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Introduction

• In quenched simulations ( NF = 0, no sea quark in QCD vacuume ), Hadron spec-
trum found to be 5-10% different from experiments (CP-PACS, JLQCD, UKQCD)
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• Is it only 5-10% ?
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• More obious quenched pathology was found in NS scalar meson

a0 I
G
(J)

PC
= 1

+
(0

++
)

(Bardeen et.al.)

a0 → η
′
(quenched) + π → a0

As η′(quenched) failed to get heavy having double pole, this contribution was
argued to make a0 propagator to be negative using QChPT in finite volume.

• quenched theory is not unitary nor local field theory.
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Introduction...

Dynamical simulation is difficult not only it's computationally demand-
ing, but also gauge filed tend to be more fructuating at short distance
than quenched simulation (fixing scale at Hadronic scale).
⇐⇒ milder running αS(µ) for NF > 0 (asymptotic freedom).
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dynamical mf=0.02
quenched DBW2 beta=1.04

r0 × [V (r)− V (r0)] vs r/r0 for
DFW NF = 0, 2.

This makes dynamical simulation even more difficult.
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Dynamical simulation for DWF (GW)
• Such short distance fructuation has an impact on DWF (GW) fermion simulations.

• Axial Ward-Takahashi identity,

∂µAa
µ(x) = 2mfJ

a
5 (x) + 2J

a
5q(x)

≈ 2 (mf + mres)J
a
5 (x)

Ja
5 (x) : non-singlet pseudoscalar,

Ja
5q(x) : explicit breaking term
consists of field at s = Ls/2 −
1, Ls/2.

A measure of the residual chiral symmetry breaking,

mres =

P
x,y

D
Ja

5q(y, t)Ja
5 (x, 0)

E
P

x,y 〈Ja
5 (y, t)Ja

5 (x, 0)〉
∼ e

−λLs, λ ∼ HW = γ5DW
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DBW2 0.764 • Sudden growth of eigenmode size at λ = λc.
Roughly consistent with mres(Ls) behaviors.
DWF NF = 3 (P.Boyle, N.Christ @ chiral
)
Mobility edge (M.Golterman, Y.Shamir)
(S.Aoki, Y.Taniguchi)
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mres in dynamical simulations

• In practice Ls ∼< a few 10 is preferable. At the same time amres must be small,
less than a few MeV, to realize the advantages of DWF.

• In NF = 0 DWF QCD (RBC) tuning RG action, the negative coefficients to
the rectangular plaquette, suppresses small dislocations drastically, but the parity
broken phase, still exists for small enough β (S. Aoki) .

• In NF = 2 , mres ∼ O(1) MeV, for Ls = 12, a−1 = 1.7 GeV using DBW2 gauge
action.

• In NF = 3, Ls = 8, an order of magnitude larger mres than NF = 2, Ls = 12.
Tuning of recutangular actions (R.Mawhiney @ spectrum 11) .

• Fructuations at short distance might cause bad things (taste breaking, exceptional
configuration) for other fermions as well.
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Sincere apologies

I apologise sincerely to those whom I won't cite. There are also many
interesting and important works and talks I should have covered, but it
was totally beyond my capability.

Let me try to understand and mention in the proceedings.

If you could drop an email to taku@bnl.gov to call my attention , I
will highly appreciate that.
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1. Performance
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Simulation for Dynamical Fermion

It is important to improve the performance of dynamical simu-
lation to reduce the statistical error on physical output.

statistical error ∝

√
1

Nconf

Hybrid Monte Carlo ( Exact algorithm)

Prob(Uµ(x)) ∝ e
−S(Uµ)

[dUµ] =⇒ e
−H

[dUµ][dΠµ], H =
1

2
Π

2
+ S(U)

Conjugate momentum Πµ(x)

• 1. Refresh momentum Π, (Φ, ΦPV ).

• 2. Approximately solve Hamilton's equation (H preserved, reversible, area-
preserving) :1 trajectory.

• 3. correct the approximation by a Metropolis reject/accept test :acceptance.
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Factors of Simulation Performance

Three factors that have impact on the performance of dynamical
simulations

1. Speed of integrator for Hamilton's equation
(many Matrix inversions)

2. Acceptance

3. Autocorrelation, τint, between consecutive trajectories

In this conference:

• Schwartz-preconditioned HMC (domain decomposition) (M.Lüscher @ plenary)

• mass preconditioning (Hasenbusch trick) & multiple time scale integration
(M.Hasenbusch, C.Urbach @ algorithm 2)

• Twisted mass (A.Shindler @ plenary, and therein)

• Ginsparg-Wilson fermions (M.Clark, P.Hasenfratz @ algorithm 2)
(B.Joo, R. Edwards @ chiral 4) (A.Borici, S.Krieg @ algorithm poster )
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DWF (R)HMC experiences

• started by Columbia Univ. (G. Fleming, P. Vranas,et.al.)

• Force term modification (P.Vranas, C.Dawson)

• Chronological inverter (Brower, Ivanenko, Levi, Orginos)

• Acceptance, autocorrelation, τint, was insensitive to quark mass.

• On Nf = 2 + 1 DWF RHMC (double precision), acceptance is almost flat in light
quark mass with multiple gauge steps (∼ 4 per a fermion step) in the integrator.
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• R algorithm (inexact) vs RHMC (exact)
( M.Clark @ algorithm 2)
=⇒ Use exact algorithm, unless the per-
formance is away worse.
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Cost estimation

• Panel discussion @ Berlin Lattice conference.

• Assuming ((mπ/mρ)
2 ∝ mq)

• τint ∝ 1/mq,
• (inversion cost) ∝ 1/mq,
• ∆t ∝ mq

• TFLOPS× Year to generate 1,000 independent configuration
(Thanks to K.Jansen, A.Ukawa, T.Yoshie) :

TflopsY = C

»
#conf
1, 000

– »
(mπ/mρ)

0.6
+ S

–−6 »
L

2.12fm

–5
"

a−1

2.60GeV

#7

S: cost for strange quark. C ≈ 0.312 (Ukawa) .
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Ukawa’s formula
MILC asqtad Nf=3
CP-PACS JLQCD,  clover, ms(heavy)
CP-PACS JLQCD, clover, ms(light)
Urbach et. al.   Wilson Nf=2
extrapolation power = -6
extrapolation power= -4

1k configs, a=0.08 fm, Vol=24340
• MILC points are from Urbach et.al

• Scaled for a = 0.08fm, 243×40 lattice
using the formula.

• CP-PACS JLQCD NF = 3 clover on Earth
simulator τint = 0.6/(amq)

• Urbach et.al multiple time scale
τint(plaq) (Sexton, Weingarten) +
Hasenbusch accel.

• Note the formula's assumptions are not
totally confirmed: try lighter quark mass
to see if τint, C∆H change.

• fixing a−1 has no absolute meaning.
c.f. O(a) vs O(a2) discretization.
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2. Dynamical Simulations
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Dynamical simulations

Dynamical Wilson fermions (M.Lüscher @ plenary)

Dynamical twisted mass Wilson (R. Frezzotti and G.C.
Rossi) (A.Shindler @ plenary)

parameters of dynamical simulations

• Gauge action

• Fermion action

• NF : number of dynamical light quarks

• a−1

• msea ( mπ/mρ)

• renormalization
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MILC collaboration

RG(Symanzik) + Improved staggered( Asqtad ) NF = 2 + 1
R algorithm
300-700 configurations, (2.4 fm)3
( (2.9fm)3 / (3.4fm)3 for coarse/fine lightest mass)

• coarse lattice a−1 = 1.6 GeV mq = 10− 50 MeV 5 points (mπ/mρ = 0.3− 0.6)
Added second (40% lighter) strange quark points (2 mass points).

• fine lattice a−1= 2.3 GeV mq = 10− 30 MeV 3 points mπ/mρ = 0.3− 0.5)
Added lightest quark mass points (now 170 confs)

• Also quenched simulations on similar lattice spacing/size to study quenched stag-
gered chiral perturbation theory.

perturbative renormalization
(C.Bernard @ spectrum poster, also thanks to D. Toussaint)
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MILC collaboration

• The new lightest quark points doesn't change mass results much, so doesn't quark
masses.

• Including new data, decay constants shifted by a significant amount.

• new (preliminary) results of decay constants.
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MILC collaboration

• only analytic terms in NNLO, (and NNNLO) are included in the fits.

• R algorithm.

• electromagnetic effects is the biggest error on mu/md.
(N.Yamada, Y.Namekawa @ spectrum 10)

• Quenched fπ is larger than experimental value by 28%.
(Setting scale by r0, σ, 21%, 14% larger respectively).
consistent with other quenched simulations ?

(A.Mason @ plenary )
(C. McNeile @ spectrum 1)
(J. Bailey @ spectrum 2)
(C.Aubin @ spectrum 10 )
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(J.Shigemitsu @ heavy 2)
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Previous calculations

• Bq : b (NRQCD) + light quark (staggered) meson

• Φq = fBq

p
MBq
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staggered a0 on staggered sea

(A.Irving @ spectrum poster)
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ground
next
pi+eta
KKbar
phys a_0

• flavour nonsinglet scalar

• Spin × Taste = 1 ⊗ 1

• excited state is compatible to
a0(980)

• ground state : partially quenched effect ?

• (S.Dürr @ plenary)

C(t) =
∑

n

A(n)e−m(n)t + A(n)
∗ e+m

(n)
∗ t

m∗ : γ4γ5 ⊗ γ4γ5 (taste-split pion)
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DWF a0 on staggered sea

(S.Prelovsek @ spectrum 8)
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tuning 1 (a2∆Mix=0)

tuning 1 (a2∆Mix=0.01)

tuning 1 (a2∆Mix=-0.01)

tuning 1 (a2∆Mix=-0.02)

tuning 2 (a2∆Mix=-0.01)

tuning 2 (a2∆Mix=-0.02)

tuning 2 (a2∆Mix=0)

tuning 2 (a2∆Mix=0.01)

tuning 1:  Mπ
DWF=Mπ5 (LHPC);  tuning 2:  Mπ

DWF=MπIa0 correlator for mq=0.01/0.05

• Partially quenched ChPT.

• For DWF-valence + DWF-sea, C(t) <

0 for mπ(sea) > mπ(val), vice versa.
(S. Prelovsek,et.al.)

• DWF a0 could be a ``detector'' of
mπ(sea).

• For GW-valence pion on staggered sea: mπ(val)=mπ,I(sea) leads ``continuum like''
NLO pion mass formula (O.Baer et.al.) .

• For DWF-valence + staggered-sea mixed action , a0's C(t) is still negative for
mπ,5(sea) = mπ(val) for a range of unknown parameter ∆mix.

• DWF a0 feels staggered mπ(sea) is heavier than NG pion mπ,5 ?
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CP-PACS and JLQCD collaboration

• RG improved gauge action + nonperturbatively O(a) improved Wilson NF = 2 + 1,

• 3k-10k trajectories,(2fm)3 box.

• a−1 = 1.6, 2.0, 2.6 GeV (mπ/mρ = 0.60− 0.78)

• measure on dynamical (unitary, msea = mval) points.

• Exact NF=2+1, PHMC (K.Ishikawa)

• perturbative renormalization

• AWI quark masses

m
AWI
q =

∆4A4(t)J5(0)

2(J5(t)J5(0))

• r0 = 0.5fm is consistent with mρ input.

(T. Ishikawa’s talk @ spectrum 3, S.Takeda @ spectrum 2)
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• polynomial chiral extrapolations.

• perturbative renormalization.
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NF = 2 Dynamical Wilson simulations

• ALPHA
Wilson + nonperturbatively O(a) improved Wilson NF = 2,
a−1 = 2.1 , 2.4, 2.8 GeV (mps = 495 MeV)
nonperturbative renormalization (Schrodinger functional)
(M.D.Morte’s talk @ improvement 1, also thanks to F.Knechtli)

• QCDSF-UKQCD
Wilson + nonperturbatively O(a) improved Wilson NF = 2,
a−1 = 2.1, 2.4, 2.8 GeV ( mπ/mρ ≥ 0.6)
NLO
nonperturbative renormalization (RI-MOM)
(R.Horsley’s talk @ spectrum 8, D.Pleiter @ spectrum 4,
also thanks to G.Schierholz)

• SPQcdR
Wilson + Wilson NF = 2,
a−1 = 3.2 GeV (mπ/mρ = 0.63− 0.75)
nonperturbative renormalization (RI-MOM)
Also quenched simulation at similar at a

(C.Tarantino’s talk @ spectrum 8)
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SPQcdR
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• mπ/mρ ≥ 0.6, too heavy ?

• Chiral extrapolation, Wilson ChPTs (O.Baer et.al., S. Aoki) .

• Perturbative renormalizations tend to underestimate quark mass ?
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RBC collaboration

• RG(DBW2) + Domain Wall Fermions, NF = 2

• a−1 = 1.7 GeV (mπ/mρ = 0.54− 0.65), (1.9fm)3 box.
6k trajectories, 94 confs.

• non-perturbative renormalization (RI-MOM)

• LO and NLO ChPT fit.

• Ls = 12, mres = 0.001372(44) ∼ 0.1msea ∼ a few MeV.

( C.Dawson, T.Blum’s talk @ plenary)
( S.Prelovsek @ spectrum 8, N.Yamada @ spectrum 10)
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Pseudoscalar decay constant

• NLO fits are also examined.

• mval, msea ∈ [0.01, 0.03]

• 30% smaller f than linear fit.

• Larger mass points are missed
badly.
=⇒ LO (linear) extrapolation.
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Pseudoscalar Meson mass
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Fit using msea,val < 0.03 only

• NLO fit using msea,val ≤ 0.03

not inconsistent.

• constraints:
• m2

ps = 0 at mval,sea = −mres,
• f = 0.0781 from linear fit of fps.
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Physical Results

• NLO fits results using m2
ps at mf = msea,val ≤ m

(max)
f . Pseudo-scalar wall-point

(upper two column), and axial-vector wall point. uncorrelated χ2. Gasser-
Leutwyler low energy constants Li multiplied by 104 at Λχ = 1 GeV.

m
(max)
f χ2/dof 2 B0 L4 − 2L6 L5 − 2L8

0.03 0.1(1) 4.0(3) −1.5(7) −2(1)

0.04 2(1) 4.2(1) −0.2(4) −1.1(4)

0.03 0.3(2) 4.0(3) −1.9(8) −1(1)

0.04 1.9(9) 4.2(1) −0.4(4) −0.8(3)

• By linear extrapolations/interpolations for fps to m̄ and ms,

NF = 2 experiment NF = 0

fπ 134(4) 130.7 129.0(50)
fK 157(4) 160 149.7(36)

fK/fπ 1.18(1) 1.224 1.118(25)

better agreement with experiment than quenched DWF simulations.
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RBC and UKQCD collaboration

• RG(Iwasaki, DBW2) + Domain Wall Fermions NF = 2 + 1

• Ls = 8 parameter search runs. amres ∼< O(0.01)

• a−1 = 1.7-2.0 GeV

• QCDOC, QCDOC collaboration (T.Wettig @ plenary)

• R algorithm and Exact RHMC algorithm (M. Clark @ algorithm 2)
in CPS++ (maintainer: C.Jung)

• 1.5-6 k trajectories.

• 243 × 64, Ls = 16 started.

preliminary investigations
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(K.Hashimoto @ spectrum 11)
(J.Noaki) (L.Shu)
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• Static quark potential
(preliminary)

• r0 = 0.5 fm
β a−1

DBW2 0.764 2.0 GeV
0.72 1.7 GeV

Iwasaki 2.2 2.1 GeV
2.13 1.8 GeV

• consistent with fπ, mρ inputs
within ∼ 10%.
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Spectrum
(C.Maynard @ spectrum 11) (S. Cohen @ weak 2)
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(A.Yamaguchi @ chiral 2)
topology, 〈q̄q〉, ...

(R. Tweedie @ spectrum 8)
Scaling study of decay constants, ....

(M.Lin @ spectrum 11)
evolution details, decay constants....
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GW/overlap/chirally improved dynamical simulations

(P.Majumdar @ chiral 2) (W.Ortner @ chiral poster)

(D.Kadoh @ chiral 2) (Y.Kikukawa @ chiral poster)

(T.DeGrand @chiral 3) (S.Schaefer @chiral 3)

(B.Joo @chiral 4) (R.Edwards @chiral 4)

(W. Kamleh @ algorithms poster) (S. Kreig @ algorithms poster)
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3. quark masses

Taku Izubuchi, Dublin, 25/July/2005 36



Light quark masses

Quark mass is a fundamental parameter of the standard model La-
grangian, which is not directly accessible from experiments due to con-
finement.

• Lattice QCD : map between hadronic observables (hadron mass, decay constant)
and quark mass,

Mhad(mq) = M
(exp)
had

• fix lattice scale, a−1 (Sommer scale r0, mρ, fπ)

• Extrapolate to chiral regime (mu,d ∼ O(1) MeV).

• mass renormalization, Z factors, for non-lattice community.

• Extrapolate to continuum (a → 0).
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map between hadronic mass and quark mass on
lattice
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• Set lattice scale, a−1, from mρ,
r0, or fπ.

• quark mass at physical Kaon mass
(horizontal line)

• By using non-degenerate ChPT
formula (red dots), amstrange =

0.0446(29) is extracted.

• If one uses dynamical, msea =

mval, points instead of NF =

2 sea quarks, one finds
amstrange = 0.04177(64), 7%
smaller than partially quenched
analysis.
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Operator Renormalization on lattice

Lattice perturbative calculation (improved)

RI-MOM (Rome/Southhampton)

Schrodinger Functional (ALPHA)

Real-space NPR (Giménez et.al.) (V.Porretti @ spectrum 8)
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NPR(RI-MOM) on dynamical lattice

• measure quark propagator,SF (q), on Landau gauge fixed gauge configuration.

• calculate amputated green function of bilinear operators, Γ = 1, γ5, γ5γµ, ...

ΠΓ =
˙
u(−p)[ūΓd]d̄(q)

¸
AMP

ΛΓ =
Tr (ΓΠΓ)

Tr(ΓΓ)

˛̨̨̨
p2,q2=µ2

on lattice ensemble.

• Subtract mass pole to avoid non-perturbative effects (〈q̄q〉) by fitting

Λγ5
=

c1

mq

+
Zq

ZP

+ c3mq + · · ·

at ΛQCD � |p| � a−1 on each sea quark ensemble.
(Zq quark field normalization, ZP,S,A pseudoscalar, scalar, axial current)
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NPR(RI-MOM) on dynamical lattice...
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• ΛP ≈ ΛS ≈ ∂S−1/∂m → Zq
ZP

• convert from RI to MS with c(pa)2

subtraction.

• constant fit all msea (mild depen-
dency).

• ZP = 0.62(5)

(250 MeV ≤ ΛQCD ≤ 300 MeV)
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recent dynamical strange quark masses

based on ALPHA's compilation (Thanks to F.Knechtli) + new results.
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Preliminary
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NF = 2, 3 (difference is small in CP-PACS/JLQCD)

scale is r0 = 0.5 fm. (MILC corresponds to r0 = 0.467 fm, not
corrected)

chiral extrapolation ?

perturbation tends to give smaller Zm ?

(QCDSF-UKQCD, SPQcdR, ALPHA)

DWF NPR Pert (Kc)

ZV,A 0.7574(1) 0.770
ZS,P 0.62(5) 0.847
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Conclusions

• Performance of Dynamical simulation is updated.

• We need ``fair'' way to compare different simulations other than fixing a.

• Seemingly promising {new,improved} algorithms.

• Now three NF = 2 + 1 dynamical simulations.

• New dynamical Wilson fermion simulations with NPR.

• New strange quark mass results (4 Wilson, 1 DWF).

• Systematic error (chiral extrapolation, perturbative Z)
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