double sign ΣΣ, both e and h may each receive any one of the values from 1 to n. The two
double sums are equal, as in [14.], and therefore we must have, identically,

[fg] + Σ′[fge] = [gf ] + Σ′[gfe]; (132)

the equation (100) being at the same time seen again to be a consequence, by simple additions,
of the formulæ (95) and (97). Thus, after assigning any two unequal values to the indices
f and g, we see that the two symbols, (fg), (gf); the two others, [fg], [gf ]; the n − 2
symbols, [fge]; and the n − 2 symbols, [gfe], are indeed all equal to each other: but that
the 2n− 1 equations between these 2n equal symbols are connected by a relation, such that
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any 2n − 2 of them, which are distinct among themselves, include the remaining one: and
that therefore, after the elimination of (fg) and (gf), there remain only 2(n − 2) distinct
equations of condition, as was otherwise shown in [14.]. But, in that paragraph, we proposed
to form those resulting conditions on a plan which may now be represented by the formulæ

[fg] = [fge], [gf ] = [gfe]; (133)

whereas we now prefer, for the sake of the convenience gained by the disappearance of certain
terms in the subtractions, to employ that other mode of combination, which conducted in
[18.] to the formula (123), and may now be denoted as follows:

[fg] = [gfe], [gf ] = [fge]. (134)

Summing these last with respect to e, we find

(n− 2)[fg] = Σ′[gfe], (n− 2)[gf ] = Σ′[fge]; (135)

and therefore, by the identity (132),

(n− 3)[gf ] = (n− 3)[fg]. (136)

If, then, n > 3, we are entitled to infer, from (123) or (134), the following formula, which is
equivalent to (126),

[gf ] = [fg]; (137)

and therefore also by (134) this other type, equivalent to (124),

[fge] = [gfe], (138)

which includes n−2 equations, when f and g are given, and conducts, reciprocally, by (132),
to (137). In general, therefore, if we adopt the type (134), we need not retain also either of
these two latter types, (137), (138). But in the particular case where n = 3, that is, in the
case of quadrinomes, the identity (132) reduces the two equations (134) to one, after f and
g have been selected; and with this one we must then combine either of the two equations
(137) or (138), which in this case become identical with each other.

[20.] In particular, for this case of quadrinomials (n = 3), we have with the notations
(114), (128), the four following values for (23), or for b1 (compare again a note to [12.]):

[23] = 231 . 122 + 233 . 322 = l1n1 − n2m3;
[231] = 211 . 311 + 231 . 313 = −m2n3 + l1m1;
[32] = 321 . 133 + 322 . 233 = l1m1 −m3n2;

[321] = 311 . 211 + 321 . 212 = −n3m2 + l1n1;

 (139)

but, whether we equate the first to the fourth, or the second to the third of these expressions
for b1, in conformity with the type (134), we obtain only one common equation of condition,
n2m3 = n3m2, equivalent indeed by cyclical permutation to three, namely to the following,

0 = n2m3 − n3m2 = n3m1 − n1m3 = n1m2 − n2m1; (140)
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which evidently agree with certain simple combinations of the six equations on the two last
lines of (86). If however we compare either the first value (139) with the third, or the second of
those values with the fourth, according to the type (137) or (138), we find by each comparison
the common condition l1n1 = l1m1, and thus recover the equations of the first line of (85).
In this way then we may obtain the required number of six distinct equations, with two
terms each, between the nine symbols (fgh), or l1 . . . n3, for the case of quadrinomes, by
elimination of the three symbols (fg), or of b1, b2, b3.

[21.] For the case of quines (n = 4), the general theory requires that the corresponding
elimination of the 6 = 1

2n(n − 1) symbols of this form (fg), or b1 . . . c3, should conduct to
24 = n(n− 1)(n− 2) distinct equations of condition, with 4 = 2(n− 2) terms each, between
the 1

2n
2(n − 1) = 24 symbols of the form (fgh), or l1 . . . u3, each equation thus obtained

being homogeneous, and of the second dimension; and that all these 24 conditions should be
included in the formula (134), or in the single type (123). And in fact we thus obtain, by
comparison of the six expressions for b1, of which one is

b1 = (23) = [23] = Σ(23h . h22) = l1n1 − n2m3 − p1r2, (141)

the four following equations of condition, included in that type or formula:

0 = [23]− [321] = [32]− [231];
0 = [23]− [324] = [32]− [234];

}
(142)

that is, with the notations l1 . . . u3,

n2m3 −m2n3 = p3s3 − p1r2 = p1r3 − p2t2;
n2m3 + u2u3 = p3s3 + l1m1 = l1n1 − p2t2;

}
(143)

while we have in like manner six expressions for c1, of which one is

c1 = [41] = Σ(41h . h44) = −(r1u1 + s1u2 + t1u3), (144)

and of which the comparison conducts to the four other distinct conditions:

r1u1 − n1r2 = l3t3 + n3t1 = −l2s2 − t1u3;
r1u1 +m1r3 = l3t3 − s1u2 = −l2s2 −m2s1;

}
(145)

where cyclical permutation of indices is still allowed. The equations obtained from the types
(137), (138) would be found (as the theory requires) to be merely consequences of these; for
example, by making e = 1, f = 2, g = 3, h = 4, those two types give only the conditions,

l1(n1 −m1) = p1(r2 + r3) = p2t2 + p3s3, (146)

which are obviously included in (143).

24



[22.] With respect to those other homogeneous equations of the second dimension, be-
tween the symbols (fgh), which are obtained immediately, or without any elimination of
the symbols (f), (fg), from the general conditions of association, and are included in the
formula (96), they may now be developed as follows.

Making k = f in (96), and then interchanging f and e, for the sake of comparison with
(123), we obtain the type

III. . . . fgg . gee− gff . fee = Σ8(gfh . hee); (147)

which includes generally 1
2n(n−1)(n−2) distinct equations, of n−1 terms each. For quines,

we have thus 12 equations of 3 terms sufficiently represented by the following:

n1n2 −m2m1 = p3r3, n1u2 +m2u1 = −l3u3;
r2m2 + u2r1 = s2n3, r2n2 − u2r3 = +t2m1;

}
(148)

the value 4 being attributed to the index h or e, in forming the equations on the first line,
but to f or g for the second line. For quadrinomes, the corresponding equations are only
three, namely

0 = n1n2 −m1m2 = n2n3 −m2m3 = n3n1 −m3m1; (149)

which however are sufficient, in conjunction with the three lately marked as (140), to repro-
duce the six equations of the two last lines of (86). In general, by adding and subtracting the
two types (123), (147), we obtain the formula,

(fee± fgg)(gee∓ gff) = Σ8(fgh)(hff ∓ hee)− Σ8(feh . ghe); (150)

where, as a verification, if we take the lower signs, and interchange f and g, so as to recover
the first member with the upper signs, the comparison of the two expressions for that member
conducts to an equation between the two second members, which may also be obtained by
the comparison of (125) and (127).

[23.] Again, making f = e in (96), and then changing k to f , we obtain the formula,

IV. . . . 0 = (egf)(eff + egg) + Σ8(egh . ehf); (151)

where e f g h are again unequal indices. This IVth type includes generally n(n − 1)(n − 2)
distinct equations, with n − 1 terms each. For the case n = 3 there arise thus 6 equations
of 2 terms, namely the six on the two last lines of (85); so that the 18 equations (85), (86),
for associative quadrinomials, have thus been completely reproduced, as consequences of the
general theory. For the case of quines, the type (151) gives 24 equations of 3 terms, which
may be represented as follows:

0 = l2(n1 −m1) + p2s1 = l3(n1 −m1) + p3t1;
0 = s2(r2 + r3) + t1t2 = t3(r2 + r3) + s3s1;

}
(152)

0 = t1(u1 −m1) + l3s1 = p2(u1 −m1) + l2p3;
0 = s1(u1 + n1)− l2t1 = p3(u1 + n1)− l3p2;

}
(153)

either h or e being = 4 in (152), and either f or g having that value in (153), while 1, 2, 3
may still be cyclically permuted.
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[24.] Finally, by supposing, as in (119), that e f g k are four unequal indices, and that h
under Σ88 is unequal to each of them, we obtain from (96) one other type, including generally
1
2n(n− 1)(n− 2)(n− 3) equations, of n− 1 terms each, but furnishing no new conditions of
association for quadrinomials: namely,

V. . . . efk . gee+ fgk . egg + egk . fkk = Σ88(fhk . geh). (154)

For quines, the sum Σ88 vanishes, and we obtain twelve equations of three terms each, which
may (with the help of permutations) be all represented by the four following:

0 = l1r2 − u2s3 − n3t2 = l1r3 −m2s3 + u3t2,

0 = l1r1 + n2s3 +m3t2 = n1p1 −m2p2 − u3p3;

}
(155)

where the index 4 has been made to coincide with e or with g in the first line, but with f or
k in the second.

[25.] In general, the number of distinct associative equations, included in the three last
types (147), (151), (154), or III., IV., V., which have been all derived from the formula (96),
and have been obtained without elimination of (f) or (fg), amounts in the aggregate to

1
2n(n− 1)(n− 2) + n(n− 1)(n− 2) + 1

2n(n− 1)(n− 2)(n− 3) = 1
2n

2(n− 1)(n− 2); (156)

as, by the analysis of [14.], it ought to do. And when we add this number to the n(n− 2) of
the type I., or (113), and to the n(n − 1)(n − 2) of the type II., or (123), obtained by such
elimination, we have in all this other number,

1
2n

2(n− 1)(n− 2) + n2(n− 2) = 1
2n

2(n+ 1)(n− 2), (157)

of distinct and homogeneous equations of the second dimension, between the 1
2n

2(n − 1)
symbols of the form (fgh): as, by the formulæ (109), (110) of [15.], we ought to have. As
regards the signification of the five foregoing principal types, which it has been thought
convenient to distinguish among themselves, and to arrange according to the various ways in
which they involve the symbols of the form (eff), it will be found, on reviewing the analysis
employed, that they all express ultimately only consequences of that one very simple and
useful formula,

VιVι′ι′′ = ι′′ Sιι′ − ι′ Sι′′ι, (67)

which, with a slightly different notation, has been elsewhere shown to be so important in the
Calculus of Quaternions*. In fact, the equations (95) . . . (98), on which those five separate
types have been founded, may all be deduced from (67) and (69), whereof the latter is a
consequence of the former.

Observatory of Trinity College, Dublin,
August 14, 1854.

* See the author’s Lectures on this subject, cited in former notes to this paper.
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Section IV.

[26.] For quines, the equations of condition between the 24 symbols l1 . . . u3 amount (as
has already been remarked) to 80 in all; namely to 8, 24, 12, 24, and 12 equations, included
respectively in the five types last mentioned, and sufficiently developed above, by the formulæ
(117) (118) (143) (145) (148) (152) (153) (155): which also enable us, with the help of (141),
(144), to determine the values of the four symbols a1 . . . a4, and of the six other symbols
b1 . . . c3, when values of l1 . . . u3 have been found, which satisfy the eighty conditions. And
then, if we denote the quine itself by the following expression (compare [1.]),

P = x0 + ι1x1 + ι2x2 + ι3x3 + ι4x4, (158)

which is a little more symmetric than the form (111), the laws of multiplication of any two
such quines, P, P′, will be sufficiently expressed by the formulæ

ι21 = a1, ι24 = a4, Sι2ι3 = b1, Sι1ι4 = c1,

Vι2ι3 = ι1l1 + ι2m3 + ι3n2 + ι4p1,

Vι1ι4 = ι1r1 + ι2s1 + ι3t1 + ι4u1;

 (159)

if we remember that 1, 2, 3 may still be cyclically permuted, and that the law of conjuga-
tion (32) gives

Kι′ι = ιι′, Sι′ι = Sιι′, Vι′ι = −Vιι′. (160)

For in this manner, by (41), if $ denote, as in (14), the vector part of P, so that

$ = ι1x1 + ι2x2 + ι3x3 + ι4x4, (161)

we shall have

S$$′ = a1x1x
′
1 + a2x2x

′
2 + a3x3x

′
3 + a4x4x

′
4

+ b1(x2x
′
3 + x3x

′
2) + &c. + c1(x1x

′
4 + x4x

′
1) + &c., (162)

V$$′ = (ι1l1 + ι2m3 + ι3n2 + ι4p1)(x2x
′
3 − x3x

′
2) + &c.

+ (ι1r1 + ι2s1 + ι3t1 + ι4u1)(x1x
′
4 − x4x

′
1) + &c., (163)

each “&c.” representing terms obtained by the permutations already mentioned; and if the
constants a b c lmnp r s t u have been chosen so as to fulfil the conditions above developed,
we may then conclude (compare (51)) that the following equations of association hold
good, for the multiplication of any three such vector-units ι, or quadrinomial vectors $, or
quinquinomial expressions P, whether equal or unequal among themselves:

ι . ι′ι′′ = ιι′ . ι′′; $ . $′$′′ = $$′ . $′′; P . P′P′′ = PP′ . P′′; (164)

which it has been the main object of our recent investigations to establish.
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[27.] Without pretending to do more, on the present occasion, than merely to exemplify
the possibility of satisfying, for quines, the foregoing equations of association, I may here
remark that if we restrict the question by assuming (with the usual permutations),

(A, B)* . . . n1 = m1, p1 = 0, u1 = 0, (165)

then numerous simplifications take place, and the 80 equations between the 24 symbols
l mn p r s t u are found to reduce themselves to 44 equations between the 15 symbols l m r s t,
obtained from the five types I. to V. of recent paragraphs, which may be thus denoted and
arranged:

from type I. m2
1 = l2l3, r2

2 − r2
1 = s3t1 − s2t3; (166)

from II. and III. m1l1 = m2m3, m1r1 = m2s1 = m3t1, (167)
and m1r2 = l2s2, m1r3 = l3t3, m1(r1 + r2 + r3) = 0; (168)
from IV. s2(r2 + r3) = −t1t2, t3(r2 + r3) = −s3s1, (169)
and m1s1 = l2t1, m1t1 = l3s1; (170)
and from V. m1s2 = l3r2, m1t3 = l2r3, l1(r1 + r2 + r3) = 0. (171)

Now these conditions may all be satisfied in each of two principal ways, conducting to two
distinct systems of associative quines, which may be called Systems (A) and (B), but which
are not the only possible systems of such quines, because we need not have commenced by
assuming the equations (165), although that assumption has simplified the problem. For first
we may suppose that the constants l and m are different from zero, but that the constants r
are connected by the relation

(A) . . . r1 + r2 + r3 = 0; (172)

or secondly, we may reject this relation between the constants r, and suppose instead that
the six constants l and m all vanish, so that

(B) . . . l1 = l2 = l3 = m1 = m2 = m3 = 0. (173)

With the first supposition, (172), we are to combine the nine relations between the fifteen
constants l m r s t, which are sufficiently expressed by the formula (167), or by the following:

(A1) . . . l1 = m−1
1 m2m3, s1 = m−1

2 m1r1, t1 = m−1
3 m1r1; (174)

and then all the other conditions of association will be found to be satisfied, if we equate each
of the ten symbols a b c to zero, or if we establish this other formula,

(A2) . . . a1 = 0, b1 = 0, c1 = 0, a4 = 0 : (175)

* This line is lettered thus, because it contains the conditions common to the two systems
(A) and (B) of associative quines, which are deduced a little further on.
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while there will still remain five arbitrary constants of the system, for instance r1 r2m1m2m3.
With the second supposition, (173), we are to combine four distinct relations between the
nine constants r s t, contained in the formula (169), or in the following:

(B1)* . . . r1 + r2 = −s−1
1 t1t3, s1s2s3 = t1t2t3; (176)

which give also, as a consequence, this other relation:

(r1 + r2)(r2 + r3)(r3 + r1) = −s1s2s3; (177)

and then the other conditions of association will all be satisfied, if we make, instead of (175),

(B2) . . . a1 = b1 = c1 = 0; a4 = (r1 + r2 + r3)2 : (178)

this system also involving five arbitrary constants, for example s1 s2 t1 t2 t3. The assertion
respecting quines, which was made near the end of [16.], has therefore been fully justified.

[28.] Finally, as regards the system (A) of quines, it may be observed, 1st, that in this
system, by (162) and (175), we have generally,

(A3) . . . S$$′ = 0; (179)

or that “the product of any two quadrinomial vectors $, $′, reduces itself to a pure vector;”
and 2nd, that, by (163), (165), “this vector product, $$′, is of trinomial form, involving no
part with ι4 for a factor.” This product is therefore already seen to be of the form

$$′ = ι1X1 + ι2X2 + ι3X3; (180)

but I say, 3rd, that “its three coefficients, or coordinates, X1, X2, X3 have constant ratios,”
or that “the product $$′ may be constructed by a right line in space of which the direction
though not the length is fixed,” and which may therefore be conceived to “coincide in position
with one fixed axis (ξ) of the system.” In fact, by (163), (165), (174), we have

m1X1 = m2X2 = m3X3 = X, (181)

and therefore
(A4) . . . $$′ = Xξ, (182)

if we make for abridgement

X = m2m3(x2x
′
3 − x3x

′
2) +m3m1(x3x

′
1 − x1x

′
3) +m1m2(x1x

′
2 − x2x

′
1)

(A5) . . .

 +m1r1(x1x
′
4 − x4x

′
1) +m2r2(x2x

′
4 − x4x

′
2) +m3r3(x3x

′
4 − x4x

′
3), (183)

and ξ = m−1
1 ι1 +m−1

2 ι2 +m−1
3 ι3. (184)

* It must be observed that these equations (176), which are part of the basis of the sys-
tem (B), are true in the system (A) also, as corollaries from (174) and (172) which last
equation does not hold in (B); and which allows us to reduce, for (A) but not for (B), the
relation (177) to the simpler form r1r2r3 = s1s2s3.
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In the 4th place, “if any quadrinomial vector $ be multiplied by or into the axis ξ, the
product vanishes;” or in symbols,

(A6) . . . ξ$ = 0, $ξ = 0; (185)

because by (172) the scalar coefficient X becomes = 0, if we change either x1, x2, x3, and
x4, or x′1, x′2, x′3, and x′4, to m−1

1 , m−1
2 , m−1

3 , and 0, respectively. This coefficient X vanishes
also, when we equate x′1 x

′
2 x
′
3 x
′
4 to x1 x2 x3 x4 respectively; and hence, or from (179), we

may infer, 5th, that “in this system of quines (A), the square of every quadrinomial vector
vanishes.” And finally, by an easy combination of the formulæ (182), (185), or of the 3rd and
4th of the foregoing properties of this system, we see, 6th, that, in it, “every product of three
quadrinomial vectors vanishes;” or that

(A7) . . . $$′ . $′′ = 0, $ . $′$′′ = 0. (186)

[29.] The associative property (164) is therefore verified for the system (A), by showing
that, in it, each of the two ternary products of vectors, which ought to be equal, vanishes.
In the system (B), it is easy to see that any such ternary product must be itself a vector;
because, in (B), no binary product of vectors involves ι4, nor does any such product involve
a scalar part, except what arises from ι24. We have, therefore, here, this new result,

(B3) . . . S($$′ . $′′) = S($ . $′$′′) = 0. (187)

And when we proceed to develop these two ternary products, the associative property of
multiplication is again found to be verified, under the form,

(B4) . . . $$′ . $′′ = $ . $′$′′ = a4($x′4x
′′
4 −$′x′′4x4 +$′′x4x

′
4); (188)

where it is worth observing that, by the laws of the system in question, the result may be
put under this other and somewhat simpler form:

(B5) . . . $$′ . $′′ = $ . $′$′′ = $ S$′$′′ −$′ S$′′$ +$′′ S$$′. (189)

Indeed, this last expression might have been foreseen, as a consequence from the general prin-
ciples of this whole theory of associative polynomes*, combined with the particular property
(187) of the quines (B). For, by that property, each of the two ternary products is equal to its
own vector part; but by (101) we have, generally, in the present theory, as in the calculus of
quaternions, the following expression for the vector part of the product of any three vectors,
of any such associative polynomes as we are considering:

V . ρστ = ρSστ − σ Sτρ+ τ Sρσ; (190)

which is a formula of continual application in Quaternions, and in these extensions also is
important.

Observatory of Trinity College, Dublin,
August 16, 1854.

* It will hereafter be proved generally that for all associative polynomes which satisfy the
law of conjugation (though not exclusively for such associative polynomes), the tensor , as
defined in [6.], is also a modulus; which theorem can be verified for the quines (A) and (B),
and for the quadrinomes and tetrads so lettered in [13.], as well as for the trinomes [11.].
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Section V.

[30.] In applying to associative quines the general theory of the Third Section*, we may
(as has been seen) omit each of the signs Σ8 as unnecessary, the index h receiving only one
value in the sum thereby indicated; and may suppress each sum Σ88 as vanishing. In this
manner the type IV., or the formula (151), becomes,

IV. . . . (egf)(eff + egg) = geh . ehf ; (191)

while the equation (127), already derived as a sub-type from II., gives, by interchanging e
and f ,

(egf)(fee+ fgg) = (geh)(hee+ hgg). (192)

Multiplying the latter of these two equations by eff + egg, and the former by fee+fgg, and
subtracting, we eliminate the symbol (egf), and find that

(geh){(ehf)(fee+ fgg)− (eff + egg)(hee+ hgg)} = 0; (193)

and a similar elimination of (geh) gives the equation,

(egf){(ehf)(fee+ fgg)− (eff + egg)(hee+ hgg)} = 0. (194)

And because (geh) = −(egh), by (34), we may make any separate or combined interchanges,
of e with g, and of f with h, and so vary the expression within the { }, without introducing
any new factor, distinct from (egf) and (egh), outside them. If, then, for any particular
arrangement of the four unequal indices, e, f , g, h, as chosen from among the four numbers
1, 2, 3, 4, the two following conditions are not both satisfied,

(egf) = 0, (egh) = 0, (195)

we must have, for that arrangement of the indices, a system of four other equations, whereof
one is

VI. . . . (ehf)(fee+ fgg) = (eff + egg)(hee+ hgg), (196)

while the three others are formed from it, by the interchanges just now mentioned. And if we
further suppose that the two sums, fee+ fgg and hee+ hgg, are for the same arrangement
different from zero, and write for abridgement, as a definition,

(ehf)0 = (fee+ fgg)−1(eff + egg)(hee+ hgg), (197)

the four equations furnished by the formula (196), which may be regarded as a sixth type for
quines, may be concisely expressed as follows:

(ehf) = (ehf)0, (ghf) = (ghf)0;
(efh) = (efh)0, (gfh) = (gfh)0.

}
(198)

* Comprising paragraphs [17.] to [25.], and published in the Phil. Mag. for October, 1854.
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With the notations l1 . . . u3, for the symbols (efg), (eff), we find thus that unless l1 and p1

both vanish, we must have the four equations,

t2(n1 −m1) = (m2 − n2)(r2 + r3); s3(n1 −m1) = (m3 − n3)(r2 + r3);
p3(r2 + r3) = (u2 + n2)(n1 −m1); p2(r2 + r3) = (m3 − u3)(n1 −m1);

}
(199)

and that unless s1 = 0, t1 = 0, then

−l2(u2 −m2) = (n1 + u1)(n3 + u3); t3(u2 −m2) = (r1 + r2)(n3 + u3);
l3(n3 + u3) = (u1 −m1)(u2 −m2); s2(n3 + u3) = (r1 + r3)(u2 −m2).

}
(200)

[31.] Supposing then that no one of the twelve symbols (efg) vanishes, and that each of
the twelve sums eff + egg is also different from zero, the various arrangements of the four
indices e f g h give us a system of twenty-four equations, included in the new type VI., or in
any one of the four formulæ (198); which equations may, by (34), be arranged in twelve pairs,
as follows:

(ehf) = (ehf)0 = −(hef)0. (201)

It might seem that twelve equations between the twelve symbols of the form (eff) should thus
arise, by the comparison of two expressions for each of the twelve symbols of the form (efg);
but if we write for abridgement

[g] = (fee+ fgg)(fhh+ fgg){(ehf)0 + (hef)0}, (202)

and observe that by the definition (197) of the symbol (ehf)0, we have then

[g] = (eff + egg)(fhh+ fgg)(hee+ hgg) + (hff + hgg)(fee+ fgg)(ehh+ egg), (203)

we shall see that this quantity [g] is independent of the arrangement of the three indices
e, f , h; and therefore that the twelve equations between the twelve symbols (eff), obtained
through (201), reduce themselves to the four following relations,

[e] = 0, [f ] = 0, [g] = 0, [h] = 0; (204)

which are not even all distinct among themselves, since any three of them include the fourth.
An easy combination of the two first or of the two last of these four relations (204) conducts
to this other formula, which is equivalent to three distinct equations:

(eff + ehh)(fee+ fgg)(ghh+ gee)(hgg + hff)
= (eff + egg)(fee+ fhh)(ghh+ gff)(hgg + hee); (205)

and which may also be thus written,

(hef)0(egf)0 = (ehf)0(gef)0. (206)
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With the notations l1 . . . u3, the twenty-four equations (201) are sufficiently represented by
the formulæ (199) and (200), if cyclical permutation of the indices be employed; the four
equations (204) take the forms,

(r1 + r2)(n3 + u3)(m2 − n2) = (r1 + r3)(m2 − u2)(m3 − n3),
(n1 + u1)(n2 + u2)(n3 + u3) = (m1 − u1)(m2 − u2)(m3 − u3);

}
(207)

whereof the equation on the second line may be obtained from the product of the three
represented by the first line: and the three equations (205) or (206) are included in the
following, which is evidently a consequence of (207),

(r1 + r3)(n1 + u1)(n2 + u2)(n3 −m3) = (r1 + r2)(u1 −m1)(n2 −m2)(u3 −m3). (208)

[32.] As regards the quotients and products of the symbols (efg), which we shall continue
to write occasionally without parentheses, we have by type VI., or by (197), (198),

ehf

ghf
=
eff + egg

gff + gee
; (209)

ehf . efh = (eff + egg)(ehh+ egg); (210)

ehf . gfh = (eff + egg)(ghh+ gee); (211)

eliminating (ehf) between the two last of which three equations, we obtain a relation of the
same form as the first. Interchanging g and h in (210), and subtracting, we find that

I. . . . ehf . efh− egf . efg = (egg)2 − (ehh)2; (212)

but this is precisely what the type I., or the formula (113), becomes for quines, when we
cyclically advance the four indices in the order f e g h; the conditions (177), (118) of that
first type will therefore be satisfied, if we satisfy those of the sixth. Had we divided instead
of subtracting, we should have found

ehf . efh

egf . efg
=
eff + egg

eff + ehh
. (213)

To interchange f , g, and divide, would only lead by (210) to another equation of this last
form; but the same operations performed on (211) conduct to the equation

ehf

heg
=
ghh+ gee

fhh+ fee
; (214)

which, when we interchange g and h, reproduces the formula (192); and shows thereby that
the sub-type (127), included under type II., is satisfied by our new type VI., which indeed it
had assisted to discover. The same equation (192) may also be derived from the formula (205),
by dividing each member of that formula by (fee + fhh)(hff + hgg), and attending to the
expressions given by type VI., for (egf) and (geh) respectively. To interchange e h, in (211)
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and divide, would only conduct to another equation of the same form as (214). Permuting
cyclically the three indices e, f , g in (209), and multiplying together the two equations so
obtained therefrom, the product gives

fhg . ghe

ehg . fhe
=
gff + gee

eff + egg
; (215)

and if we multiply this equation by (209) itself, we find that

ehf . fhg . ghe = ghf . ehg . fhe. (216)

In fact if we operate thus on the expression (197) for (efh)0, or for its equal (ehf), or on the
formula (196), we are led to this new equation,

ehf . fhg . ghe = (hee+ hgg)(hff + hee)(hgg + hff), (217)

of which the second member does not alter, when we interchange any two of the three indices
e, f , g. Another multiplication of three equations of the form (209), with the cycle e g h,
conducts to the equation [f ] = 0 of (204). Interchanging e, h in (210), and substituting the
value so obtained for the product of the two extreme factors of the second member of (217),
we find this other expression,

ehf . fhg . ghe = hef . hfe . (hee+ hff); (218)

which is still seen to remain unaltered, by an interchange of e and f . Interchanging f , g, and
dividing, we obtain by (216) an equation of the same form as (213); and if we divide each
member of (218) by (hef), we are conducted to the formula

IV. . . . fhg . hge = hfe . (hee+ hff), (219)

which is of the same form as the equation (191), or as the type IV., and may be changed
thereto by cyclical permutation of the four indices e f g h. The same relation (219) may also
be derived more directly from type VI., by substitutions of the values (198); for it will be
found that the definition (197) gives this identity,

(fhg)0(ghe)0 = (hee+ hff)(fhe)0. (220)

The conditions of type IV., like those of type I., and of the subtype (127) of II., are therefore
all included in those of the new type VI.; which gives also in various ways this other formula
respecting products of four symbols of the form (efg),

egh . fhg . gfe . hef = ehg . fgh . gef . hfe : (221)

indeed it will be found that the members of this last equation, taken in their order, are
respectively equal by (196) to the members of the equation (205).
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With the notations l1 . . . u3, supposing that none of the twelve constants l p s t vanish,
and that the twelve combinations of the forms n1 −m1, n1 + u1, u1 −m1, r1 + r2, are in like
manner different from zero, we find thus, or from the equations (199) (200), combined with
their consequences (207), the following among other relations, in which cylical permutation
of the indices is still allowed:

l1
t2

= −n3 + u3

r1 + r3
,

t2
s3

=
m2 − n2

m3 − n3
,

s3

l1
=

r1 + r2

u2 −m2
,

p1

p2
=
m2 − u2

n1 + u1
,

l1
p1

=
r2 + r3

n1 −m1
,

s1

t1
=

n3 + u3

m2 − u2
;

 (222)

l2l3 = (n1 + u1)(m1 − u1), s2t3 = (r1 + r2)(r1 + r3),
p1s2 = (m2 − n2)(m2 − u2), p1t3 = (m3 − n3)(n3 + u3),
−l2s2 = (n1 + u1)(r1 + r3), l3t3 = (u1 −m1)(r1 + r2),
p1s1 = (m1 − n1)(n3 + u3), p1t1 = (m1 − n1)(m2 − u2).

 (223)

The conditions (152), (153), of the fourth type, are satisfied; and we have these other products,
of which some have occurred already, in (176), (177), in connexion with the particular systems
(A) and (B) of quines:

s1s2s3 = t1t2t3 = −(r1 + r2)(r2 + r3)(r3 + r1);
s1p2l3 = t1l2p3 = (n1 + u1)(m1 − u1)(m1 − n1);

s2s3l2p3 = t2t3p2l3;

 (224)

where the two members of the equation on the last line are easily proved by (223) to be
respectively equal to those of (208).

[33.] As yet we have only partially satisfied the conditions of type II., or of the formula
(123), which may for quines be written thus:

II. . . . fgh . hff = fee . gee− fgg . gff + feh . ghe. (225)

Substituting for the last product in this formula its value given by (211), namely

feh . ghe = (fgg + fhh)(gee+ gff), (226)

and writing for abridgement
vf = fee+ fgg + fhh, (227)

we are in this way led to establish the following seventh type* for quines:

VII. . . . fgh . hff = vf . gee+ fhh . gff. (228)

* It will be shown that this single type (the seventh) includes all the others, or is sufficient
to express all the general conditions of association, between the 24 symbols of the forms
(efg) and (eff). But the eliminations required for this deduction cannot be conveniently
described at this stage.
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Or since, by the sixth type, we have already

VI. . . . fgh . (hee+ hff) = (fee+ fhh)(gee+ gff), (229)

it is only necessary, for the purpose of satisfying the conditions of type II., or the equations
(143), (145), to suppose besides that

III. . . . fgh . hee = fee . gff − fgg . gee; (230)

such being the expression which remains, when we subtract (228) from (229). But this last
equation (230) is precisely what the type III., or the formula (147), becomes for quines; it
reproduces therefore the equations (148): and conversely, if we retain that old type III., it
will not be necessary, although it may be convenient, to introduce the new type VII., in
combination with type VI. And if in (230) we substitute for the symbol (fgh) its value given
by (229), and so combine types III. and VI., we obtain the equation

fee+ fhh

hee+ hff
=
gff . (fee+ fgg)− fgg . (gee+ gff)

hee . (gee+ gff)
; (231)

that is, by (209),
fge

hge
+
fgg

hee
=
gff

hee
.
fhe

ghe
; (232)

or finally,
V. . . . hee . fge = fgg . ghe− gff . fhe. (233)

But this is exactly what the type V., or the formula (154), becomes for quines, when we
suppress the sum Σ88, change k to h, and advance cyclically the three indices e f h; it includes
therefore the equations (155), which were the only remaining conditions of association to be
fulfilled. If then we satisfy the two types, III. and VI., we shall satisfy all the conditions of
association for quines: since we shall thereby have satisfied also the four other earlier types,
namely those numbered as I. II. IV. V. It only remains then to consider what new restrictions
on the constants (eff) are introduced by the comparison of the values which type III. gives
for the other constants (efg), as expressed in terms of them, with the values furnished
by type VI.; or to discuss the consequences of the following general formula, obtained by
eliminating the symbol (fgh) between (229) (230), and not essentially distinct from the
recent equations (231):

VIII. . . . hee . (fee+ fhh)(gee+ gff) = (hee+ hff)(fee . gff − gee . fgg); (234)

which contains all the old and new relations, subsisting between the twelve constants of the
form (eff), and may be regarded as an eighth type for quines.

[34.] Denoting the first minus the second member of (234) by the symbol [efgh], we
easily see that

[efgh] = gee . (vf . hee+ fgg . hff) + gff . (fhh . hee− hff . fee)
= hee . (vf . gee+ fhh . gff) + hff . (fgg . gee− gff . fee); (235)
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and therefore that we have, identically,

[efgh] = [efhg]; (236)

this last or eighth type (234) contains therefore, at most, only a system of twelve equations.
Interchanging f and g, and attending to the notation (202), we see, by (203), (234), that of
the three equations

[efgh] = 0, [egfh] = 0, [e] = 0, (237)

any two include the third; if then we only seek what new conditions, additional to those
marked (204), are to be satisfied by the symbols (eff), or rather by the eight following ratios
of those symbols,

eff : egg : ehh; fee : fgg : fhh; gee : gff : ghh; hee : hff : hgg, (238)

we need only retain at most four new equations, suitably selected from among those furnished
by type VIII., such as the four following, which differ among themselves by the initial letters
within the brackets, and so belong to different groups,

[efgh] = 0, [fghe] = 0, [ghef ] = 0, [hefg] = 0; (239)

and then to combine these with any three of the four former relations (204), for example with
the three first, namely

[e] = 0, [f ] = 0, [g] = 0; (240)

from which the fourth equation [h] = 0 would follow, by means of the identity,

(ehf)0(fge)0(gfh)0(heg)0 = (ehg)0(fgh)0(gfe)0(hef)0

= (eff + egg)(fee+ fhh)(gee+ ghh)(hff + hgg). (241)

It might seem however that the seven equations (239) and (240), thus remaining, should
suffice to determine seven of the eight ratios (238): whereas I have found that it is allowed
to assume two pairs of ratios arbitrarily, out of the four pairs (238), and then to deduce the
two other pairs from them. For I find that it is sufficient to retain, instead of the twelve
equations included under type VIII., or the seven equations (239), (240), a system of only
four equations of the type just mentioned; namely two pairs, selected from any two of the
four groups, which have (for each group, and also for each pair) a common initial letter within
the brackets; for instance, these two pairs of equations:

[efgh] = 0, [egfh] = 0, [fegh] = 0, [fgeh] = 0; (242)

which leave as many as eight arbitrary constants (for example these eight, eff , egg, ehh,
fhh, ghh, hee, hff , hgg, from which all the rest can be determined) in the resulting system
of associative quines. An outline of the investigation by which this important reduction is
effected, may be presented in the following way.
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[35.] The two first equations (242) connect the three last pairs of ratios (238), in such
a manner that when any two of those three pairs are assumed, or known, the third can be
determined. Hence, with the interpretation (197) of the symbol (ghf)0, we easily find that
those two equations (242) give,

(e) . . .


gee . hgg − ghh . hee = (ghf)0 . fee;
vg . hee+ gff . hgg = (ghf)0 . fgg;

−(vh . gee+ hff . ghh) = (ghf)0 . fhh;

 (243)

because we find that fee, fgg, ghh are proportional to the left-hand members of these last
equations (243); and that the sum of the two first of those left-hand members is identically
equal to the product (gee + gff)(hee + hgg). For the same reason, the two first of these
three equations (243) express really only one relation, namely that which is contained in the
second equation (242), although they do so under different forms, both of which it is useful
to know; and it is convenient to have ready also this other combination, obtained by adding
the three equations (243) together,

(e) . . . vh . gff − vg . hff = vf . (ghf)0; (244)

which, like those equations (243) themselves, we shall consider as belonging to the group (e),
because they are all derived from two of the three equations of that group, included under
type VIII., which in the recent notation [efgh] have e for their initial letter; and because the
third equation of that group, included under the same type, namely

(e) . . . [ehfg] = 0, (245)

may be derived from them, by the elimination of the symbol (ghf)0 between the first and
third of the equations (243). In like manner the two last equations (242) include a third of
the same type VIII., and belonging to the same group (f), namely

(f) . . . [fheg] = 0; (246)

because they conduct to the following system of expressions, which may be formed from (243)
(244) by cyclical permutation of efg:

(f) . . .


eff . hee− ehh . hff = gff . (ehg)0;
ve . hff + egg . hee = gee . (ehg)0;

−(vh . eff + hgg . ehh) = ghh . (ehg)0;
vh . egg − ve . hgg = vg . (ehg)0.

 (247)

Multiplying then the equations (243) and (244) by (ehg)0, and observing that the identity
(220) gives

(ehg)0 . (ghf)0 = (hee+ hff)(ehf)0, (248)

we find, on substitution of the first for the second members of (247), that the results are
divisible by hee+hff ; and that thus the elimination of the third pair of ratios (238), between
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(243), (244), (247), or between the four equations (242), conducts to expressions of the recent
forms, namely,

(g) . . .


hee . egg − ehh . hgg = fgg . (ehf)0;
ve . hgg + eff . hee = fee . (ehf)0;

−(vh . egg + hff . ehh) = fhh . (ehf)0;
vh . eff − ve . hff = vf . (ehf)0.

 (249)

A similar analysis may be applied to effect the elimination of the fourth pair of ratios (238),
with results entirely analogous. On the whole then it is found, that the four equations (242)
express such connexions between the four pairs of ratios (238), as to satisfy not only the two
remaining equations, (245) and (246), of their own groups, (e) and (f), but also the six other
equations of the two other groups, (g) and (h), included under type VIII.; namely

(g) . . . [gefh] = 0, [gfeh] = 0, [ghef ] = 0;
(h) . . . [hefg] = 0, [hfeg] = 0, [hgef ] = 0;

}
(250)

for the first line is satisfied by the ratios (249), and the second by the analogous ratios, which
are found in a similar way. Thus all the twelve equations of type VIII. are satisfied, if we
satisfy only four suitably selected equations of that type; for example, the equations (242):
which was what we proposed to demonstrate.

[36.] The eighty equations of association, assigned in the Third Section, between the
twenty-four constants l1 . . . u3, or (efg), (eff), have therefore, by the recent analysis, been
ultimately reduced to sixteen; namely the four equations which thus remain from the last
type VIII.; and the twelve others which were contained in the type III., established in that
earlier Section: and which (as was lately remarked) leave still no fewer than eight constants

arbitrary in this theory of associative quines. We may indeed vary in many ways,
consistently with the same general theory, and by the assistance of the other recent types VI.
and VII., the system of the sixteen equations of condition which are to be satisfied, and
the choice of the eight constants which are to be regarded as still remaining arbitrary and
undetermined: and it may not be useless, nor uninteresting, to make some remarks hereafter,
upon the subject of such selections. But in the mean time it appears to be important to
observe, that if some of the recent results, especially the formulæ (210), (228), be combined
with some of those previously obtained, and more particularly with the equations (112),
(121), of Section III., the following very simple expressions are found, for the ten remaining
constants of multplication, the discussion of which had been reserved:

(f) = v2
f ; (fg) = vf . vg; (251)

or, with the notations abc, and with the usual cyclical permutation of the indices 1, 2, 3,

a1 = v2
1 , a4 = v2

4 , b1 = v2v3, c1 = v1v4. (252)
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If then we write for abridgement,

v = v1x1 + v2x2 + v3x3 + v4x4,

v′ = v1x
′
1 + v2x

′
2 + v3x

′
3 + v4x

′
4,

}
(253)

the square of any quadrinomial vector $, and the scalar of the product of two such vectors,
will take these remarkably simple forms:

$2 = v2; S$$′ = v . v′; (254)

this latter scalar thus decomposing itself into a product* of two linear functions of the con-
stituents, namely those here denoted by v and v′. And because it is easy to prove, from
what has been already shown, compare (244), that in the present theory the constants ve are
connected by relations of the form

−ve . efe = ve . fee = vf . eff + vg . efg + vh . efh, (255)

we find, by multiplying this equation by vg, and attending to (251), the following theorems
for those general associative quines which have been in this section considered:

0 = Sιg Vιeιf = Sιgιeιf ;

0 = S$$′$′′; 0 = (V$$′)2;

}
(256)

results which may be compared with some of those obtained in Section IV., for the two
particular quine-systems, (A) and (B).

Observatory of Trinity College, Dublin,
February 14, 1855.

[To be continued.]

* A similar decomposition into linear factors takes place for the quadrinomes (A) of
par. [13.], but at the expense of one of the six arbitrary constants l1 l2 l3m1m2m3, when
we establish between those symbols the relation,

l1m
2
1 + l2m

2
2 + l3m

2
3 = l1l2l3 + 2m1m2m3.

In general, I find that it is possible to satisfy all the conditions of association for poly-
nomes, and at the same time to secure a decomposition of S$$′ into linear factors, while
yet preserving so many as 3n − 4 constants of multiplication arbitrary. (For quadrinomes,
3n− 4 = 9− 4 = 5; for quines 3n− 4 = 12− 4 = 8.)
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