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Outline

1. Introduction: physics and methodology∗

2. Numerical results

3. Summary/Outlook

∗ Our calculation [Lattice 2004] is very similar to a recent quenched

calculation [Aoki, Kikukawa, Kuramashi, and Shintani (2005)]. See

also the talk by E. Shintani at this meeting.
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Introduction

Consider adding a T- and P-odd (CP-odd) term to the QCD

action

SQCD,θ = −θ
∫
dt
∫
d3x

g2

32π2
tr [εµνρσG

µν(x)Gρσ(x)]

where Gµν(x) is the gluon field strength and

TrG(x)G̃(x) ∼ ~E · ~B (c.f., E2 −B2)

G̃(x)µν =
1

2
εµνρσG

ρσ(x)

This “θ-term” gives rise to permanent electric dipole moments

to the quarks as well as bound states like the neutron
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The current experimental bound on dN is

|~dN | < 6.3× 10−26 e-cm [Harris, et al. (1999)]

New searches: 225Ra (running at ANL) and deuteron (BNL

proposal) to improve sensitivity by 2-3 orders of magnitude.

+ model calculations implies θ <∼10−10, which is unnaturally small.

This is often called the Strong CP problem.

Lattice regularization provides first-principles technique for cal-

culation of dN/θ.
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The QCD Lagrangian for massless fermions

LQCD,f = ψ̄ (i/D)ψ

is invariant under chiral transformations of the quark fields

ψ → (1 + iαγ5/2)ψ

ψ̄ → ψ̄(1 + iαγ5/2)

But the measure of the path intergral is not,

DψDψ̄ → DψDψ̄ exp i α
∫
d4x

g2

32π2
εµνρσTrGµνGρσ

which gives rise to the Adler-Bell-Jackiw anomaly

(a.k.a the axial anomaly, c.f. massive η′ and π0 → 2γ).
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Choosing α = −θ, the θ term can be rotated away, or canceled

exactly in the action [But not for Nf = 1, see Creutz (2004)]

If all the quarks are massive, the chiral rotation generates another

term in the action that can not be canceled by further field re-

definitions

mψ̄ψ → mψ̄ψ+ iθmψ̄γ5ψ

which is also P- and T- odd.

Thus the CP-violating term in the QCD Lagrangian can be trans-

formed between the gauge and fermion sectors, but it can not

be eliminated
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The θ term can be written as a total divergence.

Still, ∫
d4x

g2

32π2
trεµνρσGµνGρσ = Q

where Q is the integral topological charge, Q = 0, ±1, ±2, . . .

Thus the θ term can produce physical effects (like an electric

dipole moment of the neutron)
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Taking the chiral limit, m→ 0

Again, consider the QCD partition function for massive quarks

which can be written

Z =
∫
DAµ det[/D(m) + iθmγ5]

Nf e−SG.

and if θ is small,

det [/D(m) + iθmγ5] = det[/D(m)] [1+iθm tr(γ5/D(m)−1) ]+O(θ2),

The spectral decomposition of /D(m)−1 and the index theorem

lead to

/D(m)−1 =
∑
λ

|λ〉〈λ|
iλ+m

Nf∑
f=1

tr
[
γ5/D

−1(m)
]

=
n+ − n−

m
=
Q

m
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What happened? It appears that in the m→ 0 limit, the θ term

does not vanish

Correct quark mass dependence is recovered from the usual

CP-even part of the fermionic action,

det /D(m)Nf = Πi(iλi +m)Nf

As m → 0, Q 6= 0 configurations are suppressed since they

support exact zero modes of /D with λi = 0.

In other words, the distribution of Q→ δ(Q), or 〈Q2〉/V → 0, so

the θ term effectively vanishes.
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The quenched approximation of lattice QCD

Quenched approximation: set

det[/D(m)] = 1

(amounts to omitting quark vacuum polarization to all orders)

For small θ,

det [/D(m) + iθmγ5] = det[/D(m)] [1+iθm tr(γ5/D(m)−1) ]+O(θ2),

So, even in quenched case there is CP-violating physics [Aoki,

Gocksch, Manohar, and Sharpe (1990)]. But mass dependence

is completely wrong. Many observables, possibly dN , have

pathological chiral limit (c.f., dN in ILM [Faccioli, Guadagnoli,

Simula (2004)])
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Computational Methodology

Compute the matrix elements of the electromagnetic current

between nucleon states in the θ 6= 0 vacuum

〈p ′, s′|Jµ|p, s〉θ = ūs′(p
′)Γµ(q2)us(~p)

Γµ(q2) = γµ F1(q
2) + i σµνqν

F2(q
2)

2m

+
(
γµ γ5 q2 − 2mγ5 qµ

)
FA(q2) + σµνqνγ

5 F3(q
2)

2m

Jµ =
2

3
ūγµu−

1

3
d̄γµd =

1

2
J
µ
V +

1

6
J
µ
S

J
µ
V = ūγµu− d̄γµd

J
µ
S = ūγµu+ d̄γµd.

q2 < 0, momentum transfered by the external photon (space-like)
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The most general matrix element consistent with Lorentz, gauge,

CPT symmetries of QCD. The insertion of Jµ probes the elec-

tromagnetic structure of the nucleon. For q2 → 0

• F1(0): electric charge in units of e (+1 proton, 0 neutron)

• F2(0)/2m: magnetic dipole moment in units of e

• FA: anapole moment

• F3(0)/2m: electric dipole moment in units of e

The last two vanish if θ = 0
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Calculating dipole moments on the lattice

Lattice calculations are done with correlation functions in Eu-

clidean space-time,

and rely on the LSZ reduction formula to project out the desired

matrix element by using exponential dominance of ground state

G(t, t′) = 〈χN(t′, ~p′) Jµ(t, q)χ†N(0, ~p)〉

=
∑
s,s′
〈0|χN |p′, s′〉〈p′, s′|Jµ|p, s〉〈p, s|χ

†
N |0〉

1

2E 2E′
e−(t′−t)E′e−tE

+ . . .

= Gµ(q) ∗ f(t, t′, E,E′) + . . .
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With suitable choices of projectors, form factors can be deter-

mined from the correlation functions, e.g. for θ = 0,

Pxy = −
i

4

1 + γ4

2
γxγy

P4 =
1

4

1 + γ4

2
γ4

=
1

4

1 + γ4

2
trPxyGx,y(q2) = ±py,xm(F1(q

2) + F2(q
2))

trP4G4(q2) = m (E +m)

(
F1(q

2) +
q2

(2m)2
F2(q

2)

)

Linear combinations of F1 and F2 in ()’s are magnetic and

electric form factors, GM(q2) and GE(q2), respectively.
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To get the desired moment take ratios of three-point functions

(Z, renormalization, kinematical factors all drop out), e.g.,

lim
t′�t�0

1

py

trPxyGxP,N(t, t′, E, ~p)

TrP4G4
P (t, t′, E, ~p)

=
1

py

trPxyGxP,N(q2)

trP4G4
P (q2)

=
1

E +m

F1(q
2) + F2(q

2)

G
(P )
E (q2)

lim
q→0

=
1

2m

{
1 + aµ,P
aµ,N

yields the magnetic dipole moments

F1(0) = 1, 0 for the proton, neutron
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CP violating vacuum, θ 6= 0

The physical neutron in the CP-broken vacuum is a mixture of

the θ = 0 vacuum (opposite parity) eigenstates |N〉 and |N∗〉.

|Nθ〉 = |N〉+ iα′|N∗〉
α′ ∝ θ

This gives rise to mixing of electric and magnetic dipole moment

terms in projected correlation functions.

[ Pospelov and Ritz (1999), Aoki, Kikukawa, Kuramashi, and Shintani

(2004)]
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The electric dipole moment is obtained from, e.g.

trPxyGz(q2) = αm(E −m)F1 + α(m(E −m) +
p2z
2

)F2 +
p2z
2
F3 +O(θ2)

trPxyGt(q2) = ipz

(
αmF1(q

2) + α
E + 3m

2
F2(q

2) +
E +m

2
F3(q

2)
)

+O(θ2).

The terms proportional to α must be subtracted

{
1

ipz

trPxyGt
N(t, t′, E, ~p)

trP tGt
P(t, t

′, E, ~p)
−
αmF1(q2) + αE+3m

2
F2(q2)

m(E +m)G(P )
E (q2)

}
=

F3(q2)

2mG(P )
E (q2)

lim
q2→0

{· · ·} =
F3(0)

2m
= dN
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Mixing angle α is calculated from the
ratio of two-point functions
[Aoki, Kikukawa, Kuramashi, and Shintani (2004)]

〈χNθ(t)χ
†
Nθ(0)〉θ =

ZNθ(1 + γ4 + exp i2αγ5)

2
exp−mNθt+ . . .

To lowest order in α (θ) we have

tr
1 + γ4

2
γ5 〈χNθ(t)χ

†
Nθ(0)〉θ ≈ i ZN α e

−mN t

tr
1 + γ4

2
〈χNθ(t)χ

†
Nθ(0)〉θ ≈ ZN e

−mN t

mNθ = mN +O(θ2)

ZNθ = ZN +O(θ2)
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Computing with θ 6= 0

〈O〉θ =
1

Z(θ)

∫
DAµDψ̄DψO e

−S(Aµ)−iθ
∫
d4x g2

32π2
tr[G(x)G̃(x)]

Assuming θ � 1

≈
1

Z(0)

∫
DAµDψ̄Dψ(1− iθQ)O e−S(Aµ)

= 〈O〉 − iθ〈QO〉
CP odd piece: simple weighted average in CP even vacuum

〈QO〉 =
∑
ν
P (Qν) Qν 〈O〉ν,

Can also weight with the pseudo-scalar density
[Guadagnoli, Lubicz, Martinelli, and Simula (2002)]

For chirally symmetric lattice fermions that have an index, this
is equivalent to weighting with Q. If chiral symmetry is broken,
then the two methods will agree in the limit a→ 0.
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Relation between dN and topology of the vacuum

• dN → 0 as m2
π → 0 since Πi(λi +m) → 0, λi = 0 for Q 6= 0

• χPT gives dN ∼ m2
π logm2

π, 〈Q2〉/V ∼ m2
π

• 〈Q2〉/V = constant implies that dN does not vanish in the

quenched theory (Nf = 0) (pathological?)

• mixing angle α must vanish as m2
π → 0;

α→ 0 as 〈Q2〉/V → 0

• In large N , 〈OQ〉 = 〈Q2〉∂〈O〉∂ Q

∣∣∣∣
ν=0

= 〈Q2〉〈O〉ν=1 [Diakonov, et

al. (1996); Faccioli, et al. (2004)]
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Numerical Results

• DWF+DBW2, Nf = 2, msea = mval = 0.04
[RBC Collaboration (2004)].

• msea = 0.02 and 0.03 in progress

• a−1 ≈ 1.7 GeV.

• quenched DWF+DBW2, mval = 0.05 valence DWF
[RBC Collaboration (2002)]

• Non-zero momenta for one of the nucleons, ~p = (±1,0,0),
(±1,±1,0), and (±1,±1,±1) (and permutations) since form
factors multiplied by qν

(∂/∂(q2)|0 not accessible on a finite lattice [Wilcox (2002)])

22



Topological charge “history” (distribution):

Nf = 2 flavor: small step

hybrid monte-carlo, Q

sampled slowly, long-

time correlations

Quenched: big change

heat bath monte-carlo,

Q sampled efficiently,

∼ no correlations

O(a2) improved Q was

computed by integrating

the topological charge

density after APE smear-

ing the gauge fields.
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Topological charge susceptibility χ:

χ =
〈Q2〉
V

= f2m2
π/8

Statistical

errors may be

under-estimated

(blocks of 50

trajecs)
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(r
0
mπ)
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0
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χ 
(r

0)4

quenched, a
-1

 = 1.3 GeV

n
f
 = 2, a

-1
=1.7 GeV

Lowest order Chiral PT
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The mixing coefficient α

To lowest order in θ, CP even and odd parts of two point function

have the same mass, mN , and amplitude.

G(t) = Ae−mN t + · · ·
Gθ(t) = Aαe−mN t+· · ·

Systematic difference

in nucleon mass de-

termination makes ex-

traction of α difficult:

fake plateau
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mixing coefficient α, quenched

Things look more sensi-

ble on the quenched lat-

tice: better sampling of

topological charge.

Plateau is (almost) trust-

worthy.

α = 0.21(3) is rather

large, c.f. topological

charge susceptibility
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Eigo Shintani’s talk: reweighting with Q is non-trivial, but works!
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mixing coefficient α, Nf = 2 again

Extract α from fit

Gθ(t) = Aαe−mN t.

α = 0.035(13)

Can also fix mN to

its correct CP even

value

α = 0.072(15)

Imprecise, but

much smaller than

quenched value

(c.f., 〈Q2/V 〉)
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Three-point correlation function ratios

• Neutron

magnetic form

factor ratios

• Nucleon sources

at t = 0 and 10

• Excited state

contamination

appears small

• lowest q2 on the

bottom 2 4 6 8 10
t
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Ratio of form factors GM(q2)/G(P )
E (q2)

q2 dependence mild

Reasonable agreement

with experiment (dia-

monds) [Jones, et al.

(2000), JLab]

Anomalous µ’s are

equal and opposite

well within errors,

implies iso-scalar

contribution ∼ 0;

disconnected

diagrams not

computed, so puzzling
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(Lattice error estimates are statistical uncertainties only)
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Subtracted F3(q
2) ratios

• Neutron

electric dipole

form factor ra-

tios

• F1 and F2 terms

subtracted

• Subtraction

term (squares)

is relatively well

resolved

• error dominated

by 3-point func-

tion, ∼ 0
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Ratio of form factors F3(q
2)/(2mG(P )

E (q2))

dlatN =
F3(0)

2m

≈
F3(0.401GeV2)

2m
= +0.087(95).

Our conventions have

lead to a positive cen-

tral value of dN/θ.

Could change as cal-

culation improves.

In physical units,

dN ≈ 0.010(11) θ e fm.
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(Error estimates are statistical uncertainties only.)
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Summary/Outlook

Inadequate topological charge distribution limits the accuracy of
the Nf = 2 flavor calculation (algorithmic problem).

Quenched calculation avoids this problem, but χ is unphysically
large and has the wrong quark mass dependence, so quenched
dN will have large systematic error.

Our central value is ∼ 2× leading χPT result [Crewther, Di

Veccio, Veneziano, Witten (1979)], ∼ 5 − 10× sum rules value
[Pospelov and Ritz (1999)], ∼ −0.4× quenched value [Aoki,

Kikukawa, Kuramashi, and Shintani (2005)]

Future: In progress 2+1 flavor DWF calculation (RBC+UKQCD)
may be promising if long HMC evolutions obtained [Talk by Yamaguchi,

this meeting]. Need to carefully study the mass dependence, ex-
trapolate to the physical pion (light quark) mass
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