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We develop new polynomial methods for studying systems of word equations. We use them to im-
prove some earlier results and to analyze how sizes of systems of word equations satisfying certain
independence properties depend on the lengths of the equations. These methods give the first non-
trivial upper bounds for the sizes of the systems.

1 Introduction

Word equations are a fundamental part of combinatorics on words, see e.g. [20] or [2] for a general
reference on these subjects. One of the basic results in the theory of word equations is that a nontrivial
equation causes a defect effect. In other words, ifn words satisfy a nontrivial relation, then they can be
represented as products ofn−1 words. Not much is known about the additional restrictionscaused by
several independent relations [9].

In fact, even the following simple question, formulated already in [3], is still unanswered: how large
can an independent system of word equations on three unknowns be? The largest known examples consist
of three equations. The only known upper bound comes from theEhrenfeucht Compactness Property,
proved in [1] and independently in [8]: an independent system cannot be infinite. This question can be
obviously asked also in the case ofn> 3 unknowns. Then there are independent systems of sizeΘ(n4)
[16]. Some results concerning independent systems on threeunknowns can be found in [11], [5] and [6],
but the open problem seems to be very difficult to approach with current techniques.

There are many variations of the above question: we may studyit in the free semigroup, i.e. require
thath(x) 6= ε for every solutionh and unknownx, or examine only the systems having a solution of rank
n−1, or study chains of solution sets instead of independent systems. See e.g. [10], [9], [4] and [17].

In this article we will try to use polynomials to study some questions related to systems of word
equations. Algebraic techniques have been used before, most notably in the proof of Ehrenfeucht’s
conjecture, which is based on Hilbert’s Basis Theorem. However, the way in which we use polynomials
is quite different and allows us to apply linear algebra to the problems.

One of the main contributions of this article is the development of new methods for attacking prob-
lems on word equations. This is done in Sections 3 and 5. Othercontributions include simplified proofs
and generalizations for old results in Sect. 4 and in the end of Sect. 5, and studying maximal sizes of
independent systems of equations in Sect. 6. Thus the connection between word equations and linear
algebra is not only theoretically interesting, but is also shown to be very useful at establishing simple-
looking results that have been previously unknown, or that have had only very complicated proofs. In
addition to the results of the paper, we believe that the techniques may be useful in further analysis of
word equations.

∗Supported by the Academy of Finland under grant 121419

http://dx.doi.org/10.4204/EPTCS.63.27


216 Systems of Word Equations and Polynomials: a New Approach

Now we give a brief overview of the paper. First, in Sect. 2 we define a way to transform words into
polynomials and prove some basic results using these polynomials.

In Sect. 3 we prove that if the lengths of the unknowns are fixed, then there is a connection between
the ranks of solutions of a system of equations and the rank ofa certain polynomial matrix. This theorem
is very important for all the later results.

Section 4 contains small generalizations of two earlier results. These are nice examples of the meth-
ods developed in Sect. 3 and have independent interest, but they are not important for the later sections.

In Sect. 5 we analyze the results of Sect. 3, when the lengths of the unknowns are not fixed. For
every solution these lengths form ann-dimensional vector, called thelength typeof the solution. We
prove that the length types of all solutions of rankn− 1 of a pair of equations are covered by a finite
union of (n−1)-dimensional subspaces, if the equations are not equivalent on solutions of rankn−1.
This means that the solution sets of pairs of equations are insome sense more structured than the solution
sets of single equations. This theorem is the key to proving the remaining results. We conclude Sect.
5 by proving a theorem about unbalanced equations. This gives a considerably simpler reproof and a
generalization of a result in [11]

Finally, in Sect. 6 we return to the question about sizes of independent systems. There is a trivial
bound for the size of a system depending on the length of the longest equation, because there are only
exponentially many equations of a fixed length. We prove thatif the system is independent even when
considering only solutions of rankn−1, then there is an upper bound for the size of the system depending
quadratically on the length of the shortest equation. Even though it does not give a fixed bound even in
the case of three unknowns, it is a first result of its type – hence opening, we hope, a new avenue for
future research.

2 Basic Theorems

Let |w| be the length of a wordw and|w|a be the number of occurrences of a lettera in w. We use the
notationu≤ v, if u is a prefix ofv. We denote the set of nonnegative integers byN0 and the set of positive
integers byN1. The empty word is denoted byε .

In this section we give proofs for some well-known results. These serve as examples of the polyno-
mial methods used. Even though the standard proofs of these are simple, we hope that the proofs given
here illustrate how properties of words can be formulated and proved in terms of polynomials.

Let Σ ⊂ N1 be an alphabet of numbers. For a wordw= a0 . . .an−1 ∈ Σn we define a polynomial

Pw = a0+a1X1+ · · ·+an−1Xn−1.

Now w 7→ Pw is an injective mapping from words to polynomials (here we need the assumption 0/∈ Σ).
If w1, . . . ,wm ∈ Σ∗, then

Pw1...wm = Pw1 +Pw2X
|w1|+ · · ·+PwmX|w1...wm−1|. (1)

If w∈ Σ+ andk∈N0, then

Pwk = Pw
Xk|w|−1

X|w|−1
The polynomialPw can be viewed as a characteristic polynomial of the wordw. We could also replace

X with a suitable numberb and get a number whose reverseb-ary representation isw. Or we could let the
coefficients ofPw be from some other commutative ring thanZ. Similar ideas have been used to analyze
words in many places, see e.g. [19], [23] and [15].
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Example 2.1. If w= 1212, thenPw = 1+2X+X2+2X3.

A word w is primitive, if it is not of the formuk for anyk> 1. If w= uk andu is primitive, thenu is
aprimitive rootof w.

Lemma 2.2. If w is primitive, then Pw is not divisible by any polynomial of the form(X|w|−1)/(Xn−1),
where n< |w| is a divisor of|w|.

Proof. If Pw is divisible by(X|w|−1)/(Xn−1), then there are numbersa0, . . . ,an−1 such that

Pw = (a0+a1X1+ · · ·+an−1Xn−1)
X|w|−1
Xn−1

= (a0+a1X1+ · · ·+an−1Xn−1)(1+Xn+ · · ·+X|w|−n),

sow= (a0 . . .an−1)
|w|/n.

The next two theorems are among the most basic and well-knownresults in combinatorics on words
(except for item (4) of Theorem 2.4).

Theorem 2.3. Every nonempty word has a unique primitive root.

Proof. Let um = vn, whereu andv are primitive. We need to show thatu= v. We have

Pu
Xm|u|−1

X|u|−1
= Pum = Pvn = Pv

Xn|v|−1

X|v|−1
.

Becausem|u|= n|v|, we getPu(X|v|−1) =Pv(X|u|−1). If d= gcd(|u|, |v|), then gcd(X|u|−1,X|v|−1) =
Xd−1. ThusPu must be divisible by(X|u|−1)/(Xd−1) andPv must be divisible by(X|v|−1)/(Xd−1).
By Lemma 2.2, bothu andv can be primitive only if|u|= d = |v|.

The primitive root of a wordw∈ Σ+ is denoted byρ(w).
Theorem 2.4. For u,v∈ Σ+, the following are equivalent:

1. ρ(u) = ρ(v),
2. if U,V ∈ {u,v}∗ and |U |= |V|, then U=V,

3. u and v satisfy a nontrivial relation,

4. Pu/(X|u|−1) = Pv/(X|v|−1).

Proof. (1)⇒ (2): U = ρ(u)|U |/|ρ(u)| = ρ(u)|V |/|ρ(u)| =V.
(2)⇒ (3): Clear.
(3)⇒ (4): Letu1 . . .um = v1 . . .vn, whereui ,v j ∈ {u,v}. Now

0= Pu1...um −Pv1...vn =
Pu

X|u|−1
p−

Pv

X|v|−1
p

for some polynomialp. If m 6= n or ui 6= vi for somei, thenp 6= 0, and thusPu/(X|u|−1) = Pv/(X|v|−1).
(4)⇒ (1): We havePu|v| = Pv|u| , sou|v| = v|u| andρ(u) = ρ(u|v|) = ρ(v|u|) = ρ(v).

Similarly, polynomials can be used to give a simple proof forthe theorem of Fine and Wilf. In fact,
one of the original proofs in [7] uses power series. Algebraic techniques have also been used to prove
variations of this theorem [21].

Theorem 2.5 (Fine and Wilf). If ui and vj have a common prefix of length|u|+ |v|−gcd(|u|, |v|), then
ρ(u) = ρ(v).
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3 Solutions of Fixed Length

In this section we apply polynomial techniques to word equations. From now on, we will assume that
the unknowns are ordered asx1, . . . ,xn and thatΞ is the set of these unknowns.

A (coefficient-free)word equation u= v on n unknowns consists of two wordsu,v∈ Ξ∗. A solution
of this equation is any morphismh : Ξ∗ → Σ∗ such thath(u) = h(v). The equation istrivial , if u andv
are the same word.

The (combinatorial)rank of a morphismh is the smallest numberr for which there is a setA of r
words such thath(x) ∈ A∗ for every unknownx. A morphism of rank at most one isperiodic.

Let h : Ξ∗ → Σ∗ be a morphism. Thelength typeof h is the vector

L = (|h(x1)|, . . . , |h(xn)|) ∈ Nn
0.

This length typeL determines a morphism lenL : Ξ∗ → N0, lenL(w) = |h(w)|.
For a word equationE : y1 . . .yk = z1 . . .zl , whereyi ,zi ∈ Ξ, a variablex∈ Ξ and a length typeL, let

QE,x,L = ∑
yi=x

XlenL(y1...yi−1)− ∑
zi=x

XlenL(z1...zi−1).

Theorem 3.1. A morphism h: Ξ∗ → Σ∗ of length type L is a solution of an equation E: u= v if and only
if

∑
x∈Ξ

QE,x,LPh(x) = 0.

Proof. Now h(u) = h(v) if and only if Ph(u) = Ph(v), and the polynomialPh(u)−Ph(v) can be written as
∑x∈Ξ QE,x,LPh(x) by (1).

Example 3.2. Let Ξ = {x,y,z}, E : xyz= zxyandL = (1,1,2). Now

QE,x,L = 1−X2, QE,y,L = X−X3, QE,z,L = X2−1.

If h is the morphism defined byh(x) = 1, h(y) = 2 andh(z) = 12, thenh is a solution ofE and

QE,x,LPh(x)+QE,y,LPh(y)+QE,z,LPh(z) = (1−X2) ·1+(X−X3) ·2+(X2−1)(1+2X) = 0.

A morphismφ : Ξ∗ → Ξ∗ is anelementary transformation, if there arex,y∈ Ξ so thatφ(y) ∈ {xy,x}
andφ(z) = z for z∈ Ξr {y}. If φ(y) = xy, thenφ is regular, and if φ(y) = x, thenφ is singular. The
next lemma follows immediately from results in [20].

Lemma 3.3. Every solution h of an equation E has a factorization h= θ ◦φ ◦α , whereα(x) ∈ {x,ε}
for all x ∈ Ξ, φ = φm◦ · · · ◦φ1, everyφi is an elementary transformation andφ ◦α is a solution of E. If
α(x) = ε for s unknowns x and t of theφi are singular, then the rank ofφ ◦α is n−s− t.

Lemma 3.4. Let E : u= v be an equation on n unknowns. Let h: Ξ∗ → Σ∗ be a solution of length type L
that has rank r. There is an r-dimensional subspace V ofQn such that L∈V but those length types of the
solutions of E of rank r that are in V are not covered by any finite union of(r −1)-dimensional spaces.

Proof. Let h= θ ◦φm◦ · · · ◦φ1 ◦α as in Lemma 3.3. Letfk = φk ◦ · · · ◦φ1 ◦α . Now g◦ fm is a solution
of E for every morphismg : Ξ∗ → Σ∗. The length type ofg◦ fm is

n

∑
i=1

|g(xi)| · (| fm(x1)|xi , . . . , | fm(xn)|xi ) (2)
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To prove the theorem, we need to show that at leastr of the vectors in this sum are linearly independent.
Let Ak be then×n matrix (| fk(xi)|xj ). If there aresunknownsx such thatα(x) = ε , then the rank of

A0 is n− s. If φk is regular, then the matrixAk is obtained fromAk−1 by adding one of the columns to
another column, so the ranks of these matrices are equal. Ifφk is singular, thenAk is obtained fromAk−1

by adding one of the columns to another column and setting some column to zero, so the rank of the
matrix is decreased by at most one. Ift of theφi are singular, then the rank ofAm is at leastn−s− t. The
rank of fm is n−s− t, sor ≤ n−s− t and at leastr of the columns ofAm are linearly independent.

Lemma 3.5. Let E : u= v be an equation and h: Ξ∗ → Σ∗ be a solution of length type L that has rank
r. There are morphisms fm : Ξ∗ → Ξ∗ and gm : Ξ∗ → Σ∗ and polynomials pi j such that the following
conditions hold:

1. h= gm◦ fm,

2. fm is a solution of E,

3. P(g◦ fm)(xi) = ∑ pi j Pg(xj ) for all i , j, if g : Ξ∗ → Σ∗ is a morphism of the same length type as gm,

4. r of the vectors(p1 j , . . . , pn j), where j= 1, . . . ,n, are linearly independent.

Proof. Let fk be as in the proof of Lemma 3.4 and letgk be such thath= gk ◦ fk. For everyk, there are
polynomialspi jk so thatPh(xi) = ∑n

j=1 pi jkPgk(xj ) for all i ∈ {1, . . . ,n} (pi jk “encodes” the positions of the
word gk(x j) in h(xi)). Let Bk be then×n matrix (pi jk). The matrixBk+1 is obtained fromBk by adding
one of the columns to another column, and multiplying some column with a polynomial. Like in Lemma
3.4, we conclude that at leastn−s− t of the columns ofBm are linearly independent andr ≤ n−s− t. If
we let pi j = pi jm, then the four conditions hold.

With the help of these lemmas, we are going to analyze solutions of some fixed length type. Fun-
damental solutions (which were implicitly present in the previous lemmas, see [20]) have been used in
connection with fixed lengths also in [13] and [12].

Theorem 3.6. Let E1, . . . ,Em be a system of equations on n unknowns and let L∈Nn
0. Let qi j = QEi ,xj ,L.

If the system has a solution of length type L that has rank r, then the rank of the m× n matrix (qi j ) is
at most n− r. If the rank of the matrix is 1, at most one component of L is zero and the equations are
nontrivial, then they have the same solutions of length typeL.

Proof. Let h be a solution of length typeL that has rankr. If r = 1, the first claim follows from Theorem
3.1, so assume thatr > 1. Let E be an equation that has the same nonperiodic solutions as thesystem.
We will use Lemma 3.5 for this equation. Fixk and letg : Ξ∗ → Σ∗ be the morphism determined by
g(xk) = 10|gm(xk)|−1 andg(xi) = 0|gm(xi)| for all i 6= k (we assumed earlier that 0/∈ Σ, but it does not matter
here). Theng◦ fm is a solution of everyEl , P(g◦ fm)(xi) = ∑n

j=1 pi j Pg(xj ) and

0=
n

∑
i=1

QEl ,xi ,L

n

∑
j=1

pi j Pg(xj ) =
n

∑
i=1

QEl ,xi ,L pik

for all l by Theorem 3.1. Thus the vectors(p1 j , . . . , pn j) are solutions of the linear system of equations
determined by the matrix(qi j ). Because at leastr of these vectors are linearly independent, the rank of
the matrix is at mostn− r.

If at most one component ofL is zero and the equations are nontrivial, then all rows of thematrix
are nonzero. If also the rank of the matrix is 1, then all rows are multiples of each other and the second
claim follows by Theorem 3.1.
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4 Applications

The graph of a system of word equations is the graph, whereΞ is the set of vertices and there is an
edge betweenx andy, if one of the equations in the system is of the formx· · · = y· · · . The following
well-known theorem can be proved with the help of Theorem 3.6.

Theorem 4.1 (Graph Lemma). Consider a system of equations whose graph has r connected compo-
nents. If h is a solution of this system and h(xi) 6= ε for all i, then h has rank at most r.

Proof. We can assume that the connected components are

{x1, . . . ,xi2−1},{xi2, . . . ,xi3−1}, . . . ,{xir , . . . ,xn}

and the equations are
x j · · ·= xkj · · · ,

where j ∈ {1, . . . ,n}r{1, i2, . . . , ir} andk j < j. Let qi j be as in Theorem 3.6. If we remove the columns
1, i2, . . . , ir from the(n− r)×n matrix (qi j ), we obtain a square matrixM, where the diagonal elements
are not divisible byX, but all elements above the diagonal are divisible byX. This means that det(M) is
not divisible byX, so det(M) 6= 0. Thus the rank of the matrix(qi j ) is n− r andh has rank at mostr by
Theorem 3.6.

The next theorem generalizes a result from [5] for more than three unknowns.

Theorem 4.2. If a pair of nontrivial equations on n unknowns has a solutionh of rank n− 1, where
no two of the unknowns commute, then there is a number k≥ 1 such that the equations are of the form
x1 · · ·= xk

2x3 · · · .

Proof. By Theorem 4.1, the equations must be of the formx1 · · ·= x2 · · · . Let them be

x1uy· · · = x2vz· · · and x1u′y′ · · ·= x2v′z′ · · · ,

where u,v,u′,v′ ∈ {x1,x2}
∗ and y,z,y′,z′ ∈ {x3, . . . ,xn}. We can assume thatz = x3 and |h(x2v)| ≤

|h(x1u)|, |h(x1u′)|, |h(x2v′)|. If it would be |h(x1u)| = |h(x2v)|, thenh(x1) and h(x2) would commute,
so |h(x1u)| > |h(x2v)|. If v would containx1, thenh(x1) andh(x2) would commute by Theorem 2.5, so
v= xk−1

2 for somek≥ 1.
Let L be the length type ofh and letqi j be as in Theorem 3.6. By Theorem 3.6, the rank of the

matrix (qi j ) must be 1 and thusq12q23−q13q22 = 0. The term ofq13q22 of the lowest degree isX|h(xk
2)|.

The same must hold forq12q23, and thus the term ofq23 of the lowest degree must be−X|h(xk
2)|. This

means that|h(x2v′)| = |h(xk
2)| ≤ |h(x1u′)| andz′ = x3. As above, we conclude that|h(x2v′)|< |h(x1u′)|,

v′ cannot containx1 andv′ = xk−1
2 .

It was proved in [18] that if
s0ui

1s1 . . .u
i
msm = t0vi

1t1 . . .v
i
ntn

holds form+n+3 consecutive values ofi, then it holds for alli. By using similar ideas as in Theorem
3.6, we improve this bound tom+ n and prove that the values do not need to be consecutive. In [18]
it was also stated that the arithmetization and matrix techniques in [24] would give a simpler proof of a
weaker result. Similar questions have been studied in [14] and there are relations to independent systems
[22].
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Theorem 4.3. Let m,n≥ 1, sj , t j ∈ Σ∗ and uj ,v j ∈ Σ+. Let Ui = s0ui
1s1 . . .ui

msm and Vi = t0vi
1t1 . . .v

i
ntn. If

Ui =Vi holds for m+n values of i, then it holds for all i.

Proof. The equationUi =Vi is equivalent withPUi −PVi = 0. This equation can be written as

m

∑
j=0

y jX
i|u1...uj |+ ∑

k∈K

zkX
i|v1...vk| = 0, (3)

wherey j ,zk are some polynomials, which do not depend oni, andK is the set of thosek∈ {0, . . .n} for
which |v1 . . .vk| is not any of the numbers|u1 . . .u j | ( j = 0, . . . ,m). If Ui1 =Vi1 andUi2 =Vi2, then

(i1− i2)|u1 . . .um|= |Ui1|− |Ui2|= |Vi1|− |Vi2|= (i1− i2)|v1 . . .vn|.

Thus |u1 . . .um| = |v1 . . .vn| and the size ofK is at mostn− 1. If (3) holds form+ 1+ #K ≤ m+ n
values ofi, it can be viewed as a system of equations, wherey j ,zk are unknowns. The coefficients of
this system form a generalized Vandermonde matrix, whose determinant is nonzero, so the system has a
unique solutiony j = zk = 0 for all j,k, (3) holds for alli andUi =Vi for all i.

5 Sets of Solutions

Now we analyze how the polynomialsQE,x,L behave whenL is not fixed. Let

M = {a1X1+ · · ·+anXn | a1, . . . ,an ∈ N0} ⊂ Z[X1, . . . ,Xn]

be the additive monoid of linear homogeneous polynomials with nonnegative integer coefficients on the
variablesX1, . . . ,Xn. Themonoid ringof M overZ is the ring formed by expressions of the form

a1Xp1 + · · ·+akX
pk,

whereai ∈Z andpi ∈M , and the addition and multiplication of these generalized polynomials is defined
in a natural way. This ring is denoted byZ[X;M ]. If L ∈ Zn, then the value of a polynomialp∈ M at
the point(X1, . . .Xn) = L is denoted byp(L), and the polynomial we get by making this substitution in
s∈ Z[X;M ] is denoted bys(L).

The ringZ[X;M ] is isomorphic to the ringZ[Y1, . . . ,Yn] of polynomials onn variables. The isomor-
phism is given byXXi 7→Yi . However, the generalized polynomials, where the exponents are inM , are
suitable for our purposes.

If ai ≤ bi for i = 1, . . . ,n, then we use the notation

a1X1+ · · ·+anXn � b1X1+ · · ·+bnXn.

If p,q∈ M andp� q, thenp(L)≤ q(L) for all L ∈ Nn
0.

For an equationE : xi1 . . .xir = x j1 . . .x js we define

SE,x = ∑
xik=x

XXi1+···+Xik−1 − ∑
xjk=x

XXj1+···+Xjk−1 ∈ Z[X;M ].

Now SE,x(L) = QE,x,L. Theorem 3.1 can be formulated in terms of the generalized polynomialsSE,x.
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Theorem 5.1. A morphism h: Ξ∗ → Σ∗ of length type L is a solution of an equation E if and only if

∑
x∈Ξ

SE,x(L)Ph(x) = 0.

Example 5.2. Let E : x1x2x3 = x3x1x2. Now

SE,x1 = 1−XX3, SE,x2 = XX1 −XX1+X3, SE,x3 = XX1+X2 −1.

The lengthof an equationE : u= v is |E|= |uv|.

Theorem 5.3. Let E1,E2 be a pair of nontrivial equations on n unknowns that don’t have the same sets
of solutions of rank n−1. The length types of solutions of the pair of rank n−1 are covered by a union
of |E1|

2 (n−1)-dimensional subspaces ofQn. If V1, . . . ,Vm is a minimal such cover and L∈Vi for some
i, then E1 and E2 have the same solutions of length type L and rank n−1.

Proof. Let si j = SEi ,xj for i = 1,2 and j = 1, . . . ,n. If all 2×2 minors of the 2×n matrix (si j ) are zero,
then for all length typesL of solutions of rankn−1 the rank of the matrix(qi j ) in Theorem 3.6 is 1 and
E1 andE2 are equivalent, which is a contradiction. Thus there arek, l such thattkl = s1ks2l −s1l s2k 6= 0.
The generalized polynomialtkl can be written as

tkl =
M

∑
i=1

Xpi −
N

∑
i=1

Xqi ,

wherepi ,qi ∈ M andpi 6= q j for all i, j. If L is a length type of a solution of rankn−1, thenM = N and
L must be a solution of the system of equations

pi = qσ(i) (i = 1, . . . ,M) (4)

for some permutationσ . For everyσ the equations determine an at most(n−1)-dimensional space.
Let

s1k = ∑
i

Xai −∑
i

Xa′i , s2l = ∑
i

Xbi −∑
i

Xb′i , s1l = ∑
i

Xci −∑
i

Xc′i , s2k = ∑
i

Xdi −∑
i

Xd′
i ,

whereai � ai+1, a′i � a′i+1, and so on. The polynomialspi form a subset of the polynomialsai + b j ,
a′i + b′j , ci + d′

j andc′i + d j (the reason that they form just a subset is that we assumedpi 6= q j for all
i, j). For anyi, let j i be the smallest indexj such thatai + b j = pm for somem. Now for everyi, j,m
such thatai +b j = pm we haveai +b ji � pm. We can do a similar thing for the polynomialsa′i ,b

′
i and

ci ,d′
i andc′i ,di . In this way we obtain at most|E1| polynomialspi such that for anyL the value of one

of these polynomials is minimal among the valuespi(L). Similarly we obtain at most|E1| “minimal”
polynomialsqi . It is sufficient to consider only those systems (4), where one of the equations is formed
by these “minimal” polynomialspi ,qi . There are at most|E1|

2 possible pairs of such polynomials, and
each of them determines an(n−1)-dimensional space.

Consider the second claim. Because the cover is minimal, there is a solution of rankn− 1 whose
length type is inVi , but not in any otherVj . By Lemma 3.4, the length types of solutions of rankn−1
in this space cannot be covered by a finite union of(n−2)-dimensional spaces. Thus one of the systems
(4) must determine the spaceVi . The same holds for systems coming from all other nonzero 2×2 minors
of the matrix(si j ), soE1 andE2 have the same solutions of rankn−1 and length typeL for all L ∈Vi by
Theorem 3.6.
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The following example illustrates the proof of Theorem 5.3.It gives a pair of equations on three
unknowns, where the required number of subspaces is two. We do not know any example, where more
spaces would be necessary.

Example 5.4. Consider the equationsE1 : x1x2x3 = x3x1x2 andE2 : x1x2x1x3x2x3 = x3x1x3x2x1x2 and the
generalized polynomial

s=SE1,x1SE2,x3 −SE1,x3SE2,x1

=X2X1+X2 +X2X1+2X2+X3 +XX1+2X3 +XX1+X2+X3 −X2X1+X2+X3 −XX1+X3 −X2X1+2X2 −XX1+X2+2X3.

If L is a length type of a nontrivial solution of the pairE1,E2, thens(L) = 0. If s(L) = 0, thenL must
satisfy an equationp= q, wherep∈ {2X1+X2,X1+2X3,X1+X2+X3} andq∈ {X1+X3,2X1+2X2}.
The possible relations are

X3 = 0, X1+X2 = X3, X2 = 0, X1+2X2 = 2X3.

If L satisfies one of the first three, thens(L) = 0. If L satisfies the last one, thens(L) 6= 0, except ifL = 0.
So if h is a nonperiodic solution, then

|h(x3)|= 0 or |h(x1x2)|= |h(x3)| or |h(x2)|= 0.

There are no nonperiodic solutions withh(x2) = ε , but everyh with h(x3) = ε or h(x1x2) = h(x3) is a
solution.

An equationu = v is balanced, if |u|x = |v|x for every unknownx. In [11] it was proved that if an
independent pair of equations on three unknowns has a nonperiodic solution, then the equations must be
balanced. With the help of Theorem 5.3 we get a significantly simpler proof and a generalization for this
result.

Theorem 5.5. Let E1,E2 be a pair of equations on n unknowns having a solution of rank n−1. If E1 is
not balanced, then every solution of E1 of rank n−1 is a solution of E2.

Proof. The length types of solutions ofE1 are covered by a single(n−1)-dimensional spaceV. Because
the pairE1,E2 has a solution of rankn−1, V is a minimal cover for the length types of the solutions of
the pair of rankn− 1. By Theorem 5.3,E1 andE2 have the same solutions of length typeL and rank
n−1 for all L ∈V.

Another way to think of this result is that ifE1 is not balanced but has a solution of rankn−1 that is
not a solution ofE2, then the pairE1,E2 causes a larger than minimal defect effect.

6 Independent Systems

A system of word equationsE1, . . . ,Em is independent, if for every i there is a morphism that is not a
solution ofEi , but is a solution of all the other equations.

A sequence of equationsE1, . . . ,Em is achain, if for every i there is a morphism that is not a solution
of Ei, but is a solution of all the preceding equations.

The question of the maximal size of an independent system is open. Only things that are known are
that independent systems cannot be infinite and there are systems of sizeΘ(n4), wheren is the number
of unknowns. For a survey on these topics, see [17].
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We study the following variation of the above question: how long can a sequence of equations
E1, . . . ,Em be, if for every i there is a morphism of rankn− 1 that is not a solution ofEi, but is a
solution of all the preceding equation? We prove an upper bound depending quadratically on the length
of the first equation. For three unknowns we get a similar bound for the size of independent systems and
chains.

Theorem 6.1. Let E1, . . . ,Em be nontrivial equations on n unknowns having a common solution of rank
n−1. For every i∈ {1, . . . ,m−1}, assume that there is a solution of the system E1, . . . ,Ei of rank n−1
that is not a solution of Ei+1. If the length types of solutions of the pair E1,E2 of rank n−1 are covered
by a union of N(n−1)-dimensional subspaces, then m≤ N+1. In general, m≤ |E1|

2+1.

Proof. We can assume thatEi is equivalent with the systemE1, . . . ,Ei for all i ∈ {1, . . . ,m}. Let the
length types of solutions ofE2 of rank n− 1 be covered by the(n− 1)-dimensional spacesV1, . . . ,VN.
Some subset of these spaces forms a minimal cover for the length types of solutions ofE3 of rankn−1.
If this minimal cover would be the whole set, thenE2 andE3 would have the same solutions of rankn−1
by the second part of Theorem 5.3. Thus the length types of solutions ofE3 of rank n−1 are covered
by someN−1 of these spaces. We conclude inductively that the length types of solutions ofEi of rank
n−1 are covered by someN− i +2 of these spaces for alli ∈ {2, . . . ,m}. It must beN−m+2≥ 1, so
m≤ N+1. By the first part of Theorem 5.3,N ≤ |E1|

2.

In Theorem 6.1 it is not enough to assume that the equations are independent and have a common
solution of rankn− 1. If the number of unknowns is not fixed, then there are arbitrarily large such
systems, where the length of every equation is 10, see e.g. [10].

In the case of three unknowns, Theorem 6.1 gives an upper bound depending on the length of the
shortest equation for the size of an independent system of equations, or an upper bound depending on
the length of the first equation for the size of a chain of equations. A better bound in Theorem 5.3 would
immediately give a better bound in the following corollary.

Corollary 6.2. If E1, . . . ,Em is an independent system on three unknowns having a nonperiodic solution,
then m≤ |E1|

2+1. If E1, . . . ,Em is a chain of equations on three unknowns, then m≤ |E1|
2+5.
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[3] Karel Culik, II & Juhani Karhumäki (1983):Systems of equations over a free monoid and Ehrenfeucht’s
conjecture. Discrete Math.43(2–3), pp. 139–153, doi:10.1016/0012-365X(83)90152-8.

[4] Elena Czeizler (2008):Multiple constraints on three and four words. Theoret. Comput. Sci.391(1-2), pp.
14–19, doi:10.1016/j.tcs.2007.10.026.

[5] Elena Czeizler & Juhani Karhumäki (2007):On non-periodic solutions of independent systems
of word equations over three unknowns. Internat. J. Found. Comput. Sci.18(4), pp. 873–897,
doi:10.1142/S0129054107005030.

[6] Elena Czeizler & Wojciech Plandowski (2009):On systems of word equations over three unknowns with
at most six occurrences of one of the unknowns. Theoret. Comput. Sci.410(30-32), pp. 2889–2909,
doi:10.1016/j.tcs.2009.01.023.

http://dx.doi.org/10.1016/0304-3975(85)90066-0
http://dx.doi.org/10.1016/0012-365X(83)90152-8
http://dx.doi.org/10.1016/j.tcs.2007.10.026
http://dx.doi.org/10.1142/S0129054107005030
http://dx.doi.org/10.1016/j.tcs.2009.01.023


Aleksi Saarela 225

[7] N. J. Fine & H. S. Wilf (1965):Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc.16, pp.
109–114, doi:10.1090/S0002-9939-1965-0174934-9.

[8] V. S. Guba (1986):Equivalence of infinite systems of equations in free groups and semigroups to finite
subsystems. Mat. Zametki40(3), pp. 321–324, doi:10.1007/BF01142470.
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