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An infinite permutationd is a linear order on the s&. We study the properties of infinite permu-
tations generated by fixed points of some uniform binary misms, and find the formula for their
complexity.

1 Introduction

The notion of an infinite permutation was introduced’in [1here were investigated the periodic prop-
erties and low complexity of permutations. Similarly to thefinition of subword complexity of infinite
words, we can introduce the notion of the factor complexita permutation as the number of distinct
subpermutations of a given length. The notion of a permutagenerated by an infinite non-periodic
word was introduced in [3]. Ir_[4] Makarov calculated thettaccomplexity of permutations generated
by a well-known family of Sturmian words. 1Ql[5] Widmer calated the factor complexity of the per-
mutation generated by the Thue-Morse word. In this paper mebdiformula for the factor complexity
of permutations generated by the fixed points of binary umfmorphisms from a some class. Since the
Thue-Morse word belongs to this class, we obtain an altsmatay to compute the factor complexity
of the Thue-Morse permutation.

In Section 2 we introduce basic definitions to be used belovédction 3, we introduce the class of
morphismsQ for which in Section 9 we state the main theorem of this pappefections 4-8 we state
some auxiliary assertions needed to prove the main thedreB8ection 10 we give an alternative proof
of the formula for the factor complexity of the permutatioengrated by the Thue-Morse word.

2 Basic definitions

Let Z be a finite alphabet. Everywhere below we will use only the-ketter alphabek = {0, 1}.

A right infinite word over the alphabét is a word of the formw = wwyws. .., where eacly € Z.
A (finite) word u is called a subword of a (finite or infinite) woxdf v = s;us for some words; ands,
which may be empty. The set of all finite subwords of the waris denoted by~ (w). For the wordw
we define the binary real numbBg,(i) = 0.0 W 1... = Sk=0 w2~ ® D The mappinch: =* —» =*
is called a morphism ih(xy) = h(x)h(y) for any wordsx,y € Z*. We say thatwv is afixed pointof a
morphism¢ if ¢ (w) = w. Clearly, every morphism is uniquely determined by the iegagf symbols,
which we callblocks A morphism is callediniformif its blocks are of the same length.

We say that a morphism : ¥* — X* is markedif its blocks are of the forng (a;) = bixg, wherex
is an arbitrary wordb; andc; are symbols of the alphabE&t and allb; (as well as alk;) are distinct. In
what follows, we will consider only uniform marked morphismvith blocks of length.
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An interpretationof a wordu € =* under the morphisnp is a triples= (v,i, j), wherev=v; ... is a
word over the alphabet, i andj are nonnegative integers such that 0< |¢(v1)| and 0< j < |@ (v )],
and the word obtained fronp (v) by erasingi symbols to the lefi and j symbols to the right isu.
Moreover, ifvis a subword otv, thensis called an interpretation a. The wordv is called arancestor
of the wordu. In what follows we shall consider only interpretations albs/ords of the wordv. We say
that(uz, up) is asynchronization pointf u € F(w) if u=uju; andvv,vo € ¥ Vse F(w) 35,5 € F(w)
such thatjviuvw, = ¢(S) = (S= S1S,Vil1 = @(S1), Vo = ¢(S2))]. A fixed point w = ¢ (w) of the
morphism¢ is calledcircular ([2]), if any subwordv of word w of length at least., contains at least
one point of synchronization.

For uniform morphisms, this means the uniqueness of thdiparof the wordv into blocks.

In [2] it was proved that the nonperiodic fixed points of uniformasinmorphisms wittw; = 0 are
circular, except for the case wherfl) = 1".

An occurrenceof wordu € Z* in the wordw is a pair(u,m+ 1) such thatu = wWm1Wmn+2. . . Wnin.
It is easy to see that a word can have many different occugsenc

Since the fixed pointv is circular, the interpretations of all occurrences of tterdw are the same
and equal tqv,i, ).

An occurrenceVv, p+ 1) of a wordv of lengthk is called theancestor of the occurrende, m+ 1) of
the wordu if m= pl+iand 0<i <.

It is easy to see that fdu| > L, word u has exactly one ancestor, and any occurrénce+ 1) of
the wordu also has exactly one ancestor.

Let |u| > L. A sequencei, Uy, ..., Uy of subwords of wordw is called achain of ancestorsf the
word u, if U1 is the ancestor af; for any 0<i < m—1 andup = u.

The chain of ancestors of wordwill be denoted asl — U; — ... — Um.
We say thatl is adescendantf v if v belongs to a chain of ancestorsuof
Now we introduce the main object of this paper.

Let w be a right infinite nonperiodic word over the alphabet

We define thdnfinite permutationgenerated by the word as the ordered triplé = (N, <5, <),
where<s and< are linear orders oN.

The order<; is defined as followsi<j if and only if Ry (i) < Ry (]), and< is the natural order on
N.

Sincew is a non-periodic word, aR,,(i) are distinct, and the definition above is correct.

We define a functiory : R?> — {<,>}, which for two different real numbers reveals their relatio

We say that a permutatian= 71, ... T, € S, is asubpermutatiomf lengthn of an infinite permutation
o if y(1s,7%) = Y(R(i+9),R(i +t)) for 1 <s <t <nand for a fixed positive integér

We define the se®erm(n) = {m(i,n+i—1)|i > 1}, wherer(i,n+i—1) =1%... i1 iS sSubpermu-
tation induced by the sequenBé),...,R(n+i— 1) (in the sense tha(T5.,s,, T+s,) = Y(R(i+51),R(i +
$))for0<s <5 <n-—-1).

Now we define theoermutation complexitgf the wordw (or equivalently, the factor complexity of
the permutatiord,,) asA (n) = |Perm(n)|. We say that an occurren¢e, m+ 1) of the wordu generates

permutationrtif rris induced by a sequence of numbBfsn+ 1)...R(m+ n). A subwordu of the word
w generateshe permutationt if there is an occurrenc@s, m+ 1) of this word which generates.
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3 Morphisms considered

We say that a uniform marked binary morphignwith blocks of length belongs to the clas® if one
of the following conditions is fulfilled: eitheg (0) = X = 01"0x1, ¢ (1) =Y = 10M1y0, wheren,m € N,
both the word 1 and the word @ is included in both blocks morphism exactly once, and thedWo(Y)
does not end by"(0™1); or ¢ (0) = 01", ¢ (1) = 10", wheren =1 —1.

It is easy to see that the fixed poiwt= r!mo #"(0) of any morphismp which belongs to the clas3
is circular becausg (1) # 1" for anyn.

Everywhere below the word (0) will be called the block of the first type, anpl(1) is called the
block of the second type.

Example. The morphism¢ (0) = 011101¢ (1) = 100010 belongs t®, whereas the morphism
¢ (0) = 01011 ¢(1) = 10000 does not belong 1.

Consider a fixed pointv = ¢ (w) of a morphism¢ € Q. Thenw is divided into blocks, which are
the images of its symbols. Such a partition is calledect

Lemma 1l Let w be a fixed point of the morphisgn, where¢ € Q. Then the following statements are
true:

1. Letw = w; =0and i= 1 modl, j # 1 modl. Then R,(i) > Ry(j).
2. Letw = wj=1andi=1modl, j # 1 modl. Then R,(i) < Ry(j).

Lemma 2 Letw be a fixed point of the morphis¢n where¢ € Q. Letw = w;, where i=i'(mod I),j =
j’(mod l) and0 <V, j’ <|—1,wherefand | are fixed. If{  j’, or if g andcj lie in blocks of different
types in the correct partitiom into blocks, then the relatiop(Ry (i), R (]j)) is uniquely defined by,ij’
and the types of respective blocks.

Lemma 3 Letw = w; and Ry(i) < Ry(j). Then inequality Ri — 1)l +r) < R((j —1)I +r) holds for
al1<r<lI.

4 Equivalence of permutations

In this section we introduce the concept of equivalent peéatians. Letz =72 ...z be a permutation
belonging toS..

An elemenbf the permutatiorzis the numbeg, where 1<i <Kk.

We will say that two permutations= x;X...x andy = y1Y»... Yk areequivalentf they differ only
in relations of extreme elements, &1, X) # Y(Y1,Yk), buty(xi,xj) = y(vi,y;) for all otheri, j. We will
denote this equivalence by~ v.

Lemma 4 Let x be a finite permutation and=<x; ...,Xx. Then the permutation y such thatxy exists
if and only if[x; — x| = 1.

5 Bad, narrow and wide words

For an arbitrary subword of the wordw we define the setlsl, andN,, whereN, is the set of all pairs of
equivalent permutations, amd, is the remaining set of permutations generated.by

A word uwill be calledbadif the setN, is not empty, i.e, il generates at least one pair of equivalent
permutations.
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Let u be a subword of wordv of length|u| = n. The number of permutations generatedbig
denoted byf (u).

Lemma5 Let u be a word of lengthu| =n > L, and U be the ancestor of u. Then the following
statements are true:

1. f(u) < f(U),
2. If Ny =0, then Ny=0and f(u) = f(U).

Lemma 6 Let u be a bad word anflij = n> L,,, and U be the ancestor of u. Thehis a bad word and
f(u) = f(U/),mu = mu’,nu = nu/,

It is worth noting that from the proof of Lemma 6 it follows th& u is a bad word of lengthu| =
n> L, then|u| = 1(mod I).

The set of all words of length less thag, having descendants of length at lelagtis denoted byA.

The set of bad words of length whose chain of ancestorsus— u; — u, — ... — Uy = a, where
me N (mis not fixed) anda € A, is denoted by29(n). The cardinality of the sétP2d(n) is denoted by
Chad(n).

Lemma 7 Let uc FP29(n), where n> Lg,. Then f{u) = mg + 2n,.

A word u will be called narrow if its chain of ancestors i8 — ... — U1 — Ux — ... — Un = @,
wherea € A, uy is the first bad word in the chain of ancestors, and for thepnégation(u, i, j) of the
word ux_1 we havei +1 > | — .

Lemma 8 Let u be a narrow word withu] =n > L, U be an ancestor of u, and be a bad word. Then
ny=0and f(u) = my +ny.

The set of narrow words of lengtiwhose chain of ancestorsts— u; — U, — ... — Uy, = a, where
me N (mis not fixed), is denoted bly;'?'(n). The cardinality of the sdt;'?'(n) is denoted byCi?'(n).

Lemma 9 Letue F;¥(n), whereju| =n > L. Then fu) = my+ n,.

A word u will be calledwideif its chain of ancestors is— ... — Ug_1 — Ux — ... — Uy = @, where
a€ A, ug is the first bad word in the chain of ancestors, and for thepnégation (uy, i, j) of the word
Uc_1 we have +1<1—j.

Lemma 10 Let u be a wide word witku| = n > L,,, U be an ancestor of u, and be a bad word. Then
ny=0and f(u) = my +2ny.

The set of wide words of length whose chain of ancestorsus— u; =l —... > Un=2a, _where
me N (mis not fixed), is denoted biy*'@€(n). The cardinality of the sé&'“¢(n) is denoted byY¢(n).

Lemma 11 Let ue F9¢(n), where|u| = n > L. Then fu) = my+ 2n,.

6 Algorithm for finding f(u)

Suppose thati is a subword ofw and|u| = n. In this section, we calculatgy_n f(u). The set of all
subwords of lengtim of the wordw, whose chain of ancestorsus— u; — Uy — ... — Uy = z, where
me N (mis not fixed), is denoted bly,(n). The cardinality of the sé%,(n) is denoted byC,(n).
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We consider the sei introduced in the previous section. L&t= A; UA, be a partition of seh,
whereA is the set of bad words belonging to the AeandA; is the set of remaining words &f Thus,
for a wordu there are two opportunities:

1)a € A. In this case, Lemma 5 implies théfu) = f(a) = m,,

2)a € A1. In this case, there are two casesiif a bad or a wide word, due to Lemmas 7 and 11 we
obtain f (u) = f(a) = my+ 2n,. If uis a narrow word, then by Lemma 4 we obtdifu) = my + n,.

Theorem 1 5 1y_nf(U) = Faen[CR(N)(My + Nay) + (CR2U(N) + CHO(n))(Ma, + 2na)] +
ZazeAZCaz(n)maz'

Now for the calculation of _n f(u) it remains to comput€5?'(n), C¥9¢(n), C529(n), Ca(n). Let
n=xl+r, where 0<r <I|—1. Itis easy to see that fod +r > L, the following recurrence relations
hold:

1. CPad(x] 4 1) = ICPad(x + 1). We note that the remark to Lemma 6 implies 16229(xI +r) = 0 for
r#1.
2. ChAT(xl 1) = (r — 1)C0 (x4 2) + (r — 1)CRA(x4-2) + (I —r +1)CI¥'(x+ 1) for r > 1.
Cha(xl) = (I — 1)Cha"(x+ 1) + (I — 1)CPd(x + 1) + Cha"(x).
3. Cy'98(xI 4-1) = (r — 1)C4™e(x+2) + (I —r + 1)CHe(x+ 1) +
(I —r 4+ 1)Cbad(x+ 1) forr > 2.
CWide(x| 4 1) — [C¥ide(x 4 1),
Ca%e(x1) = (I — 1)C4™Me(x 4 1) + CR¥e(x) + CH2(x).
4, Ca(Xl+r1)=(r—=1)Ca(x+2)+ (I —=r+21)Cy(x+1) forr > 1.
Ca(X) = (I — 1)Ca(X+ 1) + Ca(X).

7 Special words

Recall that the subword of word w is called special i#/0 andvl are also subwords @b.
Note that the unique interpretation of any special wodd length at least,, is equal to(V,i,0).
Indeed, ifj > 0, thenv is uniquely complemented to the right to a full block, andstlonly one of
the wordsv0 andvl is a subword otw.

Lemma 12 Let(v0,my) and(v1,my) be some occurrences of wordsand \1, where v is a special word
with the ancestor’v Let(V0,m;) and (V'1,m,) be the ancestors of occurrences(ed, m;) and (v1,mp),
where(V0,m;) and (V'1,m,) generate the same permutation. THef, my) and (v1,m,) also generate
the same permutation.

Lemma 13 Let(vO,my) and(v1,m,) be some occurrences of worddand \1, where v is a special word
with the ancestor’v Let (V0,m;) and (V'1,m,) be the ancestors of occurrences(@d, m;) and (v1,my),
where(V0,m,) and(V'1,m,) generate different non-equivalent permutations. T{v&nm, ) and (v1, m)
also generate different non-equivalent permutations.

Lemma 14 Let(v0,my) and(v1,m,) be some occurrences of worddand \1, where v is a special word
with the ancestor’v Let (V0,m; ) and (V'1,mm,) be the ancestors of occurrences(@d, m;) and (v1,mp).
Then the following statements are true:

DIf (VO,m}) and (V1,m,) generate equivalent permutations ahd = I|V|, then (vO,m;) and
(v1,mp) also generate equivalent permutations.
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2)If (vO,my) and (v1,mp) generate equivalent permutations, thef0, ) and (V'1,m,) also gener-
ate equivalent permutations aid = 1|V

3)If (VO,m;) and (V'1,n%,) generate equivalent permutations aphd < 1|V|, then (vO,my) and
(v1,my) generate the same permutation.

We will consider special word of lengthn— 1.

Let v, without loss of generality, start with 0. Theth cannot generate equivalent permutations.

The number of permutations of the $é§y which also belong td/,1, is denoted b,.

The number of permutations of the 34§y, such that each of their is equivalent to some permutation
of the setM,4, is denoted by,.

The number of pairs of permutations of a Bg§ such that a permutation of the pair is equivalent,
and the other is equal to some permutation of thévket is denoted by,,.

Lemma 15 Let v be a special word with the ancestdy and |v| <I|V|. Then k =k, +t, +ry,t, =0
andr, =0.

Lemma 16 Let v be a special word with the ancestdr &and |v| = [|V/|. Then k =k, t, =t, and
rv — I’\/

Lemma 17 Let v be a special word with the ancestérandt, =r, =0. Thenk=k, andt, =r,=0.

8 Algorithm for finding g(v)

Supposev is a special word anfv| = n— 1. The set of all the special words of lengthis denoted
by B(n). The number of common permutations generated by some ecwas of words0 andvl is
denoted byg(v).

In this section, we calculatg—n_1 9(v).

The set of all special subwords of lengtiof the wordw, whose chain of ancestorsvs— v; —
V2 — ... = Vi =z, is denoted byB,(n). The cardinality of the seB,(n) is denoted byg,(n). Itis clear
that the chain of ancestors of word@onsists of special words. The set of all special words djtlefess
thanL, with the descendants of the length greater thgis denoted byB.

Lemma 18 Let xI+r > Ly, 0<r <I|-—1, and b be a special word. Then the following recurrence
relations hold:

DS +r1) =S(x+1)ifr >0.

2)S(Xl) = S(x) ifr =0.

3)S(14b|) = 1ifk > 1.

Now we calculatey(v).

Lemma 19 Let ve By(n—1). Then the following statements are true:
1)If n# I¥|b| + 1 for any positive integer k, ther(\g) = ky + tp + .
2)If n= I¥|b| + 1 for some positive integer k, theriwy = kp + rp,.

Let us introduce the functiod(n,b): if n=1%b|+ 1 for some positive integes, thend(n,b) =0,
otherwised (n,b) = 1.

Theorem 2 5 yeg(n-1)9(v) = SoeslS (N — 1) (ko +to+16)3(1,b) + (ko + 1) (1— 5(n,b))].
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9 The main theorem

In this section we state the main theorem of this article. tRisr purpose we use the following Lemma
(Lemma 1 from[3)]).

Lemma 20 Let u=u;...u, and v=v; ...V, be two subwords of word and y # v; for somel <i <
n— 1. Then u and v do not generate the same permutations.

We can now prove the main theorem of this paper:

Theorem 3 Let w be a fixed point of the morphistn, where¢ € Q. Then the permutation complexity
of w s calculated as followsA (n) = ¥ o ca, [CA"(N) (My, + N, ) + (CH29(N) 4+ CY¥8(N)) (Mg, + 2N, )] +
Y ey Cap (MMe, — S bep[S(N— 1) (Ko +to +15)3(N, b) + (ko +1p) (1 — 8(n, b))].

10 Permutation complexity of the Thue-Morse Word

In [5] Widmer calculated the factor complexity of the peratign generated by the Thue-Morse word. In
this section, we present an alternative proof of the forrfad@ermutation complexity of the Thue-Morse
word. Letn=2K+b, where 0< b < 2%, Note that the length,, of the synchronization of the Thue-Morse
word is 4. Itis also easy to understand thAat= {010,101} andA; = {00,01,10,11,001,011 100,101}
(for example, 010 generates two equivalent permutatior&s a®l 231 due to occurrences of words
w123 and wy s ws, respectively). Thus, we obtain:

S ion F(U) = Tayen, OB (N) (M, +1Na,) + (CE2(n) + CA9(n)) (M, + 205, )] + ¥ e, Cap ()M, =
z(aﬁAl (2 (n) + 2(C29(n) + C&98(n))] + 3 apep, Cap (M) = CHIA(M) -+ CAI4%(n) + CHS() + CLide(n) +
C(n).

It is clear that forC229(n) andCY9¢(n) the following recurrence relations hold:

Chad(2n4- 1) = 2CPad(n4- 1), CWde(2n 4 1) = 2CY9e(n+ 1), CY1de(2n) = CWde(n + 1) + CYde(n) +
CPad(n). Hence it is easy to see tha§2d(2k 4- 1) = cad(2k 1 1) = 21 for k > 0; for othern we have
Coi6(n) = Cigi(n) = 0.

Let us prove by induction onthat for X+ 2 < n < 3x2<1(k > 2) the relatiorC§i4¢(n) = CJide(n) =
21 b+ 1 holds. The base = 10 follows from the relationsC}i9¢(10) = CYde(6) 4 Cide(5) +
CP(5) =1+0+2=3=23"1_-2+1andClde(11) = 2CB2d(6) =2=2=2%"1-3+1.

Let us prove the induction step. H = 2K+ 2b/, then by the induction hypothesis we have
CHSe (2t + 1) =Ciffe(2 T +b) =22 — b/ + 1 andC3e (2t + b/ + 1) = CYffe (2 1 + b + 1) =
2°2 1. Hence we obtaif${3%(n) = CY{1%(n) = CH98(2 1 +- 1) + CHae(2 L +- 0/ + 1) + CEE9 (21 +
b') = 2K— 20 + 1. If n = 2+ 20/ + 1, then by the induction hypothesis we h&¥3e(2x1 +b' + 1) =
Cuide2k=1 4 iy +1) = 2¢-2 — . Hence we obtairC}i9%(n) = CMde(n) = acide(2-1 1y 1) =
2(2¢2 — /) = 2-1 _ 21/, The induction step is proved.

Similarly, we prove by induction on that for 3«21 +1 < n < 211 1 the relationC$i9¢(n) =
Cli%e(n) =0 holds. The base= 7 andn = 8 follow from the relation&#19%(8) = C$,,(8) = C¥3°(5) +
CO15°(4) +C825(4) = 0+ 040 =0, CH9%(7) = C143%(7) = 2C¥13%(4) = 0. Let us prove the induction
step. Ifn= 2X+ 2, then by the induction hypothesis we hagdde(2k-1 1 b/) = Cyde(2k-1 1 ') =0
andCyide(2k—1 11y 4 1) = C5,,(2< 1 +1f +-1) = 0. Hence we obtaiGide(n) = Ciide(n) = ciide(2k—1
b') +Cyde(2k1 41 + 1) + CRRY(2 1+ +1) =0+0+0=0. If n=2¢+20 +1, then by the
induction hypothesis we have}ide(2-1 + iy + 1) = Cide(2k-1 + ¥ + 1) = 0. Hence we obtain
Cyde(n) = CWide(n) = 2cyide(2k—1 1 iy + 1) = 2.0= 0. The induction step is proved.

Thus we have proved the following:
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1) If2k+2<n< 321 thenyy_n f(U) =2(2 1 —b+1)+4(2X+b—1) - 2X=2212p—2,

2)1f3x 2t +1<n< 264 1, theny y_n f(U) =2(n— 1) + 21 =272 2b— 2,

Therefore the equality | f (u) = C(n) = 2(n— 1) + 2" = 224 2b— 2 holds for alln > 6.

It is clear that forS,(n) the following recurrence relations hold:

S$(2n+1) = $(n+1) andS(2n) = S(n).

Taking into account thef;(3) = Sip(3) = 1 andSy1(4) = Si0(4) = 1, itis easy to prove by induction
that forn > 3 the equalityS1(n) = S;o(n) = 1 holds.

It is also easy to see thBt={01,10,010 101}.

In addition word 010 generates two equivalent permutati@¥and 231, while word 011 generates
only a single permutation 132. Henkg = tp; = 0 andrg; = 1. Similarlykig =t10 =0 andr;p = 1.

Words 0101 and 0100 generate different inequivalent pextioumis 1324 and 3421. Henkgig=
to10= 0 andrgi1p = 0. Similarlykig; = t101 = 0 andrip1 = 0. Therefore fon # 2¢+ 1 by Theorem 2 the
following relation holds:

Svesin-1) 9(V) = ToealSo(n—1) (Ko +to-+ ) (N, b) + (Ko + ) (1 8(n,b))] = Sor(n— 1) (koz +tos +
roi) + Sio(N— 1) (k1o +tio+rio) =1+1=2.

Forn= 2K+ 1 by Theorem 2 the following relation holds:

Svesin-1) 9(V) = Tbep[So(N—1) (Ko +to+15) 3(N, b) + (Ko + o) (1= 3(, b))] = koy +Fo1 +kio+F10=
2.

Thus the formula for the permutation complexity of the TiMierse word is

A(N) = ¥ yen F(U) = Shepn-1)9(b) = 2612+ 2b—2— 2= 2(21 + b— 2) for n= 2%+ b, where
0<b< 2%
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