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Site Chevaleret – Case 7018, 75 205 Paris Cedex 13

laurent.vivier@univ-orleans.fr

We define the notion ofcircular words, then consider on such words a constraint derived from the
Fibonacci condition. We give several results on the structure of these circular words, then mention
possible applications to various situations: periodic expansion of numbers in numeration systems,
“gcd-property” of integer sequences, partition of the prefix of the fixed point of the Fibonacci substi-
tution, spanning trees of a wheel. Eventually, we mention some open questions.

Let b> 1 be an integer. It is well-known that the expansion in baseb of a numberx is ultimately periodic
iff x is rational. Considerx andx′ ∈Q, and writeW andW′ for their periodic part, assuming|W|= |W′|
(this latter hypothesis can be fulfilled by considering suitable powers of the minimal period ofx andx′).
There exists a simple way to get the periodic part ofx+x′: it consists in addingW andW′, with the only
difference from common addition that the possible carry at the last digit on the left has to be reported on
the right of the period. This way of adding finite words on an alphabet of numbers embedd the set of
finite words of lengthℓ with a group structure, the group of(punctured) circular wordsof lengthℓ on the
alphabet{0, . . . ,b−1}. To distinguish circular words from standard words, we writeW̃ for the former
ones. Formally, a circular word can be regarded as a biinfinite purely periodic wor d with a pointer on
one of its letters, or as the ordered set defined by a finite wordW = w0 . . .wn−1 and its circular shifts
σ(W), . . . ,σn−1(W), whereσ(w0 . . .wn−1) := wn−1w0 . . .wn−2.

To be able to properly define an addition on circular words, animportant point is that the circular

word 0̃n (made ofn zeroes) has to be identified with̃(b−1)n (made ofn times the digitb− 1). Forb
equal to ten, this corresponds to the classical identification 1.000. . . = 0.999. . .. Hence, since the group

of circular words of lengthn is abelian, is generated bỹ0n−11 and hasbn−1 elements, it corresponds to
Z/(bn−1)Z.

Now, consider the set of circular words of orderq. This also defines a finite abelian group, which
is the group of periods of all the rational numbers of the formp/q (the identificatioñWm = W̃ for any
m≥ 1 ensure that all these periods can be supposed of equal length). It is easily seen that such a group
is isomorphic toZ/qZ. One of its elements plays a particular role: the one corresponding to the smallest
value (apart from the word containing only 0s). This one, denoted byΠ̃, has the particularity that 2̃Π,
3Π̃,. . . , qΠ̃ are computed by standard classical addition, that is: no carry at the end of the calculation
has to be put in the beginning of the word. In other words, we have iΠ̃ = ĩΠ for any i ≤ q. For example,

in base ten, the groupZ/7Z of circular words of orderq = 7 is made ofΠ̃ = 1̃42857, 2̃Π = 2̃85714,

3Π̃ = 4̃28571, 4̃Π = 5̃71428, 5̃Π = 7̃14285, 6̃Π = 8̃57142 and 7̃Π = 9̃99999= 0̃00000= 0Π̃.
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1 Admissible circular words

A first question about circular words is to ask how the previous observations extend when considering
constraints on words derived from more general dynamical systems. We focus here on the Fibonacci
condition: a circular word̃W := ˜w0 . . .wn−1 on the alphabet{0,1} will be said to beadmissibleiff it does
not contains the factor 11, that is: for any 0< i < n we havewi−1wi 6= 11, andwn−1w0 6= 11. (To be
more synthetic, the indices of the letters can be consideredmodulon, so the previous condition can be
rewritten as:wi−1wi 6= 11 for anyi.)

ForW = w0 . . .wn−1 andW′ = w′
0 . . .w

′
n−1, W̃+W̃′ is achieved by considering the word made of the

letterswi +w′
i and by using as many times as needed the identities

. . .xk−2110xk+2 . . .= . . .xk−2001xk+2 . . .

(which corresponds to the equalityFk−1+Fk−2 = Fk, where(Fk)k is the Fibonacci sequence withF0 = 1
andF1 = 2) and

. . .xk−30020xk+2 . . .= . . .xk−31001xk+2 . . .

(which corresponds to the equality 2Fk = Fk−2+Fk+1, which is true for anyk≥ 2). Note that we write
from left to right and not from right to left.

The circular wordsW̃ andW̃′ areequivalentiff they belong to the same orbit under the previous
transformations. It can be shown that, essentially, any circular wordW̃ on the alphabetN possesses a
unique equivalent admissible circular word, denoted byZ̃(W̃). The only exception concerns the orbit of

the circular word1̃n. First, the orbit of1̃2ℓ+1 contains no admissible circular word. For this reason, in the
sequel, we consider only circular words of even length 2ℓ. Second, the circular word̃12ℓ is equivalent to

two admissible circular words:̃(01)ℓ and (̃10)ℓ. Assuming that these two words are equal is enough to
get the following group structure.

Theorem 1. For anyℓ ≥ 1, define the setG ∗
ℓ of circular admissible words of length2ℓ that contains at

least one1. Assume the identificatioñ(01)ℓ = (̃10)ℓ. The setG ∗
ℓ is an abelian group for the previous

addition. More precisely, we have

G
∗
ℓ ≃

{
(Z/dℓZ)× (Z/dℓZ) for ℓ odd;
(Z/5dℓZ)× (Z/dℓZ) for ℓ even,

where dℓ =Fℓ−2 for evenℓ and dℓ =Fℓ−1+Fℓ−3 for oddℓ (recall that F0 = 1, F1 = 2 and Fk :=Fk−1+Fk−2

for every k≥ 2).

(For a proof, as well as for proofs of the other results statedhere, see [3].)

The identity element ofG ∗
ℓ is the element̃(01)ℓ = (̃10)ℓ. We could also identify it with0̃2ℓ, but

technical reasons show that it is better to avoid this latterword (hence the star in the notation). The
identity element can be seen as the (non-unique) admissibleform of 1̃2ℓ. This remark can be used to get
an algorithm that produces the opposite of a given elementW̃ of G ∗

ℓ : in W̃, replace each 0 by a 1 and
each 1 by a 0, then make admissible the obtained circular wordby applying the preceding process to get
an admissible circular word: this is the opposite ofW̃.

The sequence of cardinalities ofG ∗
ℓ is the integer sequence A004146 of [4]. Its first terms are 1, 5,

16, 45, 121, 320,. . . We will make use of this observation in section 5.
As regards admissible circular words of orderq, we have the following result.
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Theorem 2. For q≥ 1, let P∗
q be the set of circular admissible words̃W of even length, containing at

least one1, and satisfying q̃W = ˜(01)|W|/2 (this latter being identified with ˜(10)|W|/2). Assume also the
identificationsW̃ = W̃n for any n. The setP∗

q equipped with the addition

W̃⊕W̃′ := Z̃

(
W̃m/|W|+W̃′m/|W′|

)
, where m= lcm(|W|, |W′|)

is an abelian group isomorphic to(Z/qZ)× (Z/qZ).

An explicit description of the setP∗
q is given by the following theorem. In the sequel, we denote by

N the application defined on words as well as circular words byN(w0 . . .wℓ−1) := ∑nwnFn.

Theorem 3. For any q≥ 2, the minimal valueℓ for whichP∗
q ⊆ G ∗

ℓ satisfies the formula

2ℓ= min(n≥ 2, n even :(Fn modq) = (Fn−1 modq) = 1).

Moreover, letΠ̃ := ˜π0 . . .π2ℓ−1 (resp. Π̃′ := ˜π ′
0 . . .π ′

2ℓ−1) be the circular word of length2ℓ such that

N(Π) = (Fn−1)/q (resp. N(Π′) = (Fn−1−1)/q). We havẽσ(Π′) = Π̃ and, for any1≤ i ≤ q:

i · Π̃ = ĩΠ and i· Π̃′ = ĩΠ′.

The circular words̃Π andΠ̃′ are the only non-trivial elements ofP∗
q satisfying this latter property.

2 Periodic expansions

Circular words are a natural tool for studying numbers with periodic expansion in numeration systems.
The first motivation for their study was to give a descriptionof the set of periodicF -adic numbers,
which are the equivalent ofp-adic numbers for the Fibonacci sequence(Fn)n. More precisely, anF -
adic number is an infinite admissible wordW = w0w1 . . . associated with the divergent series∑nwnFn.
Assuming the identification(01)∞ = (10)∞ and some other identifications derived from this one, the
set ofF -adic numbers is an abelian group. Admissible circular words is then the basic tool to get the
following characterization of periodicF -adic numbers.

Theorem 4. AnF -adic number x is ultimately periodic iff there exists integers p and q such that qx= p.
Moreover, the integers p and q being given, the equation qx= p admits exactly q different roots (or q+1
if q divides p).

The set of roots ofqx= p can be fully described with the help of Theorem 3.

3 gcd-property of integer sequences

Let us say that an integer sequence(un)n≥1 has the gcd-propertywhenever, for anym andn, we have
gcd(um,un) = ugcd(m,n). It is well-known that the Fibonacci sequence( fn)n defined byf1 := f2 := 1 and
fn := fn−1+ fn−2 has the gcd-property (see [1]).

An immediate consequence of the definition of circular wordsand of Theorem 1 is that, for any
integern, the applicationg: G ∗

ℓ −→ G ∗
nℓ defined byg(W̃) := W̃n is a injective morphism of groups. We

can easily deduced from this fact and from Theorem 1 that the sequence(dℓ)ℓ has the gcd-property.
Sinced2ℓ = F2ℓ−2 = f2ℓ, this provides a new partial proof that the Fibonacci sequence ( fn)n has the
gcd-property (limited to even indices).
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4 Balanced partition of the beginning part of the Fibonacci word

TheFibonacci word M= abaababaabaab. . . is the fixed point of the substitution defined bya 7→ aband
b 7→ a. It is well-known from the theory of sturmian words thatM has thebalanced property: denoting
by |W|a the number ofas in the wordW, we have, for any factorsW andW′ of M such that|W|= |W′|,
the inequality

||W|a−|W′|a| ≤ 1.

One may ask for factors ofM of the same length and with exactly the same numbers ofas (and,
hence, the same numbers ofbs). The following result gives a answer for factors in the beginning ofM.

Theorem 5. For anyℓ > 2, let Nℓ := bMF2ℓ−2. (Here, we denote by Wn the prefix of W of length n.) Define
the words A(1),. . . , A(k) by Nℓ = A(1) · · ·A(k)a and|A(i)| = dℓ, where k= F2ℓ−2/dℓ (yes, k is an integer).
The value|A(i)|a (and, hence, the value|A(i)|b) does not depend on i≤ k.

Theorem 5 is a quite unexpected application of circular words; its proof involves an analysis of the
structure of the setG ∗

ℓ . LetX ∈ {(01)ℓ,(10)ℓ,(11)ℓ}. For anyW̃∈G ∗
ℓ different from the identity element,

we say thatW̃ is of type Xwhenever we have the equality

N(W̃)+N(−W̃) = N(X).

Such a definition leads to a partition ofG ∗
ℓ into three subsetsTX. (The identity element has to be

considered separately: we put(01)ℓ in T(01)ℓ and(10)ℓ in T(10)ℓ ; excluding(01)ℓ and(10)ℓ definesT ∗
(01)ℓ

andT ∗
(10)ℓ .) The partition can be describes in the following way:W̃ ∈T(01)ℓ iff W admits 02m1 as a prefix

and 0 as a suffix;̃W ∈ T(10)ℓ iff W admits 02m+11 as a prefix;W̃ ∈ T(11)ℓ iff W admits 02m1 as a prefix
and 1 as a suffix. This characterization shows thatT(01)ℓ = σ(T(10)ℓ). Morevoer, the setsN(TX) have
the following relevant properties:

N(T ∗
(10)ℓ) = {1+2|Mk|a+ |Mk|b, 0≤ k< F2ℓ−2},

N(T ∗
(01)ℓ) = {1+3|Mk|a+2|Mk|b, 0≤ k< F2ℓ−2},

N(T ∗
(11)ℓ) = {F2ℓ−1+3+5|Mk|a+3|Mk|b, 0≤ k< F2ℓ−5−1}.

Now, consider the circular words̃Π andΠ̃′ defined by Theorem 3, forq := dℓ. It can be proved that,
for anyk≤ q, k̃Π is of type(10)ℓ andk̃Π′ is of type(01)ℓ. We then finally get that, for any 0< i ≤ dℓ:

N(Π) = iN(Π)− (i −1)N(Π) = 2|A(i)|a+ |A(i)|b.

The balanced property ofM, together with the fact that 2|A(i)|a + |A(i)|b is constant, implies that
|A(i)|a and|A(i)|b are constant.

5 Group structure on a set of spanning trees

A graphG being given, recall that aspanning treeof G is a subgraph ofG without cycle and containing
all vertices ofG. For ℓ ≥ 1, theℓ-wheelWℓ is the graph made ofℓ+1 vertices such thatℓ of them are
arranged in a cycle and such that the last vertex, thecenter, is linked to all theℓ other ones by an edge.
The following result can be found in [2]:
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Theorem 6. For anyℓ≥ 1, let cℓ be the number of spanning trees of theℓ-wheelWℓ. The sequence(cℓ)ℓ
is the sequence A004146.

Of course, this strongly suggests a link with the groupsG ∗
ℓ . A way to make the link more explicit is

given by the following

Proposition 1. The wheelWℓ being given, let v0 be a vertex of its cycle. A sense of rotation being
chosen, write v1, . . . , vℓ−1 for the successive vertices of the cycle, and let c be the center of the wheel.
Denote the edges ofWℓ by r0 := cv0, s0 := v0v1, r1 := cv1, s1 := v1v2, and so on until rℓ−1 := cvℓ−1

and sℓ−1 := vℓ−1v0. For any spanning treeT of Wℓ, define the circular word̃W := ˜w0 . . .w2ℓ−1 in the
following way:

w2i :=

{
1 if r i ∈ T ;
0 otherwise.

w2i+1 :=

{
0 if si ∈ T ;
1 otherwise.

The functionT 7−→ Z̃(W̃) is one-to-one.

Hence, such a “taxonomy function” equip the set of spanning trees ofWℓ with a group structure.
It is interesting to note that the circular words̃W defined by the spanning trees ofWℓ are not nec-

essarily admissible, but are characterized by the following property: they are exactly the circular words

of length 2ℓ whose blocks of 0 are of even length (the circular word̃02ℓ being excluded). This gives an
alternative way of writing the elements ofG ∗

ℓ , which has the interesting property of unicity (the identity

element̃(01)ℓ = (̃10)ℓ being now written in the unique form̃12ℓ). In particular, this provides a convenient
way to generalize our group structure to circular words of odd lengths.

6 Other questions

Here, admissibility was defined by the classical constraintderived from the greedy algorithm applied to
the numeration system in base(1+

√
5)/2 (or the Zeckendorf numeration system of integers). A natural

generalization consists in looking at other constraints offinite type: Tribonacci condition (words without
the factor 111) or, more generally,k-bonacci condition (words without the factor 1k for some fixedk);
words on an alphabet with more than two letters (for example:words on{0,1,2} without two succes-
sive 2 - this corresponds to the algebraic equation 2+ 2X = X2), etc. It seems that Theorem 1 can be
generalized for many possible definitions of admissibilityof finite type (the remark at the end of section
5 also suggests a possible extension to sofic systems). The expected consequences concern the periodic
expansion of numbers in other numeration systems, as well asthe gcd-property for some classes of linear
recurring sequences, and balanced properties of factors ofsturmian sequences and generalizations. As
regard spanning trees, the point is to find a convenient generalization of wheels (and/or spanning trees).

Another question on circular words is about a multiplicative structure. It is quite concievable that, if
a convenient multiplicative structure can be found for admissible words, then things could be said about
the expansion of theF -adic root(s) ofx2−x−1= 0, since the definition ofF -adic numbers derive from
the Fibonacci sequence. One may wonder also whether the setsSn of roots ofFn−1x= Fn converge in
some sense to what would corresponds to anF -adic golden ratio.
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