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On the Application to Dynamics of a General Mathematical Method previously
applied to Optics. By W. R. Hamilton, M.R.I.A., Astronomer Royal for
Ireland.

[Report of the Fourth Meeting of the British Association for the Advancement of
Science; held at Edinburgh in 1834. (John Murray, London, 1835), pp. 513–518.]

The method is founded on a combination of the principles of variations with those of
partial differentials, and may suggest to analysts a separate branch of algebra, which may
be called, perhaps, the Calculus of Principal Functions; because, in all the chief applications
of algebra to physics, and in a very extensive class of purely mathematical questions, it
reduces the determination of many mutually connected functions to the search and study of
one principal or central relation. In applying this method to Dynamics, (having previously
applied it to Optics,) Professor Hamilton has discovered the existence of a principal function,
which, if its form were fully known, would give, by its partial differential coefficients, all the
intermediate and all the final integrals of the known equations of motion.

Professor Hamilton is of opinion that the mathematical explanation of all the phænomena
of matter distinct from the phænomena of life, will ultimately be found to depend on the
properties of systems of attracting and repelling points. And he thinks that those who do
not adopt this opinion in all its extent, must yet admit the properties of such systems to be
more highly important in the present state of science, than any other part of the application
of mathematics to physics. He therefore accounts it the capital problem of Dynamics “to
determine the 3n rectangular coordinates, or other marks of position, of a free system of n
attracting or repelling points as functions of the time,” involving also 6n initial constants,
which depend on the initial circumstances of the motion, and involving besides, n other
constants called the masses, which measure, for a standard distance, the attractive or repulsive
energies.

Denoting these n masses by m1m2 . . . mn and their 3n rectangular coordinates by
x1 y1 z1 . . . xn yn zn, and also the 3n component accelerations, or second differential coef-
ficients of these coordinates, taken with respect to the time, by x′′1 y

′′
1 z
′′
1 . . . x′′n y

′′
n z
′′
n, he

adopts Lagrange’s statement of this problem; namely, a formula of the following kind,

Σ.m(x′′ δx+ y′′ δy + z′′ δz) = δU, (1.)

in which U is the sum of the products of the masses, taken two by two, and then multiplied
by each other and by certain functions of their mutual distances, such that their first derived
functions express the laws of their mutual repulsion, being negative in the case of attraction.
Thus, for the solar system, each product of two masses is to be multiplied by the reciprocal
of their distance and the results are to be added in order to compose the function U .

Mr. Hamilton next multiplies this formula of Lagrange by the element of the time dt,
and integrates from the time 0 to the time t, considering the time and its element as not
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subject at present to the variation δ. He denotes the initial values, or values at the time 0,
of the coordinates x y z, and of their first differential coefficients x′ y′ z′, by a b c and a′ b′

c′; and thus he obtains, from Lagrange’s formula (1.), this other important formula,

Σ.m(x′ δx− a′ δa+ y′ δy − b′ δb+ z′ δz − c′ δc) = δS, (2.)

S being the definite integral

S =
∫ t

0

{
U + Σ.

m

2
(x′2 + y′2 + z′2)

}
dt. (3.)

If the known equations of motion, of the forms

mix
′′
i =

δU

δxi
, miy

′′
i =

δU

δyi
, miz

′′
i =

δU

δzi
, (4.)

had been completely integrated, they would give the 3n coordinates x y z, and therefore also
S, as a function of the time t, the masses m1 . . . mn and the 6n initial constants a b c a′ b′

c′; so that, by eliminating the 3n initial components of velocities a′ b′ c′ we should in general
obtain a relation between the 7n+ 2 quantities S, t, m, x, y, z, a, b, c, which would give S as
a function of the time, the masses, and the final and initial coordinates. We do not yet know
the form of this last function, but we know its variation (2.), taken with respect to the 6n
coordinates; and on account of the independence of their 6n variations, we can resolve this
expression (2.) into two groups, containing each 3n equations: namely

δS

δxi
= mix

′
i,

δS

δyi
= miy

′
i,

δS

δzi
= miz

′
i, (5.)

and
δS

δai
= −mia

′
i,

δS

δbi
= −mib

′
i,

δS

δci
= −mic

′
i; (6.)

the first members being partial differential coefficients of the function S, which Mr. Hamilton
calls the Principal Function of motion of the attracting or repelling system. He thinks
that if analysts had perceived this principal function S, and these groups of equations (5.)
and (6.), they must have preceived their importance. For the group (5.) expresses the 3n
intermediate integrals of the known equations of motion (4.) under the form of 3n relations
between the time t, the masses m, the varying coordinates x,y, z, the varying components
of velocities x′ y′ z′, and the 3n initial constants a b c; while the group (6.) expresses the
3n final integrals of the same known differential equations, as 3n relations, with 6n initial
and arbitrary constants a b c a′ b′ c′, between the time, the masses, and the 3n varying
coordinates. These 3n intermediate and 3n final integrals, it was the problem of dynamics to
discover. Mathematicians had found seven intermediate, and none of the final integrals.

Professor Hamilton’s solution of this long celebrated problem contains, indeed, one un-
known function, namely, the principal function S, to the search and study of which he has
reduced mathematical dynamics. This function must not be confounded with that so beauti-
fully conceived by Lagrange for the more simple and elegant expression of the known differen-
tial equations. Lagrange’s function states, Mr. Hamilton’s function would solve the problem.
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The one serves to form the differential equations of motion, the other would give their inte-
grals. To assist in pursuing this new track, and in discovering the form of this new function,
Mr. Hamilton remarks that it must satisfy the following partial differential equation of the
first order and second degree, (the time being now made to vary,)

δS

δt
+ Σ.

1
2m

{(
δS

δx

)2

+
(
δS

δy

)2

+
(
δS

δz

)2
}

= U ; (7.)

which may rigorously be thus transformed, by the help of the equations (5.),

S = S1 +
∫ t

0

(
U − δS1

δt
− Σ.

1
2m

{(
δS1

δx

)2

+
(
δS1

δy

)2

+
(
δS1

δz

)2
})

dt

+
∫ t

0

Σ.
1

2m

{(
δS

δx
− δS1

δx

)2

+
(
δS

δy
− δS1

δy

)2

+
(
δS

δz
− δS1

δz

)2
}
dt, (8.)

S1 being any arbitrary function of the same quantities t, m, x, y, z, a, b, c, supposed only to
vanish (like S) at the origin of time. If this arbitrary function S1 be so chosen as to be an
approximate value of the sought function S, (and it is always easy so to choose it,) then the
two definite integrals in the formula (8.) are small, but the second is in general much smaller
than the first; it may, therefore, be neglected in passing to a second approximation, and in
calculating the first definite integral, the following appproximate forms of the equations (6.)
may be used,

δS1

δa
= −ma′, δS1

δb
= −mb′, δS1

δc
= −mc′. (9.)

In this manner, a first approximation may be successively and indefinitely corrected.
And for the practical perfection of the method nothing further seems to be required, except
to make this process of correction more easy and rapid in its applications.

Professor Hamilton has written two Essays on this new method in Dynamics, and one
of them is already printed in the second part of the Philosophical Transactions (of London)
for 1834. The method did not at first present itself to him under quite so simple a form.
He used at first a Characteristic Function V , more closely analogous to that optical function
which he had discovered, and denoted by the same letter, in his Theory of Systems of Rays.
In both optics and dynamics this function was the quantity called Action, considered as
depending (chiefly) on the final and initial coordinates. But when this Action-Function was
employed in dynamics, it involved an auxiliary quantity H, namely the known constant part
in the expression of half the living force of a system; and many troublesome eliminations were
required in consequence, which are avoided by the new form of the method.

Mr. Hamilton thinks it worth while, however, to point out briefly a new property of this
constant H, which suggests a new manner of expressing the differential and integral equations
of motion of an attracting or repelling system. It is often useful to express the 3n rectangular
coordinates x1 y1 z1 . . . xn yn zn, as functions of 3n other marks of position, which may be
thus denoted, η1 η2 . . . η3n; and if 3n other new variables $1$2 . . . $3n, be introduced, and
defined as follows,

$i = Σ.m
(
x′
δx

δηi
+ y′

δy

δηi
+ z′

δz

δηi

)
, (10.)
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it is, in general, possible to express, reciprocally, the 6n variables x y z x′ y′ z′ as functions
of these 6n new variables η $; it is, therefore, possible to express, as such a function, the
quantity

H = Σ.
m

2
(x′2 + y′2 + z′2)− U (11.)

under the form
H = F ($1, . . . $3n, η1, . . . η3n)− U(η1, . . . , η3n), (12.)

in which the part F is rational, integer and homogeneous of the second dimension with respect
to the variables $. Now Mr. Hamilton has found that when the quantity H is expressed in
this last way as a function of these 6n new variables, η $, its variation may be put under
this form,

δH = Σ(η′ δ$ −$′ δη), (13.)

η′ $′ denoting the first differential coefficients of these new variables η $, considered as
functions of the time. The 3n differential equations of motion of the second order, (4.),
between the rectangular coordinates and the time, for any attracting or repelling system,
may therefore be generally transformed into twice that number of equations of the first order
between these 6n variables and the time, of the forms

η′i =
δH

δ$i
, $′i = −δH

δηi
. (14.)

To integrate this system of equations is to assign, from them, 6n relations between the time
t, the 6n variables ηi $i, and their 6n initial values which may be called ei pi. Mr. Hamilton
resolves the problem, under this more general form, by the same principal function S as
before, regarding it, however, as depending now on the new marks η e of final and initial
positions of the various points of the system. For, putting in this new notation,

S =
∫ t

0

(
Σ.$

δH

δ$
−H

)
dt, (15.)

and considering the time as given, he finds now the formula of variation

δS = Σ(ω δη − p δe), (16.)

and therefore the 6n separate equations

$i =
δS

δηi
, pi = − δS

δei
, (17.)

which are forms for the sought relations.
Professor Hamilton thinks that these two formulæ of variation, (13.) and (16.), namely

δH = Σ(η′ δ$ −$′ δη), (A.)

and
δS = Σ(ω δη − p δe), (B.)
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are worthy of attention, as expressing, under concise and simple forms, the one the differential
and the other the integral equations of motion, of an attracting or repelling system. They
may be extended to other problems of dynamics, besides this capital problem. The expression
H can always easily be found, and the function S can be determined with indefinite accuracy
by a method of successive approximation of the kind already explained.

The properties of his Principal Function are treated of more fully in his “Second Essay
on a General Method in Dynamics*”; in which he has introduced several forms of a certain
Function of Elements, connected with the Principal Function, and with each other, and
adapted to questions of perturbation; and has shown that for the perturbations of a ternary
or multiple system with any laws of attraction or repulsion and with one predominant mass,
the differential equations of the varying elements of all the smaller masses may be expressed
together, and as simply as in the usual way, by the coefficients of one disturbing function,
(namely, the disturbing part of the whole expression H,) and may be integrated rigorously
by a corollary of his general method.

* This essay will be found in the Philosophical Transactions for 1835.
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