MAP50005: Lattice Quantum Field Theory

Semester taught	Michaelmas Term
Module Coordinator	Mike Peardon and Stefan Sint
Credits	10 ECTS
Content	Introduction to discrete space-time formulations with an overview of the theoretical and computational tools, eg Monte Carlo simulations, used for quantitative study of quarks and gluons.
Learning Outcomes	 Construct a discrete lattice action for simple classical andquantum field theories. List the continuous and discrete symmetries and corresponding transformations of the fields. Analyse simple models for physical properties Derive Feynman rules on the lattice. Derive quantities including e.g. the free quark propagator on the lattice and its dependence on the lattice spacing. Program simple lattice problems and analyse the results.
Assessment detail	50% continuously assessment and 50% online examination