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A classical result (often credited to Y. Medvedev) states that every language recognized by a finite
automaton is the homomorphic image of a local language, over a much larger so-called local alphabet,
namely the alphabet of the edges of the transition graph. Local languages are characterized by the
value k = 2 of the sliding window width in the McNaughton and Papert’s infinite hierarchy of strictly
locally testable languages (k-slt). We generalize Medvedev’s result in a new direction, studying the
relationship between the width and the alphabetic ratio telling how much larger the local alphabet is.
We prove that every regular language is the image of a k-slt language on an alphabet of doubled size,
where the width logarithmically depends on the automaton size, and we exhibit regular languages for
which any smaller alphabetic ratio is insufficient. More generally, we express the trade-off between
alphabetic ratio and width as a mathematical relation derived from a careful encoding of the states.
At last we mention some directions for theoretical development and application.

1 Introduction

A classical result [13], often credited to Y. Medvedev [12], states that every regular language is the
homomorphic image of a local language over a larger alphabet called local. In a local language the
sentences are characterized by three sets: the initial letters, the final letters and the set of factors of length
k = 2. Parameter k is the width of the simplest sliding window device introduced by McNaughton and
Papert [11]. The result simply derives from the fact that the set of paths in an edge-labelled graph is a
local language over the alphabet of the edges. Considering a finite automaton for the regular language,
the local language of accepting paths can be naturally projected on the original language.

Our work originates from two observations. First, in the classic result the alphabet of the local
language is larger than the source alphabet, by a multiplicative factor, to be called the alphabetic ratio, in
the order of the square of the number of states. The simplicity of sliding window machines and languages
is very attractive, but the huge size of the local alphabet in Medvedev theorem makes their application
impractical.

Then a natural question concerns the local alphabet in the classical result: how small can the alpha-
betic ratio be? A small alphabet may, for instance, allow to encode messages from a regular language
into an slt language, to be transmitted over a communication channel, so that a more economical sliding
window receiver can be used instead of a general finite state machine.

Second, the local languages are a member of McNaughton and Papert’s [11] infinite hierarchy of
k-strictly locally testable, for short k-slt, languages. Then, by considering k-slt, instead of just 2-slt i.e.,
local languages, we raise a more general question: what is the minimum alphabetic ratio such that, for
some finite parameter k, every regular language is the alphabetic homomorphism of a k-slt language?
In that case, how big does the width parameter k need to be? More precisely, our main result, which
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generalizes Medvedev theorem, expresses the trade-off between two parameters: the alphabetic ratio and
the width.

We spend a few lines to show the early but enduring interest for subfamilies of regular languages
characterized by some form of local testability, without entering into details.

At the basis of formal language theory, the classical theorem of N. Chomsky and M.P. Schutzenberger
characterizes context-free languages by a homomorphism applied to the intersection of a Dyck language
and a 2-slt one. Several similar characterizations for other language families have later been proved. In
mathematics, the slt languages have been applied in the theory of semigroups by A. De Luca and A.
Restivo [1]. In linguistics, a persistent idea is that natural languages can be modeled, at various levels, by
locally testable properties. For instance, the psychologist W. Wickelgren [14] made the observation that
the set of English words are essentially a 3-slt (finite) language, and several brain scientists (in particular
V. Braitenberg [3]) have suggested that sequences of finite length, such as the factors occurring in a
locally testable language, can be easily stored and recognized by certain neural circuits (in particular the
synfire chains of M. Abeles) that have been observed in the cortex. In computational linguistics locally
testable definitions have proved to be useful at various levels of finite-state models. Many persons (e.g.
[7]) working on language learning models have been attracted by the efficiency of learning algorithms
for various types of locally testable languages. Contemporary comparative work on the aural pattern
recognition cababilities of humans and animals [10] have called attention to the subregular hierarchies
induced by local testability. In mathematical biology, in his seminal article on language theory and DNA
[9], T. Head shows that certain splicing languages are precisely the slt languages.

The paper is organized as follows. After the basic definitions in Section 2, we introduce in Section 3 a
new classification of regular languages based on their homomorphic characterization via a k-slt language
over an alphabet of size m. In Section 3 we prove a lower bound on the alphabetic ratio. In Section 4 we
state and demonstrate a generalization of Medvedev theorem, including a mathematical analysis of the
relationship between language complexity, alphabetic ratio, and width. The Conclusion presents an open
problem and mentions conceivable developments and applications of the main result.

2 Preliminaries

The empty word is denoted by ε . The terminal alphabet of the source language is denoted by A. For
simplicity we deal only with languages in A+, which do not contain the empty word. The cardinality of
an alphabet will be called the arity; the arity of a language is the arity of its alphabet.

A nondeterministic finite automaton (NFA) M is a quintuple M = (Q,A,E,q0,F) where Q is a finite
set of states, A is a finite alphabet, the transition relation (or graph) is E ⊆ Q×A×Q, q0 ∈ Q is the
initial state; F ⊆ Q is the set of final states, which does not contain q0 (since only ε-free languages are
considered).
Two transitions (p,a,q) and (p′,a′,q′) are consecutive if q = p′. A path η = e0e1 . . .en−1 is a finite
sequence of n > 0 consecutive transitions e0 = (p0,a0, p1), e1 = (p1,a1, p2), . . . , en−1 = (pn−1,an−1, pn).
The origin of η is o(η) = p0, its end is e(η) = pn, and its label is l(η) = a0a1 . . .an−1. A successful path
is a path with origin q0 and end in F . The language recognized by M, denoted L(M), is the set of labels
of all successful paths of M.

We assume, without loss of generality, that the transition relation is total, i.e., for every q ∈Q,a ∈ A,
set {p ∈ Q | (q,a, p) ∈ E} 6= /0 (if E is not total, just add a new sink state to Q).

Given another finite alphabet B, an (alphabetic) homomorphism is a mapping π : B→ A. For a
language L′ ⊆ B+, its (homomorphic) image under π is the language L = {π(x) | x ∈ L′}.
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For every word w ∈ A+, for every k ≥ 2, let ik(w) and tk(w) denote the prefix and, respectively, the
suffix of w of length k if |w| ≥ k, or w itself if |w| < k. Let fk(w) denote the set of factors of w of
length k. Extend ik, tk, fk to languages as usual, i.e., ik(L) = {ik(w) | w ∈ L}, tk(L) = {tk(w) | w ∈ L},
and fk(L) =

⋃
w∈L fk(w). A factor of a word w starting at position k and ending at position h, with

1≤ h,k ≤ |w|, is defined as follows:{
sk,h(w) = ε if h < k
sk,h(w) = ih−k+1

(
t|w|−k+1(w)

)
otherwise

Hence, for h≥ k, |sk,h(w)|= h− k+1.
Definition 1. A language L is k-strictly locally testable1, shortly k-slt, if there exist finite sets Ik−1,Tk−1⊆
Ak−1 and Fk ⊆ Ak such that, for every x ∈ AkA∗, the following condition holds:

x ∈ L ⇐⇒ ik−1(x) ∈ Ik−1∧ tk−1(x) ∈ Tk−1∧ fk(x)⊆ Fk

A language is strictly locally testable (slt) if it is k-slt for some k to be called the width.
This definition ignores words shorter than k− 1, which however can be checked directly against a

finite set, if needed. The case k = 2 corresponds to the very well known family of local languages (see
for instance [13] or [2]). The following example will be referred to later.
Example 1. The language L′ = (a′a)+ ∪ (b′b)+ is 2-slt, i.e., local, since it can be defined by the sets
I1 = {a′,b′}, T1 = {a,b}, F2 = {a′a,b′b,aa′,bb′}.

It is known and straightforward to prove that the family of slt languages is strictly included in the
family of regular languages, and it is an infinite strict hierarchy ordered by the width value. For in-
stance, the language Lh = (abh)+ on A = {a,b}, with h > 1 a constant, is (h + 1)-slt, but it is not
h-slt. In fact, Lh is defined by the sets: Ih = {abh−1}, Th = {bh}, Fh+1 = {biabh−i | 0 ≤ i ≤ h}. How-
ever, Lh is not h-slt: consider the words abh ∈ Lh and abh+1 6∈ Lh: ih−1(abh) = ih−1(abh+1) = abh−2,
th−1(abh) = th−1(abh+1) = bh−1, fh(abh) = {abh−1,bh} = fh(abh+1). Hence, the two words above can-
not be distinguished by using width h.

3 Lower Bounds

As said, every regular language, to be referred to as source, is the image of a 2-slt language whose arity
may be much larger than the arity of the source. To talk precisely about the width of the slt language and
of the ratio of the arities of the slt and source languages, we introduce a definition.
Definition 2. For k ≥ 2,m ≥ 1, a language L ⊆ A+ is (m,k)-homomorphic if there exist an alphabet B
(called local) of arity m, a k-slt language L′ ⊆ B+, and a homomorphism π : B→ A such that L = π(L′).

Clearly, if L⊆ A+ is k-slt then L is trivially (|A|,k)-homomorphic. Otherwise, a local alphabet larger
than A is needed. For instance, the language L = (aa)+∪ (bb)+ is not slt but the language L′ = (a′a)+∪
(b′b)+ of Ex. 1 is 2-slt. By defining π : {a,a′,b,b′} → {a,b} as π(a) = π(a′) = a, π(b) = π(b′) = b,
then L = π(L′) and hence L is (4,2)-homomorphic. The alphabetic ratio of L′ and L is 4/2 = 2.

The traditional construction (e.g. in [13]) of a 2-slt language L′ considers an NFA (Q,A,E, I,F) of
size n = |Q| for L, and uses set E as local alphabet, i.e., up to n2 · |A| elements. Hence we can restate
Medvedev’s property saying that every regular language on A is (n2 · |A|,2)-homomorphic (the alphabetic
ratio is n2). However, it is straightforward to show that the arity of the local alphabet can be reduced to
n · |A|.

1The original name in [11] is “k-testable in the strict sense”. This concept should not be confused with other language
families based on local tests, see [4] for a recent account.
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Proposition 1. Every regular language, accepted by an NFA with n states, is (n · |A|,2)-homomorphic.

Proof. Let M = (Q,A,E,q0,F) be an NFA. Define two mappings π : Q×A→ A and ρ : Q×A×Q→
Q×A such that π(〈q,a〉) = a, for every a ∈ A, q ∈ Q and ρ(p,a,q) = 〈p,a〉 for every p,q ∈ Q,a ∈ A.
The following sets define a 2-slt language L′ ⊆ (Q×A)+:

I1 = {〈q0,a〉 | a ∈ A};
F2 = {〈q,a〉〈q′,b〉 | a,b ∈ A,q,q′ ∈ Q,(q,a,q′) ∈ E};
T1 = {〈q,a〉 | a ∈ A,∃q′ ∈ F : (q,a,q′) ∈ E}.

We show first that π(L′) ⊆ L. Let w ∈ π(L′). Hence, there exists x ∈ L′ such that π(x) = w. We claim
that there exists a successful path η of M such that x = ρ(η). Let n = |w|. Since x ∈ L′, there exist
q1,q2, . . .qn−1 ∈Q, a0,a1, . . . ,an−1 ∈ A such that x = 〈q0,a0〉〈q1,a1〉 . . .〈qn−1,an〉, and w = a0a1 . . .an−1.
Since 〈qn−1,an〉 ∈ T1, there exists q ∈ F such that (qn−1,an−1,q) ∈ E. Let η be (q0,a0,q1) (q1,a1,q2)
. . .(qn−1,an−1,q): η has label w, origin in q0 and end in a final state; moreover, ρ(η) = x. By definition
of F2, every factor 〈qi−1,ai〉〈qi,ai+1〉 of x, for 1 ≤ i ≤ n, must be such that (qi−1,ai,qi) ∈ E, hence all
transitions of η are consecutive, i.e., η is a successful path of label w.
We show that L⊆ π(L′). Let w ∈ L be accepted by a successful path η of M of the form

(q0,a0,q1)(q1,a1,q2) . . .(qn−1,an−1,qn),

with qn ∈ F and a0 . . .an−1 = w. We claim that ρ(η) ∈ L′. In fact, i1(ρ(η)) = 〈q0,a0〉 ∈ I1, t1(ρ(η)) =
〈qn−1,an〉 ∈ T1 and f2(ρ(η)) = {〈qi−1,ai−1〉〈qi,ai〉 | 1 ≤ i ≤ n}. Since each (qi−1ai−1qi) ∈ E (being a
transition of η), f2(ρ(η))⊆ F2.

A natural question to be later addressed, is whether, by allowing the width k to be larger than 2, it
is possible to reduce the arity of the local alphabet to less than n · |A|. Next we prove the simple, but
perhaps unexpected result, that the local alphabet cannot be smaller than twice the size of the source one.

Theorem 1. For every alphabet A, there exists a regular language L ⊆ A+ that is not (2 · |A|−1,k)-
homomorphic, for every k ≥ 2.

Proof. Let L be defined by the regular expression
⋃

a∈A(aa)∗. By contradiction, assume that there exist
k ≥ 2 and a local alphabet B of arity 2|̇A|− 1, a mapping π : B→ A and a k-slt language L′ ⊆ B+ such
that π(L′) = L. Since |B| = 2 · |A| − 1, there exists at least one symbol of A, say, a, such that there
is only one symbol b ∈ B such that π(b) = a. Since the word a2k ∈ L, there exists x ∈ L′ such that
π(x) = a2k. By definition of π and of B, x = b2k. Consider the word xb = b2k+1. Clearly, π(xb) = a2k+1,
which is not in L, since all words in L have even length. Hence, xb 6∈ L′. But ik−1(x) = ik−1(xb) = bk−1,
tk−1(x) = tk−1(xb) = bk−1, fk(x) = fk(xb) = bk and, by Definition 1, xb is in L′, a contradiction.

The same result holds (with a very similar proof) if in the statement the class of strictly locally
testable languages is replaced by the class of locally testable languages2. The question whether an
alphabetic ratio of two is sufficient is addressed in the next section.

2They are the boolean closure of slt languages, see [11].
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4 Main Result

The intuitive idea that by increasing the width one can use a smaller alphabet for the slt language, is
studied in detail. Our approach consists of defining an slt language using a larger alphabet that encodes
the states traversed by the original automaton into words of fixed length. Our main theorem states the
relationship between the language complexity in terms of number of states, the alphabetic ratio, and the
width of the slt language.

Theorem 2. If a language L ⊆ A+ is accepted by a NFA with n > 1 states, then for every h ≥ 2, L is(
h|A|,O( lgn

lgh)
)

-homomorphic.

The rest of the section is devoted to the proof. Special care is devoted to find a very succinct encoding
of the original states into strings of the local alphabet, in order to reach the minimal alphabetic ratio.
Since it may be important for applications, our encoding produces also a small, although not optimal,
width of the slt language. The proofs are organized so that the main lemmas hold, independently of the
chosen encoding, which only affects the numerical results. This organization has the advantage that the
proof is essentially unaffected by the encoding.

The next definitions set the base for stating the properties a good encoding should have. Only fixed-
length encodings are considered. Let D be a finite alphabet. Let M = (Q,A,E,q0,F) be a NFA, where E
is total, and let n = |Q|> 1.

Given an integer m≥ dlg|D|(|Q|)e, a code of Q into D of length m is a mapping [ ] : Q→Dm such that
for every p,q ∈ Q, if p 6= q then [p] 6= [q]. Consider a word x that is a factor of [Q+]. We want to decode
x to one state. This will be useful when defining a slt language whose homomorphic image is L(M). If
|x| ≥ 2m, since x may include the concatenation of [q] and [p], q, p ∈ Q, it is not decodable to just one
state symbol; moreover, if |x|< 2m−1 then x may not contain any factor of the form [q]. However, if |x|
is exactly 2m−1, then the word is bound to include at least one factor of the form [q], for some q ∈ Q,
which can be decoded to q. In addition, we want this decoding to be unique.

The traditional notion of decodability (for every x,y ∈ Q+, if [x] = [y] then x = y) is not adequate,
since it assumes that the word to be decoded is a string in [Q+], while we need to consider a factor of
[Q+]. A word x ∈ D2m−1 is said to be factor-decodable if there exists one, and only one, position j,
1 ≤ j ≤ m−1, such that there exists q ∈ Q: s j, j+m(x) = [q]. A code [ ] : Q→ Dm is factor-decodable if
every word in f2m−1([Q+]) is factor-decodable.

Lemma 1. For all finite alphabets Q,D of cardinalities n = |Q| and h = |D|, with n≥ 2, 2≤ h < n, there
exists a factor-decodable code of Q into D of length m = dg(h)+ f (h) lg2 ne ≥ 3, with:

f (h) = lg−1
2

(
h−1+

√
(h−1)(h+3)

)
−1

g(h) = 1+
f (h)

2
(lg2(h−1)+ lg2(h+3)) .

Sketch of the proof. Let 0 ∈ D be a symbol. The idea is to let code [ ] be such that for every q ∈ Q,
[q] ends with the word 00, i.e., sm−1,m([q]) = 00 and there is no other occurence of 00 in [q]. Formally,
for every i, 1 ≤ i ≤ m− 1, if si,i+1([q]) = 00 then i = m− 1. This is enough for factor-decodability. To
find how large m must be as a function of h and n, first consider, for every m≥ 2, the set S(m) of words
in Dm such that x ∈ S(m) if x has suffix 00 and in x there is no other occurrence of 00. If |S(m)| ≥ n,
then it is possible to assign a distinct word in S(m) to every state of Q. The definition of S(m) is by
induction on m ≥ 2. S(2) = {00}, i.e., the only word in S(2) is 00. S(3) = {d00 | d ∈ D−{0}}. Given
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sets S(m−1),S(m−2), let S(m) be:

{dy | d ∈ D−{0},y ∈ S(m−1)}∪{0dx | d ∈ D−{0},y ∈ S(m−2)} .

Hence, |S(2)|= 1, |S(3)|= h−1 and

|S(m)|= (h−1) |S(m−1)|+(h−1) |S(m−2)| .

This recurrence relation is strictly connected to the so-called Lucas sequence Um(P,Q), where P,Q3 are
integers (see, e.g, p. 395 of [6]): U1(P,Q) = 1, U2(P,Q) = P, and for m≥ 3, Um(P,Q) = PUm−1(P,Q)−
QUm−2(P,Q). For P = 1,Q = −1 this is just a Fibonacci sequence. If P2− 4Q ≥ 0, a closed-form

solution for every m > 0 is Um(P,Q) = am−bm

a−b , where a =
P+
√

P2−4Q
2 ,b =

P−
√

P2−4Q
2 . With standard

algebraic manipulations and by defining f (h),g(h) as in the statement of the Lemma, one can derive that:
|S(m)| ≥ n is satified if m = dg(h)+ f (h) lg2 ne .

Remark 1. Both f (h) and g(h) are monotonically decreasing with h, although very slowly for large h,
with limh→∞ f (h) lg2 h = 1, limh→∞ g(h) = 2. with, moreover, 0 < f (h) / 1.44, 2 ≤ g(h) / 4.11. The

expression for m is O
(

lgn
lgh

)
. By definition of a code, m cannot be smaller then mmin = d lg2 n

lg2 he, i.e., m is

Ω

(
lgn
lgh

)
, hence the code of Lemma 1 is asymptotically optimal. In particular, the ratio m/mmin, where

m is computed by the above formula, is dominated by term f (h) lg2 h / 1.44, which is very close to 1 for
h≥ 3. Hence, no encoding can significantly improve f (h) (or g(h)), decreasing m/mmin. A few examples
of approximated values for f (h), g(h), and f (h) lg2 h are:

h 2 3 4 10 100 1000
f (h) 1.44 0.68 0.52 0.29 0.15 0.10
g(h) 4.11 2.92 2.66 2.34 2.15 2.10

f (h) lg2 h 1.44 1.09 1.04 1.00 1.00 1.00

To prove Th. 2, a few more definitions are required. Define the following alphabetic homomor-
phisms: α : A×D→ A, δ : A×D→ D are such that α(a,d) = a, δ (a,d) = d for every a ∈ A,d ∈ D.
A path of M of length t ≥ 0 is called a t-path. Paths η1,η2, . . . ,ηk of M, k ≥ 2, are called consecutive if
η1η2 . . .ηk is also a path of M (i.e, e(ηh) = o(ηh+1), for all 1 ≤ h ≤ k− 1). With an abuse of notation,
let [ ] : (Q×A×Q)∗→ (A×D)∗ be defined on paths as follows. Let η be a t-path. If t = 0 then [η ] = ε;
if 1 ≤ t ≤ m, let [η ] be the unique word z in (A×D)m such that α(z) = l(η), δ (z) = it([o(η)]) (i.e.,
δ (z) = [o(η)] if η is a m-path).
If |η | > m, then there exist a unique k ≥ 1 and a unique 0 ≤ j ≤ m− 1 such that |η | = km+ j; hence,
there exist k+1 consecutive paths of M, denoted by η1,η2, . . . ,ηk,ηk+1 such that η = η1η2 . . .ηkηk+1,
each ηh, i ≤ h ≤ k, is a m-path and ηk+1 is a j-path. This decomposition in consecutive paths is called
the canonical decomposition of η . Then, [η ] is defined as [η1][η2] . . . [ηk][ηk+1].

Let L′ be the 2m-slt language defined by the following sets:

I2m−1 = i2m−1
(
{[η ′η ′′] | η ′,η ′′ are consecutive m-paths of M∧δ ([η ′]) = [q0]}

)
;

F2m = f2m
(
{[η ′η ′′η ′′′] | η ′,η ′′,η ′′′ are consecutive m-paths of M}

)
;

T2m−1 = t2m−1({[η ′η ′′η ′′′] | η ′,η ′′,η ′′′ are consecutive paths of M, |η ′|= |η ′′|= m,

0≤ |η ′′′|< m,e(η ′′η ′′′) ∈ F}).

The proof of the following lemma follows from uniqueness of factor-decodability:
3Beware that Q is not the set of states.
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Lemma 2. Let [ ] : Q → Dm be a factor-decodable code. For all z ∈ F2m, there exist a position j,
1≤ j ≤ m−1, and two consecutive paths η1,η2 of M such that:

1. η1 is a m-path, and t2m− j+1(z) = [η1][η2];

2. for any two consecutive paths of M, ηI,ηII , if ηI is a m-path and [ηI][ηII] is a suffix of z then
[η1] = [ηI] and [η2] = [ηII];

3. if δ (im(z)) = [q] for some q ∈ Q, then j = 1, η2 is a m-path and o(η1) = q;

4. if t2m−1(z) ∈ T2m−1, then e(η1η2) ∈ F.

Lemma 3. There exists a finite language L′′ ⊆ A+ such that α(L′)∪L′′ = L(M).

Sketch of the Proof Let L′′ be the set of words in L(M) of length less than 3m.
Part (I): (L(M)− L′′) ⊆ α(L(M′). Assume that x ∈ L(M), |x| ≥ 3m. To show that there exists a

successful path η of M such that l(η) = x, we first claim the following result for every path, whether
successful or not:

(∗) for all paths η of M, with |η | ≥ 3m, f2m([η ])⊆ F2m.

The proof of (*) is on induction on the the canonical decomposition of η . Part (I) can now be com-
pleted. For all x∈ L(M)−L′′, let η be a successful path of M with l(η)= x; moreover, let η1, . . . ,ηk,ηk+1
be the canonical decomposition of η . By (*), f2m([η ]) ⊆ F2m. But η is successful: o(η) = o(η1) = q0,
hence i2m−1([η ]) = i2m−1([η1][η2])∈ I2m−1; e(η)∈F , hence t2m−1([η ]) = t2m−1 ([ηk−1ηkηk+1])∈ T2m−1.
Therefore, [η ] ∈ L′.

Part (II): α(L′) ⊆ L(M). The proof needs the assumption that code [ ] is factor-decodable. The
following property can be proved by induction on k ≥ 2, by applying Lemma 2:

(+) for all words z ∈ (A×D)+, |z| ≥ 2m, if f2m(z) ⊆ F2m and i2m−1(z) ∈ I2m−1 then there
exists a path η of M such that z = [η ] and o(η) = q0.

The proof of Part (II) follows from (+). In fact, if x ∈ α(L′), with |x| ≥ 3m, then there exists z ∈ L′ such
that x = α(z). Since in this case i2m−1(z) ∈ I2m−1, f2m(z) ⊆ F2m, t2m−1(z) ∈ T2m−1, by (+) there exists a
path η of M with origin in q0 and such that z = [η ]. Let η1,η2, . . . ,ηk,ηk+1 be the canonical decomposi-
tion of η , with |η |= km+ j, k≥ 3 and 0≤ j≤m−1 (hence |ηk+1|= j). Let w= t2m−1([ηk−1][ηk][ηk+1])
and consider t2m−1(z) = t2m−1([η ]) = t2m−1([ηk−1][ηk][ηk+1]) = w. Apply Lemma 2, Part (1), to w ∈
F2m,w ∈ T2m−1. Hence, there exist a position h and consecutive η ′,η ′′, with η ′ a m-path, such that
t2m−h(w) = [η ′][η ′′]. Since [ηk][ηk+1] (of length m+ j ≤ 2m− 1) is also a suffix of w, by Part (2) of
Lemma 2, [ηk] = [η ′], [ηk+1] = [η ′′]. Since o(ηk) = o(η ′), also paths ηk−1,η

′ are consecutive. Hence,
z = [η ] = [η1 . . .ηk−1ηkηk+1] = [η1 . . .ηk−1][ηkηk+1] = [η1 . . .ηk−1][η

′η ′′] = [η1 . . .ηk−1η ′η ′′]. There-
fore, path η1 . . .ηk−1η ′η ′′ has label z, origin q0, and end e(η ′η ′′) in F , i.e., it is successful: x ∈ L.

The proof of Th. 2 is now immediate. By Lemmas 1 and 3, m = dg(h)+ f (h) lg2 ne, and L′ is 2m-slt.
Hence, L is (2|A|,2dg(h)+ f (h) lg2 ne)-slt, with 2dg(h)+ f (h) lg2 ne being O

(
lgn
lgh

)
. A few examples of

width for various values of number n of states and alphabetic ratio h are shown here.
H
HHHHh

n
10 103 106 109 1040

2 18 38 66 94 392
3 12 20 34 48 190
4 10 16 28 38 144

10 8 12 18 24 86
100 6 8 12 14 46

1000 6 8 10 12 32
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Hence, by enlarging the local alphabet, a smaller width suffices to construct the slt language. How-
ever, it is useless to take an alphabetic ratio h≥ n, since in this case one can use the simpler construction
of Prop. 1. To finish, we note that for many regular languages one can obtain a homomorphic definition
that uses lower values of alphabetic ratio and/or width than those obtained by the main theorem.

5 Conclusion

We have generalized Medvedev’s homomorphic characterization of regular languages: instead of using
as generator a local language over a large alphabet, which depends on the complexity of the regular
language, we can use a strictly locally testable language over a smaller alphabet that does not depend on
complexity, but just on the source alphabet. We have proved that the smallest alphabet one can use in the
generator is the double of the alphabet of the regular language; thus, for instance, four symbols suffice
to homomorphically generate any regular binary language.

In the main proof we have offered a specific and fairly optimized construction of the strictly locally
testable language, for which we have derived the relationship between the width, the alphabetic ratio, and
the complexity of the regular language. In our opinion, the construction should be of its own interest,
as a new technique for simulating a NFA by means of a larger, yet strictly locally testable, machine.
Our encoding is asymptotically optimal with respect to language complexity, and remains very close to
the theoretical optimum for finite values of complexity. But it is an open technical question whether a
different construction would yield better values for the alphabetic ratio and the width parameter.

Applications and developments of our result are conceivable in areas where a language characteriza-
tion à la Medvedev has been found valuable, as in the next ones.
Picture languages. A main family of 2-dimensional languages, the tiling systems [8], is defined by a
2-dimensional Medvedev characterization. Does our result extend to 2D languages?
Context-free languages. Combining our result with the Chomsky-Schutzenberger theorem it should be
possible to obtain non-erasing homomorphic characterizations using a small alphabet.
Consensual languages [5]. This generalization of finite-state machines motivated by modelling tightly
connected concurrent computations uses homomorphism between words as its core mechanism.
Information transmission for reducing the receiver cost was already mentioned in the introduction.

Acknowledgments: Thanks to Aldo De Luca for suggesting relevant references.
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