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An infinite permutationδ is a linear order on the setN. We study the properties of infinite permu-
tations generated by fixed points of some uniform binary morphisms, and find the formula for their
complexity.

1 Introduction

The notion of an infinite permutation was introduced in [1], where were investigated the periodic prop-
erties and low complexity of permutations. Similarly to thedefinition of subword complexity of infinite
words, we can introduce the notion of the factor complexity of a permutation as the number of distinct
subpermutations of a given length. The notion of a permutation generated by an infinite non-periodic
word was introduced in [3]. In [4] Makarov calculated the factor complexity of permutations generated
by a well-known family of Sturmian words. In [5] Widmer calculated the factor complexity of the per-
mutation generated by the Thue-Morse word. In this paper we find a formula for the factor complexity
of permutations generated by the fixed points of binary uniform morphisms from a some class. Since the
Thue-Morse word belongs to this class, we obtain an alternative way to compute the factor complexity
of the Thue-Morse permutation.

In Section 2 we introduce basic definitions to be used below. In Section 3, we introduce the class of
morphismsQ for which in Section 9 we state the main theorem of this paper.In Sections 4–8 we state
some auxiliary assertions needed to prove the main theorem.In Section 10 we give an alternative proof
of the formula for the factor complexity of the permutation generated by the Thue-Morse word.

2 Basic definitions

Let Σ be a finite alphabet. Everywhere below we will use only the two-letter alphabetΣ = {0,1}.
A right infinite word over the alphabetΣ is a word of the formω = ω1ω2ω3 . . ., where eachωi ∈ Σ.

A (finite) wordu is called a subword of a (finite or infinite) wordv if v= s1us2 for some wordss1 ands2

which may be empty. The set of all finite subwords of the wordω is denoted byF(ω). For the wordω
we define the binary real numberRω(i) = 0.ωiωi+1 . . . = ∑k≥0ωi+k2−(k+1). The mappingh : Σ∗ −→ Σ∗

is called a morphism ifh(xy) = h(x)h(y) for any wordsx,y ∈ Σ∗. We say thatω is a fixed pointof a
morphismϕ if ϕ(ω) = ω . Clearly, every morphism is uniquely determined by the images of symbols,
which we callblocks. A morphism is calleduniform if its blocks are of the same length.

We say that a morphismϕ : Σ∗ −→ Σ∗ is markedif its blocks are of the formϕ(ai) = bixci , wherex
is an arbitrary word,bi andci are symbols of the alphabetΣ, and allbi (as well as allci) are distinct. In
what follows, we will consider only uniform marked morphisms with blocks of lengthl .
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An interpretationof a wordu∈ Σ∗ under the morphismϕ is a triples= 〈v, i, j〉, wherev= v1 . . .vk is a
word over the alphabetΣ, i and j are nonnegative integers such that 0≤ i < |ϕ(v1)| and 0≤ j < |ϕ(vk)|,
and the word obtained fromϕ(v) by erasingi symbols to the lefti and j symbols to the right isu.
Moreover, ifv is a subword ofω , thens is called an interpretation onω . The wordv is called anancestor
of the wordu. In what follows we shall consider only interpretations of subwords of the wordω . We say
that(u1,u2) is asynchronization pointof u∈F(ω) if u= u1u2 and∀v1,v2 ∈ Σ∗,∀s∈F(ω) ∃s1,s2 ∈F(ω)
such that[v1uv2 = ϕ(s) ⇒ (s= s1s2,v1u1 = ϕ(s1),u2v2 = ϕ(s2))]. A fixed point ω = ϕ(ω) of the
morphismϕ is calledcircular ([2]), if any subwordv of word ω of length at leastLω contains at least
one point of synchronization.

For uniform morphisms, this means the uniqueness of the partition of the wordv into blocks.

In [2] it was proved that the nonperiodic fixed points of uniform binary morphisms withw1 = 0 are
circular, except for the case whenϕ(1) = 1n.

An occurrenceof word u∈ Σ∗ in the wordω is a pair(u,m+1) such thatu= ωm+1ωm+2 . . .ωm+n.
It is easy to see that a word can have many different occurrences.

Since the fixed pointω is circular, the interpretations of all occurrences of the word u are the same
and equal to〈v, i, j〉.

An occurrence(v, p+1) of a wordv of lengthk is called theancestor of the occurrence(u,m+1) of
the wordu if m= pl + i and 0≤ i < l .

It is easy to see that for|u| ≥ Lω word u has exactly one ancestor, and any occurrence(u,m+1) of
the wordu also has exactly one ancestor.

Let |u| ≥ Lω . A sequenceu0,u1, . . . ,um of subwords of wordω is called achain of ancestorsof the
word u, if ui+1 is the ancestor ofui for any 0≤ i ≤ m−1 andu0 = u.

The chain of ancestors of wordu will be denoted asu→ u1 → . . .→ um.

We say thatu is adescendantof v if v belongs to a chain of ancestors ofu.

Now we introduce the main object of this paper.

Let ω be a right infinite nonperiodic word over the alphabetΣ.

We define theinfinite permutationgenerated by the wordω as the ordered tripleδ = 〈N,<δ ,<〉,
where<δ and< are linear orders onN.

The order<δ is defined as follows:i<δ j if and only if Rω(i)< Rω( j), and< is the natural order on
N.

Sinceω is a non-periodic word, allRω(i) are distinct, and the definition above is correct.

We define a functionγ : R2 → {<,>}, which for two different real numbers reveals their relation.

We say that a permutationπ = π1 . . .πn ∈Sn is asubpermutationof lengthn of an infinite permutation
δ if γ(πs,πt) = γ(R(i +s),R(i + t)) for 1≤ s< t ≤ n and for a fixed positive integeri.

We define the setPerm(n) = {π(i,n+ i−1)|i ≥ 1}, whereπ(i,n+ i−1) = πi . . .πn+i−1 is subpermu-
tation induced by the sequenceR(i), . . . ,R(n+ i−1) (in the sense thatγ(πi+s1,πi+s2) = γ(R(i+s1),R(i+
s2)) for 0≤ s1 < s2 ≤ n−1).

Now we define thepermutation complexityof the wordω (or equivalently, the factor complexity of
the permutationδω ) asλ (n) = |Perm(n)|. We say that an occurrence(u,m+1) of the wordu generatesa
permutationπ if π is induced by a sequence of numbersR(m+1) . . .R(m+n). A subwordu of the word
ω generatesthe permutationπ if there is an occurrence(u,m+1) of this word which generatesπ.
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3 Morphisms considered

We say that a uniform marked binary morphismϕ with blocks of lengthl belongs to the classQ if one
of the following conditions is fulfilled: eitherϕ(0) = X = 01n0x1,ϕ(1) =Y = 10m1y0, wheren,m∈N,
both the word 1n and the word 0m is included in both blocks morphism exactly once, and the word X (Y)
does not end by 1n−1(0m−1); or ϕ(0) = 01n,ϕ(1) = 10n, wheren= l −1.

It is easy to see that the fixed pointω = lim
n→∞

ϕn(0) of any morphismϕ which belongs to the classQ

is circular becauseϕ(1) 6= 1n for anyn.
Everywhere below the wordϕ(0) will be called the block of the first type, andϕ(1) is called the

block of the second type.
Example. The morphismϕ(0) = 011101,ϕ(1) = 100010 belongs toQ, whereas the morphism

ϕ(0) = 01011,ϕ(1) = 10000 does not belong toQ.
Consider a fixed pointω = ϕ(ω) of a morphismϕ ∈ Q. Thenω is divided into blocks, which are

the images of its symbols. Such a partition is calledcorrect.

Lemma 1 Let ω be a fixed point of the morphismϕ , whereϕ ∈ Q. Then the following statements are
true:

1. Letωi = ω j = 0 and i≡ 1 modl, j 6≡ 1 modl. Then Rω(i)> Rω( j).

2. Letωi = ω j = 1 and i≡ 1 modl, j 6≡ 1 modl. Then Rω(i)< Rω( j).

Lemma 2 Letω be a fixed point of the morphismϕ , whereϕ ∈ Q. Letωi = ω j , where i≡ i′(mod l), j ≡
j ′(mod l) and0≤ i′, j ′ ≤ l −1, where i′ and j′ are fixed. If i′ 6= j ′, or if ωi andω j lie in blocks of different
types in the correct partitionω into blocks, then the relationγ(Rω(i),Rω( j)) is uniquely defined by i′, j′

and the types of respective blocks.

Lemma 3 Let ωi = ω j and Rω(i) < Rω( j). Then inequality R((i −1)l + r) < R(( j −1)l + r) holds for
all 1≤ r ≤ l.

4 Equivalence of permutations

In this section we introduce the concept of equivalent permutations. Letz= z1z2 . . .zk be a permutation
belonging toSk.

An elementof the permutationz is the numberzi , where 1≤ i ≤ k.
We will say that two permutationsx= x1x2 . . .xk andy= y1y2 . . .yk areequivalentif they differ only

in relations of extreme elements, i.eγ(x1,xk) 6= γ(y1,yk), butγ(xi ,x j) = γ(yi ,y j) for all otheri, j. We will
denote this equivalence byx∼ y.

Lemma 4 Let x be a finite permutation and x= x1 . . . ,xk. Then the permutation y such that x∼ y exists
if and only if|x1−xk|= 1.

5 Bad, narrow and wide words

For an arbitrary subwordv of the wordω we define the setsMv andNv, whereNv is the set of all pairs of
equivalent permutations, andMv is the remaining set of permutations generated byv.

A word u will be calledbad if the setNu is not empty, i.e, ifu generates at least one pair of equivalent
permutations.
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Let u be a subword of wordω of length |u| = n. The number of permutations generated byu is
denoted byf (u).

Lemma 5 Let u be a word of length|u| = n ≥ Lω , and u′ be the ancestor of u. Then the following
statements are true:

1. f(u)≤ f (u′),

2. If Nu′ = /0, then Nu = /0 and f(u) = f (u′).

Lemma 6 Let u be a bad word and|u|= n≥ Lω , and u′ be the ancestor of u. Then u′ is a bad word and
f (u) = f (u′),mu = mu′ ,nu = nu′ .

It is worth noting that from the proof of Lemma 6 it follows that if u is a bad word of length|u| =
n≥ Lω , then|u| ≡ 1(mod l).

The set of all words of length less thanLω , having descendants of length at leastLω is denoted byA.
The set of bad words of lengthn, whose chain of ancestors isu→ u1 → u2 → . . .→ um = a, where

m∈N (m is not fixed) anda∈ A, is denoted byFbad
a (n). The cardinality of the setFbad

a (n) is denoted by
Cbad

a (n).

Lemma 7 Let u∈ Fbad
a (n), where n≥ Lω . Then f(u) = ma+2na.

A word u will be callednarrow if its chain of ancestors isu → . . . → uk−1 → uk → . . . → um = a,
wherea∈ A, uk is the first bad word in the chain of ancestors, and for the interpretation〈uk, i, j〉 of the
word uk−1 we havei +1> l − j.

Lemma 8 Let u be a narrow word with|u|= n≥ Lω , u′ be an ancestor of u, and u′ be a bad word. Then
nu = 0 and f(u) = mu′ +nu′ .

The set of narrow words of lengthn whose chain of ancestors isu→ u1 → u2 → . . .→ um = a, where
m∈ N (m is not fixed), is denoted byFnar

a (n). The cardinality of the setFnar
a (n) is denoted byCnar

a (n).

Lemma 9 Let u∈ Fnar
a (n), where|u|= n≥ Lω . Then f(u) = ma+na.

A word u will be calledwideif its chain of ancestors isu→ . . .→ uk−1 → uk → . . .→ um = a, where
a ∈ A, uk is the first bad word in the chain of ancestors, and for the interpretation〈uk, i, j〉 of the word
uk−1 we havei +1< l − j.

Lemma 10 Let u be a wide word with|u|= n≥ Lω , u′ be an ancestor of u, and u′ be a bad word. Then
nu = 0 and f(u) = mu′ +2nu′ .

The set of wide words of lengthn whose chain of ancestors isu→ u1 → u2 → . . .→ um = a, where
m∈N (m is not fixed), is denoted byFwide

a (n). The cardinality of the setFwide
a (n) is denoted byCwide

a (n).

Lemma 11 Let u∈ Fwide
a (n), where|u|= n≥ Lω . Then f(u) = ma+2na.

6 Algorithm for finding f (u)

Suppose thatu is a subword ofω and |u| = n. In this section, we calculate∑|u|=n f (u). The set of all
subwords of lengthn of the wordω , whose chain of ancestors isu→ u1 → u2 → . . . → um = z, where
m∈ N (m is not fixed), is denoted byFz(n). The cardinality of the setFz(n) is denoted byCz(n).
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We consider the setA introduced in the previous section. LetA = A1∪A2 be a partition of setA,
whereA1 is the set of bad words belonging to the setA, andA2 is the set of remaining words ofA. Thus,
for a wordu there are two opportunities:

1)a∈ A2. In this case, Lemma 5 implies thatf (u) = f (a) = ma,
2)a∈ A1. In this case, there are two cases:ifu is a bad or a wide word, due to Lemmas 7 and 11 we

obtain f (u) = f (a) = ma+2na. If u is a narrow word, then by Lemma 4 we obtainf (u) = ma+na.

Theorem 1 ∑|u|=n f (u) = ∑a1∈A1
[Cnar

a1
(n)(ma1 + na1) + (Cbad

a1
(n) + Cwide

a1
(n))(ma1 + 2na1)] +

∑a2∈A2
Ca2(n)ma2.

Now for the calculation of∑|u|=n f (u) it remains to computeCnar
a (n), Cwide

a (n), Cbad
a (n), Ca(n). Let

n= xl + r, where 0≤ r ≤ l −1. It is easy to see that forxl + r ≥ Lω the following recurrence relations
hold:

1. Cbad
a (xl+1) = lCbad

a (x+1). We note that the remark to Lemma 6 implies thatCbad
a (xl+ r) = 0 for

r 6= 1.

2. Cnar
a (xl + r) = (r −1)Cnar

a (x+2)+ (r −1)Cbad
a (x+2)+ (l − r +1)Cnar

a (x+1) for r ≥ 1.

Cnar
a (xl) = (l −1)Cnar

a (x+1)+ (l −1)Cbad
a (x+1)+Cnar

a (x).

3. Cwide
a (xl + r) = (r −1)Cwide

a (x+2)+ (l − r +1)Cwide
a (x+1)+

(l − r +1)Cbad
a (x+1) for r ≥ 2.

Cwide
a (xl +1) = lCwide

a (x+1).

Cwide
a (xl) = (l −1)Cwide

a (x+1)+Cwide
a (x)+Cbad

a (x).

4. Ca(xl + r) = (r −1)Ca(x+2)+ (l − r +1)Ca(x+1) for r ≥ 1.

Ca(xl) = (l −1)Ca(x+1)+Ca(x).

7 Special words

Recall that the subwordv of word ω is called special ifv0 andv1 are also subwords ofω .
Note that the unique interpretation of any special wordv of length at leastLw is equal to〈v′, i,0〉.
Indeed, if j > 0, thenv is uniquely complemented to the right to a full block, and thus only one of

the wordsv0 andv1 is a subword ofω .

Lemma 12 Let(v0,m1) and(v1,m2) be some occurrences of words v0 and v1, where v is a special word
with the ancestor v′. Let(v′0,m′

1) and(v′1,m′
2) be the ancestors of occurrences of(v0,m1) and(v1,m2),

where(v′0,m′
1) and(v′1,m′

2) generate the same permutation. Then(v0,m1) and (v1,m2) also generate
the same permutation.

Lemma 13 Let(v0,m1) and(v1,m2) be some occurrences of words v0 and v1, where v is a special word
with the ancestor v′. Let(v′0,m′

1) and(v′1,m′
2) be the ancestors of occurrences of(v0,m1) and(v1,m2),

where(v′0,m′
1) and(v′1,m′

2) generate different non-equivalent permutations. Then(v0,m1) and(v1,m2)
also generate different non-equivalent permutations.

Lemma 14 Let(v0,m1) and(v1,m2) be some occurrences of words v0 and v1, where v is a special word
with the ancestor v′. Let(v′0,m′

1) and(v′1,m′
2) be the ancestors of occurrences of(v0,m1) and(v1,m2).

Then the following statements are true:
1)If (v′0,m′

1) and (v′1,m′
2) generate equivalent permutations and|v| = l |v′|, then (v0,m1) and

(v1,m2) also generate equivalent permutations.



262 Permutation complexity of the fixed points of some uniform binary morphisms

2)If (v0,m1) and(v1,m2) generate equivalent permutations, then(v′0,m′
1) and(v′1,m′

2) also gener-
ate equivalent permutations and|v|= l |v′|.

3)If (v′0,m′
1) and (v′1,m′

2) generate equivalent permutations and|v| < l |v′|, then (v0,m1) and
(v1,m2) generate the same permutation.

We will consider special wordv of lengthn−1.
Let v, without loss of generality, start with 0. Thenv1 cannot generate equivalent permutations.
The number of permutations of the setMv0 which also belong toMv1, is denoted bykv.
The number of permutations of the setMv0, such that each of their is equivalent to some permutation

of the setMv1, is denoted bytv.
The number of pairs of permutations of a setNv0 such that a permutation of the pair is equivalent,

and the other is equal to some permutation of the setMv1, is denoted byrv.

Lemma 15 Let v be a special word with the ancestor v′, and |v| < l |v′|. Then kv = kv′ + tv′ + rv′ , tv = 0
and rv = 0.

Lemma 16 Let v be a special word with the ancestor v′, and |v| = l |v′|. Then kv = kv′ , tv = tv′ and
rv = rv′ .

Lemma 17 Let v be a special word with the ancestor v′, and tv′ = rv′ = 0. Then kv = kv′ and tv = rv = 0.

8 Algorithm for finding g(v)

Supposev is a special word and|v| = n− 1. The set of all the special words of lengthn is denoted
by B(n). The number of common permutations generated by some occurrences of wordsv0 andv1 is
denoted byg(v).

In this section, we calculate∑|v|=n−1 g(v).
The set of all special subwords of lengthn of the wordω , whose chain of ancestors isv → v1 →

v2 → . . .→ vm = z, is denoted byBz(n). The cardinality of the setBz(n) is denoted bySz(n). It is clear
that the chain of ancestors of wordv consists of special words. The set of all special words of length less
thanLω , with the descendants of the length greater thanLω is denoted byB.

Lemma 18 Let xl+ r ≥ Lω , 0 ≤ r ≤ l −1, and b be a special word. Then the following recurrence
relations hold:

1)Sb(xl + r) = Sb(x+1) if r > 0.
2)Sb(xl) = Sb(x) if r = 0.
3)Sb(lk|b|) = 1 if k ≥ 1.

Now we calculateg(v).

Lemma 19 Let v∈ Bb(n−1). Then the following statements are true:
1)If n 6= lk|b|+1 for any positive integer k, then g(v) = kb+ tb+ rb.
2)If n= lk|b|+1 for some positive integer k, then g(v) = kb+ rb.

Let us introduce the functionδ (n,b): if n= ls|b|+1 for some positive integers, thenδ (n,b) = 0,
otherwiseδ (n,b) = 1.

Theorem 2 ∑v∈B(n−1)g(v) = ∑b∈B[Sb(n−1)(kb+ tb+ rb)δ (n,b)+ (kb+ rb)(1−δ (n,b))].
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9 The main theorem

In this section we state the main theorem of this article. Forthis purpose we use the following Lemma
(Lemma 1 from[3]).

Lemma 20 Let u= u1 . . .un and v= v1 . . .vn be two subwords of wordω and ui 6= vi for some1≤ i ≤
n−1. Then u and v do not generate the same permutations.

We can now prove the main theorem of this paper:

Theorem 3 Let ω be a fixed point of the morphismϕ , whereϕ ∈ Q. Then the permutation complexity
of ω is calculated as follows:λ (n) = ∑a1∈A1

[Cnar
a1

(n)(ma1 +na1)+ (Cbad
a1

(n)+Cwide
a1

(n))(ma1 +2na1)]+

∑a2∈A2
Ca2(n)ma2 −∑b∈B[Sb(n−1)(kb+ tb+ rb)δ (n,b)+ (kb+ rb)(1−δ (n,b))].

10 Permutation complexity of the Thue-Morse Word

In [5] Widmer calculated the factor complexity of the permutation generated by the Thue-Morse word. In
this section, we present an alternative proof of the formulafor permutation complexity of the Thue-Morse
word. Letn= 2k+b, where 0< b≤ 2k. Note that the lengthLω of the synchronization of the Thue-Morse
word is 4. It is also easy to understand thatA1 = {010,101} andA2 = {00,01,10,11,001,011,100,101}
(for example, 010 generates two equivalent permutations 132 and 231 due to occurrences of words
ω11ω12ω13 andω4ω5ω6, respectively). Thus, we obtain:

∑|u|=n f (u) = ∑a1∈A1
[Cnar

a1
(n)(ma1 + na1)+ (Cbad

a1
(n)+Cwide

a1
(n))(ma1 + 2na1)]+∑a2∈A2

Ca2(n)ma2 =

∑a1∈A1
[Cnar

a1
(n) + 2(Cbad

a1
(n) +Cwide

a1
(n))] + ∑a2∈A2

Ca2(n) = Cbad
010(n) +Cwide

010 (n) +Cbad
101(n) +Cwide

101 (n) +
C(n).

It is clear that forCbad
a (n) andCwide

a (n) the following recurrence relations hold:
Cbad

a (2n+1) = 2Cbad
a (n+1), Cwide

a (2n+1) = 2Cwide
a (n+1), Cwide

a (2n) =Cwide
a (n+1)+Cwide

a (n)+
Cbad

a (n). Hence it is easy to see thatCbad
010(2

k+1) =Cbad
101(2

k+1) = 2k−1 for k> 0; for othern we have
Cbad

010(n) =Cbad
101(n) = 0.

Let us prove by induction onn that for 2k+2≤ n< 3∗2k−1(k> 2) the relationCwide
010 (n) =Cwide

101 (n) =
2k−1 − b+ 1 holds. The basen = 10 follows from the relationsCwide

010 (10) = Cwide
010 (6) +Cwide

010 (5) +
Cbad

010(5) = 1+0+2= 3= 23−1−2+1 andCwide
010 (11) = 2Cbad

010(6) = 2= 2= 23−1−3+1.
Let us prove the induction step. Ifn = 2k + 2b′, then by the induction hypothesis we have

Cwide
010 (2k−1 + b′) = Cwide

101 (2k−1 + b′) = 2k−2 − b′+ 1 andCwide
010 (2k−1 + b′+ 1) = Cwide

101 (2k−1 + b′+ 1) =
2k−2−b′. Hence we obtainCwide

010 (n) =Cwide
101 (n) =Cwide

010 (2k−1+b′)+Cwide
010 (2k−1+b′+1)+Cbad

010(2
k−1+

b′) = 2k−2b′+1. If n= 2k+2b′+1, then by the induction hypothesis we haveCwide
010 (2k−1+b′+1) =

Cwide
101 (2k−1 + b′ + 1) = 2k−2 − b′. Hence we obtainCwide

010 (n) = Cwide
101 (n) = 2Cwide

010 (2k−1 + b′ + 1) =
2(2k−2−b′) = 2k−1−2b′. The induction step is proved.

Similarly, we prove by induction onn that for 3∗2k−1 + 1≤ n ≤ 2k+1+1 the relationCwide
010 (n) =

Cwide
101 (n) = 0 holds. The basen= 7 andn= 8 follow from the relationsCwide

010 (8) =Cs
101(8) =Cwide

010 (5)+
Cwide

010 (4)+Cbad
010(4) = 0+ 0+ 0 = 0, Cwide

010 (7) = Cwide
101 (7) = 2Cwide

010 (4) = 0. Let us prove the induction
step. Ifn= 2k+2b′, then by the induction hypothesis we haveCwide

010 (2k−1+b′) =Cwide
101 (2k−1+b′) = 0

andCwide
010 (2k−1+b′+1) =Cs

101(2
k−1+b′+1) = 0. Hence we obtainCwide

010 (n) =Cwide
101 (n) =Cwide

010 (2k−1+
b′) +Cwide

010 (2k−1 + b′ + 1) +Cbad
010(2

k−1 + b′ + 1) = 0+ 0+ 0 = 0. If n = 2k + 2b′ + 1, then by the
induction hypothesis we haveCwide

010 (2k−1 + b′ + 1) = Cwide
101 (2k−1 + b′ + 1) = 0. Hence we obtain

Cwide
010 (n) =Cwide

101 (n) = 2Cwide
010 (2k−1+b′+1) = 2·0= 0. The induction step is proved.

Thus we have proved the following:
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1) If 2k+2≤ n< 3∗2k−1, then∑|u|=n f (u) = 2(2k−1−b+1)+4(2k+b−1)−2k = 2k+2+2b−2.
2) If 3∗2k−1+1≤ n< 2k+1+1, then∑|u|=n f (u) = 2(n−1)+2k+1 = 2k+2+2b−2.
Therefore the equality∑|u|=n f (u) =C(n) = 2(n−1)+2k+1 = 2k+2+2b−2 holds for alln≥ 6.
It is clear that forSb(n) the following recurrence relations hold:
Sb(2n+1) = Sb(n+1) andSb(2n) = Sb(n).
Taking into account thatS01(3) =S10(3) = 1 andS01(4) =S10(4) = 1, it is easy to prove by induction

that forn≥ 3 the equalityS01(n) = S10(n) = 1 holds.
It is also easy to see thatB= {01,10,010,101}.
In addition word 010 generates two equivalent permutations132 and 231, while word 011 generates

only a single permutation 132. Hencek01 = t01 = 0 andr01 = 1. Similarlyk10 = t10 = 0 andr10 = 1.
Words 0101 and 0100 generate different inequivalent permutations 1324 and 3421. Hencek010 =

t010= 0 andr010= 0. Similarlyk101= t101= 0 andr101= 0. Therefore forn 6= 2k+1 by Theorem 2 the
following relation holds:

∑v∈B(n−1)g(v) =∑b∈B[Sb(n−1)(kb+tb+ rb)δ (n,b)+(kb+ rb)(1−δ (n,b))] =S01(n−1)(k01+t01+
r01)+S10(n−1)(k10+ t10+ r10) = 1+1= 2.

For n= 2k+1 by Theorem 2 the following relation holds:
∑v∈B(n−1)g(v) =∑b∈B[Sb(n−1)(kb+tb+rb)δ (n,b)+(kb+rb)(1−δ (n,b))] = k01+r01+k10+r10=

2.
Thus the formula for the permutation complexity of the Thue-Morse word is
λ (n) = ∑|u|=n f (u)−∑b∈B(n−1)g(b) = 2k+2 + 2b− 2− 2 = 2(2k+1 + b− 2) for n = 2k + b, where

0< b≤ 2k.
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