
P. Ambrož, Š. Holub and Z. Masáková (Eds.):
8th International Conference WORDS 2011
EPTCS 63, 2011, pp. 93–102, doi:10.4204/EPTCS.63.13

c© M. Cadilhac, A. Finkel, and P. McKenzie
This work is licensed under the
Creative Commons Attribution License.

Bounded Parikh Automata

Michaël Cadilhac1 Alain Finkel2 Pierre McKenzie1

1 DIRO, Université de Montréal
{cadilhac, mckenzie}@iro.umontreal.ca

2 LSV, ENS Cachan & CNRS
finkel@lsv.ens-cachan.fr

The Parikh finite word automaton model (PA) was introduced and studied by Klaedtke and Rueß [18].
Here, by means of related models, it is shown that the bounded languages recognized by PA are the
same as those recognized by deterministic PA. Moreover, this class of languages is the class of
bounded languages whose set of iterations is semilinear.

1 Introduction

Motivation. Adding features to finite automata in order to capture situations beyond regularity has
been fruitful to many areas of research. Such features include making the state sets infinite, adding
power to the logical characterizations, having the automata operate on infinite domains rather than finite
alphabets, adding stack-like mechanisms, etc. (See, e.g., [11, 3, 17, 1].) Model checking and complexity
theory below NC2 are areas that have benefited from an approach of this type (e.g., [19, 22]). In such
areas, determinism plays a key role and is usually synonymous with a clear understanding of the situation
at hand, yet often comes at the expense of other properties, such as expressiveness. Thus, cases where
determinism can be achieved without sacrificing other properties are of particular interest.

Context. Klaedtke and Rueß introduced the Parikh automaton (PA) as an extension of the finite au-
tomaton [18]. A PA is a pair (A,C) where C is a semilinear subset of Nd and A is a finite automaton
over (Σ×D) for Σ a finite alphabet and D a finite subset of Nd . The PA accepts the word w1 · · ·wn ∈ Σ∗

if A accepts a word (w1,v1) · · ·(wn,vn) such that ∑vi ∈C. Klaedtke and Rueß used the PA to character-
ize an extension of (existential) monadic second-order logic in which the cardinality of sets expressed
by second-order variables is available. To use PA as symbolic representations for model checking, the
closure under the Boolean operations is needed; unfortunately, PA are not closed under complement.
Moreover, although they allow for great expressiveness, they are not determinizable.

Bounded and semilinear languages. Bounded languages were defined by Ginsburg and Spanier in
1964 [13] and intensively studied in the sixties. Recently, they played a new role in the theory of
acceleration in regular model checking [10, 4]. A language L ⊆ Σ∗ is bounded if there exist words
w1,w2, . . . ,wn ∈ Σ∗ such that L ⊆ w∗1w∗2 · · ·w∗n. Bounded context-free languages received much atten-
tion thanks to better decidability properties than context-free languages [12] (e.g., inclusion between two
context-free languages is decidable if one of them is bounded, while it is undecidable in the general case).
Moreover, given a context-free language it is possible to decide whether it is bounded [13]. Context-free
languages have a semilinear Parikh image [21]. Connecting semilinearity and boundedness, the class
BSL of bounded languages L⊆ w∗1 · · ·w∗n, for which {(i1, . . . , in) | wi1

1 · · ·win
n ∈ L} is a semilinear set, has

been studied intensively (e.g., [13, 12, 16, 6]).

http://dx.doi.org/10.4204/EPTCS.63.13
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


94 Bounded Parikh Automata

Our contribution. We study PA whose language is bounded. Our main result is that bounded PA
languages are also accepted by deterministic PA, and that they correspond exactly to BSL. Moreover,
we give a precise deterministic PA form into which every such language can be cast, thus relating our
findings to another model in the literature, CQDD [4]. To the best of our knowledge, this is the first
characterization of BSL by means of a deterministic model of one-way automata.

2 Preliminaries

We write N for the nonnegative integers and N+ for N \ {0}. Let d > 0 be an integer. Vectors in Nd

are noted with a bar on top, e.g., v whose elements are v1, . . . ,vd . We write ei ∈ {0,1}d for the vector
having a 1 only in position i. We view Nd as the additive monoid (Nd ,+). For a monoid (M, ·) and
S ⊆M, we write S∗ for the monoid generated by S, i.e., the smallest submonoid of (M, ·) containing S.
A subset C of Nd is linear if there exist c ∈ Nd and a finite P ⊆ Nd such that C = c+P∗. The subset C
is said to be semilinear if it is a finite union of linear sets. Semilinear sets are the sets expressible by a
quantifier-free first-order formula φ which uses the function symbol +, the congruence relations ≡i, for
i≥ 2, and the order relation < (see, e.g., [9]). More precisely, a subset C of Nd is semilinear iff there is
such a formula with d free variables, with (x1, . . . ,xd) ∈C⇔N |= φ(x1, . . . ,xd), where N is the standard
model of arithmetic.

Let Σ = {a1, . . . ,an} be an (ordered) alphabet, and write ε for the empty word. The Parikh image
is the morphism Φ : Σ∗ → Nn defined by Φ(ai) = ei, for 1 ≤ i ≤ n. A language L ⊆ Σ∗ is said to be
semilinear if Φ(L) = {Φ(w) | w ∈ L} is semilinear.

A language L ⊆ Σ∗ is bounded [13] if there exist n > 0 and a sequence of words w1, . . . ,wn ∈ Σ+,
which we call a socle of L, such that L ⊆ w∗1 · · ·w∗n. The iteration set of L w.r.t. this socle is defined as
Iter(w1,...,wn)(L) = {(i1, . . . , in) ∈ Nn | wi1

1 · · ·win
n ∈ L}. BOUNDED stands for the class of bounded lan-

guages. We denote by BSL the class of bounded semilinear languages, defined as the class of languages
L for which there exists a socle w1, . . . ,wn such that Iter(w1,...,wn)(L) is semilinear; in particular, the Parikh
image of a language in BSL is semilinear.

We then fix our notation about automata. An automaton is a quintuple A = (Q,Σ,δ ,q0,F) where Q
is the finite set of states, Σ is an alphabet, δ ⊆ Q×Σ×Q is the set of transitions, q0 ∈ Q is the initial
state and F ⊆Q are the final states. For a transition t ∈ δ , where t = (q,a,q′), we define From(t) = q and
To(t) = q′. Moreover, we define µA : δ ∗→ Σ∗ to be the morphism given by µA(t) = a, and we write µ

when A is clear from the context. A path on A is a word π = t1 · · · tn ∈ δ ∗ such that To(ti) = From(ti+1)
for 1≤ i < n; we extend From and To to paths, letting From(π) = From(t1) and To(π) =To(tn). We say
that µ(π) is the label of π . A path π is said to be accepting if From(π) = q0 and To(π) ∈ F ; we write
Run(A) for the language over δ of accepting paths on A. We write L(A) for the language of A, i.e., the
labels of the accepting paths. The automaton A is said to be deterministic if (p,a,q),(p,a,q′)∈ δ implies
q= q′. An ε-automaton is an automaton A= (Q,Σ,δ ,q0,F) as above, except with δ ⊆Q×(Σ∪{ε})×Q
so that in particular µA becomes an erasing morphism.

Following [4, 2, 8], we say that an automaton is flat if it consists of a set of states q0, . . . ,qn such that
q0 is initial, qn is final, there is one and only one transition between qi and qi+1, and there may exist, at
most, a path of fresh states from q j to qi iff i≤ j and no such path exists with one of its ends between i
and j. Note that no nested loop is allowed in a flat automaton, and that the language of a flat automaton
is bounded. Flat automata are called restricted simple in [4].

Let Σ and T be two alphabets. Let A be an automaton over the alphabet (Σ∪{ε})× (T∪{ε}), where
the concatenation is seen as (u1,v1).(u2,v2) = (u1u2,v1v2). Then A defines the rational transduction τA



M. Cadilhac, A. Finkel, and P. McKenzie 95

from languages L on Σ to languages on T given by τA(L) = {v ∈ T∗ | (∃u ∈ L)[(u,v) ∈ L(A)]}. Closure
under rational transduction for a class C is the property that for any language L ∈ C and any automaton
A, τA(L) ∈ C . We say that τA is a deterministic rational transduction if A is deterministic with respect
to the first component of its labels, i.e., if (p,(a,b),q) and (p,(a,b′),q′) are transitions of A, then b = b′

and q = q′.

3 Parikh automata and constrained automata

The following notations will be used in defining Parikh finite word automata (PA) formally. Let Σ be an
alphabet, d ∈N+, and D a finite subset of Nd . Following [18], let Ψ : (Σ×D)∗→ Σ∗ and Φ̃ : (Σ×D)∗→
Nd be two morphisms defined, for ` = (a,v) ∈ Σ×D, by Ψ(`) = a and Φ̃(`) = v. The function Ψ is
called the projection on Σ and the function Φ̃ is called the extended Parikh image. As an example, for a
word ω ∈ {(ai,ei) | 1≤ i≤ n}∗, the value of Φ̃(ω) is the Parikh image of Ψ(ω).

Definition 1 (Parikh automaton [18]). Let Σ be an alphabet, d ∈ N+, and D a finite subset of Nd . A
Parikh automaton (PA) of dimension d over Σ×D is a pair (A,C) where A is a finite automaton over
Σ×D, and C ⊆ Nd is a semilinear set. The PA language is L(A,C) = {Ψ(ω) | ω ∈ L(A)∧ Φ̃(ω) ∈C}.

The PA is said to be deterministic (DetPA) if for every state q of A and every a ∈ Σ, there exists at
most one pair (q′,v) with q′ a state and v ∈ D such that (q,(a,v),q′) is a transition of A. The PA is said
to be flat if A is flat. We write LPA (resp. LDetPA) for the class of languages recognized by PA (resp.
DetPA).

In [5], PA are characterized by the following simpler model:

Definition 2 (Constrained automaton [5]). A constrained automaton (CA) over an alphabet Σ is a pair
(A,C) where A is a finite automaton over Σ with d transitions, and C⊆Nd is a semilinear set. Its language
is L(A,C) = {µ(π) | π ∈ Run(A)∧Φ(π) ∈C}.

The CA is said to be deterministic (DetCA) if A is deterministic. An ε-CA is defined as a CA except
that A is an ε-automaton. Finally, the CA is said to be flat if A is flat.

Theorem 1 ([5]). CA and ε-CA define the same class of languages, and the following are equivalent for
any L⊆ Σ∗:

(i) L ∈LPA (resp. ∈LDetPA);
(ii) L is the language of an ε-CA (resp. deterministic CA).

4 Bounded Parikh automata

Let LBoundedPA be the set LPA∩BOUNDED of bounded PA languages, and similarly let LBoundedDetPA
be LDetPA∩BOUNDED.

Theorem 2 below characterizes LBoundedPA as the class BSL of bounded semilinear languages. In
one direction of the proof, given L ∈ BSL, an ε-CA (A,C) for L is constructed. We describe this simple
construction here and, for future reference, we will call (A,C) the canonical ε-CA of L.

Let L ∈ BSL, there exists a socle w1, . . . ,wn of L (minimum under some ordering for uniqueness)
such that E = Iter(w1,...,wn)(L) is a semilinear set. Informally, the automaton A will consist of n disjoint
cycles labeled w1, . . . ,wn and traversed at their origins by a single ε-labeled path leading to a unique
final state. Then C will be defined to monitor (#t1, . . . ,#tn) in accordance with E, where ti is the first
transition of the cycle for wi and #ti is the number of occurrences of ti in a run of A. Formally, let
k j = ∑1≤i≤ j |wi|, 0 ≤ j ≤ n, and set Q = {1, . . . ,kn}. Then A is the ε-automaton (Q,Σ,δ ,q0,F) where



96 Bounded Parikh Automata

q0 = 1, F = {kn−1 + 1} and for any 1 ≤ i < n, there is a transition (ki−1 + 1,ε,ki + 1) and for any
1≤ i≤ n a cycle tiρi labeled wi on state ki−1 +1, where ti is a transition and ρi a path. Then C ⊆ N|δ | is
the semilinear set defined by (#t1, . . . ,#t2, . . . , . . . ,#tn, . . .) ∈C iff (#t1,#t2, . . . ,#tn) ∈ E.

Theorem 2. LBoundedPA = BSL.

Proof. (LBoundedPA ⊆ BSL): Let L ⊆ Σ∗ be a bounded language of LPA, and w1, . . . ,wn be a socle of
L. Define E = Iter(w1,...,wn)(L). Let T = {a1, . . . ,an} be a fresh alphabet, and let h : T ∗ → Σ∗ be the
morphism defined by h(ai) = wi. Then the language L′ = h−1(L)∩ (a∗1 · · ·a∗n) is in LPA by closure of
LPA under inverse morphisms and intersection [18]. But Φ(L′) = E, and as any language of LPA is
semilinear [18], E is semilinear. Thus the iteration set E of the bounded language L with respect to its
socle w1, . . . ,wn is semilinear, and this is the meaning of L belonging to BSL.

(BSL⊆LBoundedPA): Let L ∈ BSL. Of course L ∈ BOUNDED. We leave out the simple proof that L
equals the language of its “canonical ε-CA” constructed prior to Theorem 2. Since ε-CA and PA capture
the same languages by Theorem 1, L ∈LPA.

Theorem 2 and the known closure properties of BOUNDED and LPA imply:

Proposition 3. BSL is closed under union, intersection, concatenation.

5 Bounded Parikh automata are determinizable

Parikh automata cannot be made deterministic in general. Indeed, Klaedtke and Rueß [18] have shown
that LDetPA is closed under complement while LPA is not, so that LDetPA (LPA, and [5] further exhibits
languages witnessing the separation. In this section, we show that PA can be determinized when their
language is bounded:

Theorem 4. Let L ∈LBoundedPA. Then L is the union of the languages of flat DetCA (i.e., of DetCA with
flat underlying automata as defined in Section 2). In particular, as LBoundedDetPA is closed under union,
LBoundedPA = LBoundedDetPA.

Proof. Let L ∈ LBoundedPA. By Theorem 2, L ∈ BSL. Recall the canonical ε-CA of a BSL language
constructed prior to Theorem 2. Inspection of the canonical ε-CA (A,C) of L reveals a crucial property
which we will call “constraint-determinism,” namely, the property that no two paths π1 and π2 in Run(A)
for which µA(π1) = µA(π2) can be distinguished by C (i.e., the property that for any two paths π1 and π2
in Run(A) for which µA(π1) = µA(π2), Φ(π1) ∈C iff Φ(π2) ∈C). To see this property, note that if two
accepting paths π1 and π2 in the ε-CA have the same label w, then π1 and π2 describe two ways to iterate
the words in the socle of L. As the semilinear set C describes all possible ways to iterate these words to
get a specific label, Φ(π1) ∈C iff Φ(π2) ∈C.

We will complete the proof in two steps. First, we will show (Lemma 5) that any ε-CA having
the constraint-determinism property can be simulated by a suitable deterministic extension of the PA
model, to be defined next. Second (Lemma 9), we will show that any bounded language accepted by
such a suitable deterministic extension of the PA model is a finite union of languages of flat DetCA, thus
concluding the proof.

Our PA extension leading to Lemma 5 hinges on associating affine functions (rather than vectors)
to PA transitions. In the following, we consider the vectors in Nd to be column vectors. Let d > 0.
A function f : Nd → Nd is a (total and positive) affine function of dimension d if there exist a matrix



M. Cadilhac, A. Finkel, and P. McKenzie 97

M ∈ Nd×d and v ∈ Nd such that for any x ∈ Nd , f (x) = M.x+ v. We note f = (M,v) and write Fd for
the set of such functions; we view Fd as the monoid (Fd ,�) with ( f �g)(x) = g( f (x)).

Intuitively, an affine Parikh automaton will be defined as a finite automaton that also operates on a
tuple of counters. Each transition of the automaton will blindly apply an affine transformation to the
tuple of counters. A word w will be deemed accepted by the affine Parikh automaton iff some run of
the finite automaton accepting w also has the cumulative effect of transforming the tuple of counters,
initially 0, to a tuple belonging to a prescribed semilinear set.

Definition 3 (Affine Parikh automaton, introduced in [5]). An affine Parikh automaton (APA) of dimen-
sion d is a triple (A,U,C) where A is an automaton with transition set δ , U is a morphism from δ ∗ to
Fd and C ⊆ Nd is a semilinear set; recall that U need only be defined on δ . The language of the APA is
L(A,U,C) = {µ(π) | π ∈ Run(A)∧ (U(π))(0) ∈C}.

The APA is said to be deterministic (DetAPA) if A is. We write LAPA (resp. LDetAPA) for the class
of languages recognized by APA (resp. DetAPA).

The monoid of the APA, written M (U), is the multiplicative monoid of matrices generated by
{M | (∃t)(∃v)[U(t) = (M,v)]}.

Lemma 5. An ε-CA (A,C) having the constraint-determinism property (see Theorem 4) can be simulated
(meaning that the language of the ε-CA is preserved) by a DetAPA (A′,U,E) whose monoid is finite and
such that L(A) = L(A′).

Proof. We outline the idea before giving the details. Let (A,C) be the ε-CA. We first apply the standard
subset construction and obtain a deterministic FA A equivalent to A. Consider a state q of A. Suppose that
after reading some word w leading A into state q we had, for each q ∈ q, the Parikh image cw,q (counting
transitions in A, i.e., recording the occurrences of each transition in A) of some initial w-labeled path
leading A into state q. Suppose that (q,a,r) is a transition in A. How can we compute, for each q′ ∈ r,
the Parikh image cwa,q′ of some initial wa-labeled path leading A into q′? It suffices to pick any q ∈ q
for which some a-labeled path leads A from q to q′ (possibly using the ε-transitions in A) and to add
to cw,q the contribution of this a-labeled path. A DetAPA transition on a is well-suited to mimic this
computation, since an affine transformation can first “flip” the current Parikh q-count tuple “over” to the
Parikh q′-count tuple and then add to it the q-to-q′ contribution. Hence a DetAPA (A, ·, ·) upon reading
a word w leading to its state q is able to keep track, for each q ∈ q, of the Parikh image of some initial
w-labeled path leading A into q. We need constraint-determinism only to reach the final conclusion: if a
word w leads A into a final state q, then some q ∈ q is final in A, and because of constraint-determinism,
imposing membership in C for the Parikh image of the particular initial w-labeled path leading A to q
kept track of by the DetAPA is as good as imposing membership in C for the Parikh image of any other
initial w-labeled path leading A to q.

We now give the details. Say A = (Q,Σ,δ ,q0,F), and identify Q with {1, . . . , |Q|}.
For p,q ∈ Q, and a ∈ Σ, define S(p,q,a) to be a shortest path (lexicographically smallest among

shortest paths, for definiteness; this path can be longer than one because of ε-transitions) from p to q
labeled by a, or ⊥ if none exists. Let A = (2Q,Σ,δ ,q0,F) be the deterministic version of A defined by
q0 = {q0}, δ (p,a) = {q ∈ Q | (∃p ∈ p)[S(p,q,a) 6=⊥]} and F = {q | q∩F 6= /0}; thus L(A) is bounded.
Note that, by construction, for any path π in A from q0 to q, there exists a path π in A from q0 to a state
q such that q ∈ q and µA(π) = µA(π).

We now attach a function to each transition of A, where the functions are of dimension (|Q|.|δ |+1).
We first define V : δ → F|Q|.|δ |, and will later add the extra component. The intuition is as follows.
Consider a path π on A from the initial state to a state q — the empty path is considered to be from q0



98 Bounded Parikh Automata

to q0. We view (V (π))(0) as a list of counters (c1, . . . ,c|Q|) where cq ∈ N|δ |. We will ensure that for any
q ∈ q, cq is the Parikh image of a path π in A from q0 to q such that µA(π) = µA(π). If two such paths
π1 and π2 exist, we may choose one arbitrarily, as they are equivalent in the following sense: if ρ is such
that π1ρ ∈ Run(A) and Φ(π1ρ) ∈C, then the same holds for π2.

For p ⊆ Q, q ∈ Q, and a ∈ Σ, let P(p,q,a) be the smallest p ∈ p such that S(p,q,a) 6= ⊥ and ⊥ if
none exists. Let t = (p,a,q) be a transition of A. Define:

V (t) =

(
∑
q∈q

M(P(p,q,a),q), ∑
q∈q

N(q,Φ(S(P(p,q,a),q,a)))

)

where M(p,q) is the matrix which transfers the p-th counter to the q-th, and zeroes the others, and N(q,d)
is the shift of d ∈N|δ | to the q-th counter. More precisely, M(p,q)i, j = 1 iff there exists 1≤ e≤ |δ | such
that i = (q− 1).|δ |+ e and j = (p− 1).|δ |+ e; likewise, N(q,d) = (0(q−1).|δ |) · d · (0(|Q|−q).|δ |). The
matrices appearing in V are 0-1 matrices with at most one nonzero entry per row; composing such
matrices preserves this property, thus M (V ) is finite.

Claim. Let π be a path on A from q0 to some state q. Let (c1, . . . ,c|Q|) = (V (π))(0), where cq ∈ N|δ |.
Then for all q ∈ q, cq is the Parikh image of a path in A from q0 to q labeled by µ(π).

We show this claim by induction. If |π| = 0, then the final state is {q0} and cq0 is by definition all-
zero. This describes the empty path in A, from q0 to q0. Let π be such that |π|> 0, and consider a state
q in the final state of π . Write π = ρ · t, with t ∈ δ , and let p = P(To(ρ),q,µ(t)) and ζ = S(p,q,µ(t)).
The induction hypothesis asserts that the p-th counter of (V (ρ))(0) is the Parikh image of a path ρ on A
from q0 to p labeled by µ(ρ). Thus, the q-th counter of (V (π))(0) is Φ(ρ)+Φ(ζ ), which is the Parikh
image of ρζ , a path from q0 to q labeled by µ(π). This concludes the proof of this claim.

We now define U : δ → F|Q|.|δ |+1. We add a component to the functions of V , such that for π ∈
Run(A), the last component of (U(π))(0) is 0 if To(π)∩F = /0 and min(To(π)∩F) otherwise. For
t = (p,a,q) ∈ δ , let:

U(t) : (x,s) 7→

(
(V (t))(x),

{
q if q is the smallest s.t. q ∈ q∩F ,
0 if no such q exists.

)

Now define E ⊆ N|Q|.|δ |+1 to be such that (v1, . . . ,v|Q|,q) ∈ E iff vq ∈C. We adjoin 0 to E iff 0 ∈C, in
order to deal with the empty word. A word w is accepted by the DetAPA (A,U,E) iff there exists a path
in A from q0 to q ∈ F , labeled by w, and whose Parikh image belongs in C, i.e., w ∈ L(A,C).

Finally, note that L(A) = L(A) and that M (U) is finite: the extra component of U only adds a column
and a row of 0’s to the matrices.

Before concluding with Lemma 9, let us first recall the following results and definitions:

Lemma 6 ([12, Lemmata 5.5.1 and 5.5.4]). Let u,v ∈ Σ∗. Then (u+v)∗ is bounded iff there exists z ∈ Σ∗

such that u,v ∈ z∗.

Definition 4 ([10]). Let Γ be an alphabet. A semilinear regular expression (SLRE) is a finite set of
branches, defined as expressions of the form y0x∗1y1x∗2y2 · · ·x∗nyn, where xi ∈Γ+ and yi ∈Γ∗. The language
of an SLRE is the union of the languages of each of its branches.

Theorem 7 ([10]). A regular language is bounded iff it is expressible as a SLRE.



M. Cadilhac, A. Finkel, and P. McKenzie 99

We will need the following technical lemma. Bounded languages being closed under morphisms, for
all automata A if Run(A) is bounded then so is L(A). The converse is true when A is deterministic (and
false otherwise):

Lemma 8. Let A be a deterministic automaton for a bounded language, then Run(A) is bounded. More-
over, Run(A) is expressible as a SLRE whose branches are of the form ρ0π∗1 ρ1 · · ·π∗n ρn where ρi 6= ε for
all 1≤ i < n and the first transition of πi differs from that of ρi for every i (including i = n if ρi 6= ε).

Proof. Recall that bounded languages are closed under deterministic rational transduction (see, e.g., [12,
Lemma 5.5.3]). Now consider A′ the automaton defined as a copy of A except that its transitions are
(q,(a, t),q′) for t = (q,a,q′) a transition of A. Then τA′ , the deterministic rational transduction defined
by A′, is such that Run(A) = τA′(L(A)), and thus, Run(A) is bounded.

It will be useful to note the claim that if Xπ∗1 π∗2Y ⊆Run(A) for some nontrivial paths π1,π2 and some
bounded languages X and Y , then for some path π , Xπ∗1 π∗2Y ⊆ Xπ∗Y ⊆ Run(A). To see this, note that
if Xπ∗1 π∗2Y ⊆ Run(A) then X(π1 +π2)

∗Y ⊆ Run(A) because π1 and π2 are loops on a same state. Now
X(π1 +π2)

∗Y is bounded because Run(A) is bounded, hence (π1 +π2)
∗ is bounded. So pick π such that

π1,π2 ∈ π∗ (by Lemma 6). Then X(π1 +π2)
∗Y ⊆ Xπ∗Y . But π is a loop in A because π1 = π j for some

j > 0 is a loop so that From(π) =To(π) in A. Hence Xπ∗Y ⊆ Run(A). Thus Xπ∗1 π∗2Y ⊆ X(π1+π2)
∗Y ⊆

Xπ∗Y ⊆ Run(A).
Let E be a SLRE for Run(A), and consider one of its branches P = ρ0π∗1 ρ1 · · ·π∗n ρn. We assume n

to be minimal among the set of all n′ such that ρ0π∗1 ρ1 · · ·π∗n ρn ⊆ ρ ′0π ′∗1 ρ ′1 · · ·π ′∗n′ ρ ′n′ ⊆ Run(A) for some
ρ ′0,π

′
1, . . . ,π

′
n′ ,ρ

′
n′ .

First we do the following for i= n,n−1, . . . ,1 in that order. If πi = ζ π and ρi = ζ ρ for some maximal
nontrivial path ζ and for some paths π and ρ , we rewrite ρi−1π∗i ρi as ρ ′i−1π ′∗i ρ ′i by letting ρ ′i−1 = (ρi−1ζ ),
π ′i = (πζ ) and ρ ′i = ρ . This leaves the language of P unchanged and ensures at the ith stage that the first
transition of π ′j (if any) differs from that of ρ ′j (if any) for i≤ j ≤ n. Note that n has not changed.

Let ρ ′0π ′∗1 ρ ′1 · · ·π ′∗n ρ ′n be the expression for P resulting from the above process. By the minimality of
n, π ′i 6= ε for 1≤ i≤ n. And for the same reason, ρ ′i 6= ε for 1≤ i < n, since ρ ′i = ε implies Xπ ′∗i π ′∗i+1Y ⊆
Xz∗Y ⊆ Run(A) for some z by the claim above, where X = ρ ′0 · · ·π ′∗i−1ρ ′i−1 and Y = ρ ′i+1π ′∗i+2 · · ·ρ ′n are
bounded languages.

We are now ready to prove the following, thus concluding the proof of Theorem 4:

Lemma 9. Let (A,U,C) be a DetAPA such that L(A) is bounded and M (U) is finite. Then there exist a
finite number of flat DetCA the union of the languages of which is L(A,U,C).

Proof. Let A = (QA,Σ,δ ,q0,FA) be a deterministic automaton whose language is bounded, let U : δ →
Fd for some d > 0 such that M (U) is finite, and let C ⊆ Nd be a semilinear set.

Consider the set Run(A) of accepting paths in A; it is, by Lemma 8, a bounded language. Let P
be the language defined as a branch ρ0π∗1 ρ1 · · ·π∗n ρn of the SLRE for Run(A) given by Lemma 8. We
will first construct a finite number of flat DetPA for this branch, such that their union has language
{µ(π) | π ∈ P∧ (U(π))(0) ∈C}. For simplicity, we will assume that ρ0 = ε and ρn 6= ε . We will later
show how to lift this restriction.

For t ∈ δ , we write U(t) = (Mt ,vt), and more generally, for π = t1 · · · tk ∈ δ ∗, we write U(π) =
(Mπ ,vπ); in particular, Mπ = Mtk . . .Mt1 .

Let pi,ri ∈N+, for 1≤ i≤ n, be integers such that Mpi
πi =Mpi+ri

πi ; such integers are guaranteed to exist
as M (U) is finite. Now let ai be in {0, . . . , pi+ ri−1}, for 1≤ i≤ n, and note, as usual, a = (a1, . . . ,an).
For succinctness, we give constructions where the labels of the transitions can be nonempty words. This



100 Bounded Parikh Automata

is to be understood as a string of transitions, with fresh states in between, with the following specificity:
for w = `1 · · ·`k, an extended-transition (q,(w,d),q′) in a PA is a string of transitions the first of which is
labeled (`1,d) and the other ones (`i,0), i≥ 2.

Let Ba be the ordinary flat automaton with state set Q = {qi,q′i | 1 ≤ i ≤ n} ∪ {qn+1}, and with
transition set δB defined by:

δB = {(qi,π
ai
i ,q′i),(q

′
i,ρi,qi+1) | 1≤ i≤ n}∪{(q′i,π

ri
i ,q

′
i) | 1≤ i≤ n∧ai ≥ pi}.

We let the initial state be q1 and the final state be qn+1; note that Ba is deterministic, thanks to the form
of P given by Lemma 8.

So L(Ba) = {πa1+m1.r1
1 ρ1 · · · πan+mn.rn

n ρn|(∀i)[mi ∈ N∧ (ai < pi → mi = 0)]}, and the union of the
languages of the Ba’s for all valid values of a is P. We now make a simple but essential observation on
(U(π))(0). For paths π and ρ , we write V (π,ρ) for Mρ .vπ . Then let π ∈ L(Ba), and let mi, for 1≤ i≤ n,
be such that π = π

a1+m1.r1
1 ρ1 · · ·πan+mn.rn

n ρn. First note that V (·, · · ·πai+mi.ri
i · · ·) =V (·, · · ·πai

i · · ·), then:

(U(π))(0) =U(ρn)◦U(πan+mn.rn
n )◦ · · · ◦U(πa1+m1.r1

1 )(0)
= Mρn(Mπn(. . .(Mπ1(. . .(Mπ1︸ ︷︷ ︸

a1+m1.r1 times

.0+ vπ1) . . .)+ vπ1) . . .)+ vπn)+ vρn

= ∑
n
i=1

(
(∑

ai+mi.ri−1
l=0 V (πi,π

l
i ρiπ

ai+1
i+1 · · ·ρn))+V (ρi,π

ai+1
i+1 · · ·ρn)

)
.

Moreover, letting vi(l) =V (πi,π
l
i ρiπ

ai+1
i+1 · · ·ρn), we have for all i ∈ {1, . . . ,n}:

∑
ai+mi.ri−1
l=0 vi(l) = ∑

ai−1
l=0 vi(l)+∑

ai+mi.ri−1
l=ai

vi(l)

= ∑
ai−1
l=0 vi(l)+∑

mi−1
m=0 ∑

ai+(m+1).ri−1
l=ai+m.ri

vi(l)
= ∑

ai−1
l=0 vi(l)+mi×∑

ai+ri−1
l=ai

vi(l).

We now define a PA Da which is a copy of Ba except for the labels of its transition set δD. Each
transition of Da incorporates the relevant value of V (·, ·) so that the sum in the last equation above will
be easily computable. For each transition (q,π,q′i) ∈ δB, there is a transition (q,(π,d),q′i) ∈ δD such
that if q = qi then d = ∑

ai−1
l=0 vi(l), and if q = q′i then d = ∑

ai+ri−1
l=ai

vi(l). Finally, for each transition
(q′i,ρi,qi+1) ∈ δB, there is a transition (q′i,(ρi,d),qi+1) ∈ δD with d =V (ρi,π

ai+1
i+1 · · ·ρn).

Let ω ∈ L(Da), there exists π ∈ L(Ba) such that Ψ(ω)= π . We show by induction on n, the number of
πi’s, that Φ̃(ω) = (U(π))(0). If n = 0, then it is trivially true. Suppose n > 0, and write π = π

a1+m.r1
1 ρ1π ′

for some m and π ′. Write ω = ω1ω2ω3ω ′ with Ψ(ω1) = π
a1
1 , Ψ(ω2) = π

m1.r1
1 , Ψ(ω3) = ρ1. Then:

(U(π))(0) = ∑
ai−1
l=0 vi(l)︸ ︷︷ ︸

Φ̃(ω1)

+mi×∑
ai+ri−1
l=ai

vi(l)︸ ︷︷ ︸
Φ̃(ω2)

+V (ρ1,π
′)︸ ︷︷ ︸

Φ̃(ω3)

+ (U(π ′))(0)︸ ︷︷ ︸
Φ̃(ω ′) by ind. hyp.

= Φ̃(ω).

Thus, for a path π , π ∈ L(Ba) iff there exists ω ∈ L(Da) with Ψ(ω) = π , and in this case, Φ̃(ω) =
(U(π))(0).

We now lift the restrictions we set at the beginning of the proof. First, if ρ0 6= ε , we add a fresh
state q′0 to Ba together with a transition (q′0,ρ0,q1). In the construction of Da, the label ρ0 is changed
to (ρ0,V (ρ0,π

a1
1 ρ1 · · ·πan

n ρn)). Now, for ω ∈ L(Da), let π = Ψ(ω) and write π = ρ0π ′ for some π ′;
likewise, write ω = ω1ω ′ where Ψ(ω1) = ρ0. Then:

(U(π))(0) =V (ρ0,π
a1
1 ρ1 · · ·πan

n ρn)+(U(π ′))(0).



M. Cadilhac, A. Finkel, and P. McKenzie 101

The previous results show that (U(π ′))(0) = Φ̃(ω ′), and thus (U(π))(0) = Φ̃(ω).
Next, if ρn = ε , then the transition (q′n,ρn,qn+1) is removed from the construction of Ba, and the final

state changed to qn. The absence of this transition does not influence the computations in Da, thus we
still have that for any ω ∈ L(Da), Φ̃(ω) = (U(Ψ(ω)))(0).

Now define D′a to be a copy of Da which differs only in the transition labels: a transition labeled (t,d)
in Da becomes a transition labeled (µA(t),d) in D′a. The properties of the SLRE for Run(A) extracted
from Lemma 8 imply that (D′a,C) is a flat DetPA. Let LP ∈LDetPA be the union of the languages of all
flat DetPA (D′a,C), for any a with ai ∈ {0, . . . , pi + ri−1}. Then LP = {µ(π) | π ∈ P∧ (U(π))(0) ∈C}.
Thus the union of all LP for all branches P is L(A,U,C). The flat DetPA involved can be made into flat
DetCA because the equivalence in Theorem 1 carries over the case of flat automata.

We note that we can show that there exist nonsemilinear bounded languages in LDetAPA, thus there
exist bounded languages in LDetAPA \LPA.

6 Discussion

We showed that PA and DetPA recognize the same class of bounded languages, namely BSL. Moreover,
we note that the union of flat DetCA is a concept that has already been defined in [4] as 1-constrained-
queue-content-decision-diagram (1-CQDD), and we may thus conclude, thanks to the specific form of
the DetCA obtained in Theorem 4, that 1-CQDD capture exactly BSL.

A related model, reversal-bounded multicounter machines (RBCM) [14], has been shown to have the
same expressive power as PA [18]. We can show that one-way deterministic RBCM are strictly more
powerful than DetPA, thus our result carries over to the determinization of bounded RBCM languages.
This generalizes [15, Theorem 3.5] to bounded languages where the words of the socle are of length other
than one. The fact that two-way deterministic RBCM are equivalent to two-way RBCM over bounded
languages can be found in [7, Theorem 3] without proof and in [20] with an extremely terse proof.

Acknowledgments. We thank the anonymous referees for helpful comments. The first author would
further like to thank L. Beaudou, M. Kaplan and A. Lemaître.

References
[1] Rajeev Alur & P. Madhusudan (2009): Adding nesting structure to words. J. ACM 56, pp. 16:1–16:43,

doi:10.1145/1516512.1516518.
[2] Sébastien Bardin, Alain Finkel, Jérôme Leroux & Philippe Schnoebelen (2005): Flat acceleration in

symbolic model checking. In: Proceedings of the 3rd International Symposium on Automated Tech-
nology for Verification and Analysis (ATVA’05), LNCS 3707, Springer, Taipei, Taiwan, pp. 474–488,
doi:10.1007/11562948_35.

[3] Mikolaj Bojanczyk (2009): Weak MSO with the Unbounding Quantifier. In: STACS 2009, 3, pp. 159–170,
doi:10.4230/LIPIcs.STACS.2009.1834.

[4] Ahmed Bouajjani & Peter Habermehl (1998): Symbolic Reachability Analysis of FIFO-Channel Systems with
Nonregular Sets of Configurations. Theoretical Computer Science 221, doi:10.1016/S0304-3975(99)00033-
X.

[5] Michaël Cadilhac, Alain Finkel & Pierre McKenzie (2011): On the expressiveness of Parikh automata and
related models. In: Proceedings of 3rd International Workshop on Non-Classical Models of Automata and
Applications (to appear).

http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1007/11562948_35
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1834
http://dx.doi.org/10.1016/S0304-3975(99)00033-X
http://dx.doi.org/10.1016/S0304-3975(99)00033-X


102 Bounded Parikh Automata

[6] Flavio D’Alessandro & Stefano Varricchio (2008): On the growth of context-free languages. J. Autom. Lang.
Comb. 13, pp. 95–104.

[7] Zhe Dang, Oscar H. Ibarra, Tevfik Bultan, Richard A. Kemmerer & Jianwen Su (2000): Binary Reach-
ability Analysis of Discrete Pushdown Timed Automata. In: CAV, LNCS 1855, Springer, pp. 69–84,
doi:10.1007/10722167_9.

[8] Stéphane Demri, Alain Finkel, Valentin Goranko & Govert van Drimmelen (2010): Model-checking (CTL*)
over Flat Presburger Counter Systems. Journal of Applied Non-Classical Logics 20(4), pp. 313–344,
doi:10.3166/jancl.20.313-344.

[9] Herbert B. Enderton (1972): A Mathematical Introduction to Logic. Academic Press.
[10] Alain Finkel, S. Purushothaman Iyer & Grégoire Sutre (2003): Well-abstracted transition systems: applica-

tion to FIFO automata. Information and Computation 181(1), p. 1–31, doi:10.1016/S0890-5401(02)00027-5.
[11] Patrick C. Fischer (1965): Multi-tape and infinite-state automata—a survey. Commun. ACM 8(12), pp.

799–805, doi:10.1145/365691.365962.
[12] Seymour Ginsburg (1966): The Mathematical Theory of Context-Free Languages. McGraw-Hill, Inc., New

York, NY, USA.
[13] Seymour Ginsburg & Edwin H. Spanier (1964): Bounded ALGOL-Like Languages. Transactions of the

American Mathematical Society 113(2), pp. 333–368, doi:10.2307/1994067.
[14] Oscar H. Ibarra (1978): Reversal-Bounded Multicounter Machines and Their Decision Problems. J. ACM

25(1), pp. 116–133, doi:10.1145/322047.322058.
[15] Oscar H. Ibarra & Jianwen Su (1999): A technique for proving decidability of containment and equivalence

of linear constraint queries. J. Comput. Syst. Sci. 59(1), pp. 1–28, doi:10.1006/jcss.1999.1624.
[16] Oscar H. Ibarra, Jianwen Su, Zhe Dang, Tevfik Bultan & Richard A. Kemmerer (2002): Counter Machines

and Verification Problems. TCS 289(1), pp. 165–189, doi:10.1016/S0304-3975(01)00268-7.
[17] Michael Kaminski & Nissim Francez (1994): Finite-memory automata. TCS 134(2), pp. 329–363,

doi:10.1016/0304-3975(94)90242-9.
[18] Felix Klaedtke & Harald Rueß (2003): Monadic Second-Order Logics with Cardinalities. In: ICALP, LNCS

2719, Springer-Verlag, pp. 681–696, doi:10.1007/3-540-45061-0_54.
[19] Nils Klarlund & Fred B. Schneider (1989): Verifying Safety Properties Using Non-deterministic Infinite-state

Automata. Technical Report, Ithaca, NY, USA.
[20] L. P Lisovik & D. A Koval’ (2005): Language recognition by two-way deterministic pushdown automata.

Cybernetics and Systems Analysis 40, pp. 939–942, doi:10.1007/s10559-005-0034-7. ACM ID: 1057268.
[21] Rohit J. Parikh (1966): On context-free languages. Journal of the ACM 13(4), pp. 570–581,

doi:10.1145/321356.321364.
[22] Howard Straubing (1994): Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston,

doi:10.1007/978-1-4612-0289-9.

http://dx.doi.org/10.1007/10722167_9
http://dx.doi.org/10.3166/jancl.20.313-344
http://dx.doi.org/10.1016/S0890-5401(02)00027-5
http://dx.doi.org/10.1145/365691.365962
http://dx.doi.org/10.2307/1994067
http://dx.doi.org/10.1145/322047.322058
http://dx.doi.org/10.1006/jcss.1999.1624
http://dx.doi.org/10.1016/S0304-3975(01)00268-7
http://dx.doi.org/10.1016/0304-3975(94)90242-9
http://dx.doi.org/10.1007/3-540-45061-0_54
http://dx.doi.org/10.1007/s10559-005-0034-7
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1007/978-1-4612-0289-9

	1 Introduction
	2 Preliminaries
	3 Parikh automata and constrained automata
	4 Bounded Parikh automata
	5 Bounded Parikh automata are determinizable
	6 Discussion

