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1. INTRODUCTION

Suppose (M, g) is a Riemannian manifold. One fundamental piece of data de-
termined by g is the restricted holonomy group Hol. If we assume that Hol acts
irreducibly on 7'M, which is the case if M is complete and irreducible, then the main
classification theorem implies that either (M, g) is locally isometric to a symmetric
space K/ Hol or Hol is one of SO(n), U(n), SU(n), Sp(n), Sp(n) Sp(1), G, or Spin(7)
(see [3]). Studying the geometries determined by these holonomy groups one finds
that if M # SO(n) or U(n), then g is automatically Einstein. This may be restated
as follows.

Theorem 1.1. Suppose G is a proper connected subgroup of SO(n) that acts irre-
ducibly on R" and if n is even suppose that G # U(n/2). Let (M,g) be an n-
dimensional Riemannian manifold with structure group G. If M admits a torsion-free
G-connection then g is Einstein.

A natural question is:

Are there weaker conditions than the existence of a torsion-free connection
that imply useful restrictions on the curvature?

In 1971, Gray [9] provided one such notion which he called “weak holonomy”. He

studied this idea for the groups G that act transitively on the sphere. For the groups

SO(n), Sp(n), Sp(n) U(1), Sp(n)Sp(1) and Spin(7), the weak holonomy condition

implies that the holonomy group reduces and we obtain no new geometries. However,
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Group Geometry

U(n), SU(n) | Nearly Kéhler, i.e., (VxJ)(X) =0
Einstein if n = 3

Gy dp = Axp, A #0
Einstein with s > 0
Spin(9) Not Einstein

TABLE 1. The geometries determined by weak holonomy groups acting
transitively on a sphere when the holonomy does not reduce to that

group.

for U(n), SU(n) and Gs Gray found that the weak holonomy condition does give new
structures. Very recently Th. Friedrich has shown that the group Spin(9) also occurs
as a weak holonomy group [7]. These results are summarised in Table 1.

As the table indicates, the only new examples of Einstein structures are provided
by nearly Kéahler six-manifolds and seven-dimensional manifolds with weak holo-
nomy G,. Many examples of the latter are known. For example each Aloff-Wallach
space SU(3)/ U(1)g,, given by embedding U(1) in SU(3) via

exp(if) — diag(exp(ikf), exp(ild), exp(—i(k + £)6)),

carries a homogeneous metric with weak holonomy Gs [1]. Also non-homogeneous
examples can be constructed from non-homogeneous 3-Sasakian metrics in dimen-
sion 7 by using the results of [8]. In the case of nearly Kéhler six-manifolds that are
not Kahler, the only examples known are 3-symmetric spaces, so these are homoge-
neous. Moroianu & Semmelmann have a proof that there are no other homogeneous
examples [10].

As far as I know Gray’s condition has not been studied for other G-structures.
This may be because his definition is not particularly easy to work with. More in
the spirit of Gray’s other work would be to look for G-structures which admit a
connection whose torsion is ‘simple’. This is the approach I wish to take.

2. TORSION AND CURVATURE

Fix a closed connected Lie subgroup G of SO(n). Suppose that M is an n-
dimensional manifold with a reduction of its structure group to G. Let g be the
corresponding Riemannian metric and write V for the Levi-Civita connection.

If V' is any G-connection on M, then the difference V — V' is tensorial and is a
one-form with values in (the bundle associated to) the Lie algebra so(n) of SO(n).
If n is any one-form with values in the Lie algebra g of G, then V' 4 7 is also a
G-connection. It is now easy to see:
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Lemma 2.1. If G is a subgroup of SO(n) and M is a Riemannian manifold with a G-
structure, then there is a unique G-connection V such that the Levi-Civita connection
satisfies

V=V+4¢
with £ an element of T*M ® g+ C T*M ® so(n).

Definition 2.2. We call the connection V of Lemma 2.1 the natural metric connection
of the G-structure.

The torsion of V is given by Tﬁ(X, Y) = & X — €xY. Moreover, this torsion
determines £ by

9(ExY, Z) = L(g(TV (X, 2),Y) — g(TV(X,Y), Z)
+9(X, TY(Y, 2))).

We will therefore often abuse terminology and refer to & as the torsion of V.

Write V for the representation of G on R*. Then £ is an element of the bundle
associated to the representation V ® g*. Let us assume that & lies in a subrepresen-
tation W C V ® gt. It is now possible to deduce some restrictions on the Riemann
curvature tensor R of M.

The curvature R of the Levi-Civita connection is an element of S?(so(n)). Using
so(n) = g® g we obtain the decomposition

S*(so(n)) = S*(g) ® S(g®g") ® S*(g7),
and a corresponding splitting of R:
R=R'+R™+R"
We can refine this decomposition further. Let b: S*(A?V) — A*V be the map
defined by
b(@)(X,Y,Z, W) = o(X,Y, Z,W) + a(X, Z,W,Y)
+a(X, W)Y, Z).
The space K(g) := ker b S?(g) consists of elements in S?(g) that satisfy the Bianchi
identity, and so is the space of algebraic curvature tensors whose holonomy lies in G.
We write S%(g) = K(g)®XK(g)* and use this to make a splitting R® = R§+R}. Note
that b is injective on K (g)*, so the fact that R satisfies the Bianchi identity b(R) = 0
implies that R} is uniquely determined by R™ + R* via
b(RY) = —b(R™ + R*).
To obtain information on R™ and R, let us locally choose a tensor ¢ on M (not
necessarily of pure type) such that
(a) Liestabgom) ¢ = g, and
(b) Vo =0,
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where Liestabgom) ¢ denotes the Lie algebra of the stabiliser of ¢ under the action
of SO(n). One can find such a ¢, satisfying condition (a) at a given point. Sup-
pose @y € P;_, Vi, for a minimal set of integers r,...,7,. Let U; be the trivial
submodule of Vi, for ¢ = 1,...,s. Then U; defines a subbundle of tensor algebra
of T'M and the restriction of V to Uj; is flat, so we may locally extend ¢, to a tensor ¢
satisfying (b).

Now consider the action of the curvature R on ¢. We have

Ry =R™¢+ R ..
Moreover, R.¢ determines R™ and R*. On the other hand

R =a(VVy) =a(V(Vp+£.p)) =a(V(y))
=a((VE).p) +a(.p),

where a denotes the alternation map. From this we see that if £ lies in a subrepre-
sentation W of V ® gt, then R™ + R* lies in the representation V@ W +W @ W.
Note that R € V@ W + W ® W too, since R} is determined by R™ + R*.

Write SZV for the space of trace-free symmetric tensors on V. Then the trace-free
Ricci tensor lies in S2V and the vanishing of this component of R is exactly the
Einstein condition. The above discussion now implies that R is Einstein provided R§
and R} + R™ + R* are both Einstein. We thus have:

Theorem 2.3. Suppose M is a manifold with structure group G < SO(n). Let V
denote the representation of G on T'M and suppose that the torsion £ lies in the
subrepresentation W C V ® g*. Then a sufficient condition for M to be Einstein is

(a) (VoW +WW)n SV = {0}, and
(b) any element of K(g) is Einstein.

The simplest case is when the representation W is trivial. This occurs precisely
when £ is invariant under the action of G.

Definition 2.4. We say that the M is a Riemannian manifold with invariant torsion if
the structure group of M reduces to a proper subgroup G of SO(n) and the torsion &
of the natural metric connection for this G-structure is invariant under the action
of G.

3. EXAMPLES

Let us consider some examples of manifolds with invariant torsion and see how
they relate to Theorem 2.3. We begin with Gray’s weak holonomy structures that
are Einstein.
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3.1. Weak Holonomy G,. We have G = G, and V is the irreducible representation
on R7. Then

s0(7) = A’V = g,V
so gt =V and V ® g' certainly contains a trivial representation. In fact
Vegt=VeV=RoeVag oSV

as a sum of irreducible modules.

Taking £ € W =R, we have VW + W @ W = V + R which has no subrep-
resentation in common with SgV, which is irreducible. Therefore condition (a) of
Theorem 2.3 is satisfied.

For condition (b), we have that X(g,) is the algebraic space of curvature tensors
of metrics with holonomy G,. But all such metrics are Ricci flat and condition (b)
holds. (In fact, X(g,) is an irreducible representation of dimension 77.) Thus for
these Gy-structures, ¢ € R implies that M7 is Einstein.

The tensor ¢ in the proof of Theorem 2.3 may be taken to be the fundamental
3-form of the Ga-structure [4]. The condition that £ lies in R implies that Vi = £.¢
is an invariant tensor in V ® A3V. But

ANV =ReVeoSiV

and so V ® A3V contains a unique invariant summand. This is spanned by the four-
form *p, so we have dp = a(Vy) = Axp and the structure has weak holonomy Gj.
Conversely, for A # 0, a metric with weak holonomy G, always has invariant torsion

&= cp.

3.2. Nearly Kéhler Six-Manifolds. Let U(n) act irreducibly on V' = R**. Then
V is the real representation underlying A»® and we write V' = [A'Y]. In this case
u(n)t = [A%%], so in order for V ® u(n)t to have a trivial summand we need an
isomorphism of [A] with [A%°]. For the dimensions of these two representations to
be equal we have to have n = 3. However, even in that case the centre of U(3) acts
on these two representations with different weights. We therefore conclude that there
is a trivial summand only with respect to the action of SU(3).

So we must take G = SU(3) and V = [A'?]. We then have V®g™" contains W = 2R.
For this choice of W, condition (a) of Theorem 2.3 is satisfied. Condition (b) is also
satisfied, as metrics of holonomy SU(3) are Ricci-flat. Therefore, an SU(3)-structure
with invariant torsion £ € 2R is Einstein.

For £ # 0, these are exactly the nearly Kéhler six-manifolds that are not Kéhler.
Notice that the structure group of such a manifold always reduces from U(3) to SU(3)
as dw + ixdw trivialises A>0.

3.3. Holonomy Representations. Suppose G acts irreducibly on V' via the holo-
nomy representation of a Riemannian metric. Assume that G # SO(dim V). Looking
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at each individual case, one can see that the only times where g contains a copy
of V are (i) G = SU(3), V = [A1?] and (ii) G = G,, V = R". We thus have:

Proposition 3.1. Suppose M is a Riemannian manifold with non-zero invariant tor-
sion. If the structure group G acts on 7'M via a holonomy representation, then M is
either a six-dimensional nearly Kahler manifold or M is a seven-dimensional manifold
with weak holonomy Go.

3.4. Representations of SU(2). Let us consider the case when G = SU(2) and V is
an irreducible representation of G. This implies that V®C = S*CZ, the kth symmetric
power of C?, for some integer k. This representation only admits an invariant metric
if £ is even. The condition that V' ® su(2)* contains a trivial representation then
implies that £ = 2 (mod 4) and that £ # 2. One can now check that conditions (a)
and (b) of Theorem 2.3 are satisfied. Therefore, if they exist, such structures will give
an Einstein metric in dimensions 47 4 3 for r > 0.

Two examples can be easily found. For r = 1, the space M™ = Sp(2)/ Sp(1), with
Sp(1) embedded maximally in Sp(2) has complexified isotropy representation S®C?
and the only invariant metric is a structure with invariant torsion SU(2). Similarly,
for r = 2, M" = G,/ SU(2), again with SU(2) maximally embedded, is isotropy
irreducible and carries an Einstein metric with invariant torsion. We will see later that
these are the only examples that arise from this family of representations of SU(2).

3.5. Homogeneous Spaces. Let M = K/G be a reductive homogeneous space with
K and G semi-simple and compact. Write € = g+ p, then 7, M = p and the negative
(-,-) of the Killing form induces a positive definite g-invariant inner product on p and
hence a Riemannian metric on M. The canonical connection on M is a G-connection
with torsion £(X,Y, Z) = ([X, Y], Z), for left-invariant vector fields X, Y and Z.

If p is an irreducible g-module then M = K/G is isotropy irreducible. These
spaces have been classified by Wolf [13]. One can check directly that condition (b)
is satisfied for all these spaces. However, with W = R, it is not always the case that
V' = p satisfies condition (a), even though K/G is well-known to be Einstein.

3.6. Three-Sasakian Manifolds. 3-Sasakian manifolds give another class of Ein-
stein manifolds with invariant torsion. However, in this neither condition (a) nor
condition (b) is satisfied.

4. GENERAL RESULTS

Some general results may be obtained by studying conditions (a) and (b) of Theo-
rem 2.3 in more detail.

First we note that for any representation W in V ® g* will have R as a subrepre-
sentation of W @ W. Thus condition (a) implies that S2V does not contain a trivial
representation. It is straightforward to check that V' is then forced to be irreducible.
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For irreducible representations V', condition (b) is easy to satisfy given the current
state of knowledge of the holonomy classification. Let us consider Berger’s approach
to the holonomy problem [2] as explained by Bryant [5] and Schwachhéfer [11].

Definition 4.1. Let G be a subgroup of SO(n). Define the Berger algebra g of G by
g={R(X,Y):ReX(g), X,Y eV}
It is easy to show
Lemma 4.2. The Berger algebra g is an ideal of g, i.e., g < g, and K(g) = K(g).

Berger two necessary conditions for g to be a holonomy algebra, if G acts irreducibly
on R™. The first is that K(h) should be strictly smaller than X(g) for any proper
subalgebra h of g. This may be rephrased as g = g. The second criteria comes from
consideration of the possible covariant derivatives of curvature tensors. It turns out
that this second condition merely distinguishes holonomy groups which can only occur
for symmetric spaces from the others. The work on existence of metrics with non-
symmetric holonomies now implies that each algebra satisfying Berger’s first criterion
is the holonomy algebra of some torsion-free connection.

Theorem 4.3. g is a holonomy algebra of an irreducible Riemannian manifold if and
only if g = g.

We may thus calculate the space X(g) by considering all ideals of g and comparing
them with holonomy representations.

Corollary 4.4. Suppose G is a proper subgroup of SO(n) acting irreducibly on V' =
R™. Then X(g) consists only of Einstein tensors unless n is even and g = u(n/2).

Proof. If G is simple then either g is a holonomy algebra or g = {0} and there is
nothing to prove. a

Suppose G is not simple and that {0} # g # g. If g acts irreducibly on V' then
the only possibility we have to rule out is g = u(n/2), if n is even. However u(n/2)
is maximal in so(n), and so the fact that the containments g < g < so(n) are strict,
rule out this case. -

If the representation of h; := g on V is reducible then g = h; ® h,. Depending
on the type of the representation V, we may decompose V ® C as a sum of 1, 2
or 4 tensor products of irreducible h;-modules over C. If b, is not Abelian, we find
that V' is the isotropy representation of a Grassmann symmetric space. The space of
curvature tensors for such representations are known and the condition g = h; can
not be satisfied. If one b, is Abelian, then a direct calculation shows that there are
no non-trivial curvature tensors with values in b;. O

We now return to condition (a) of Theorem 2.3. When W is a trivial representation
and V is irreducible, (a) is equivalent to SZV not containing a copy of V.
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Lemma 4.5. If V is irreducible, ¢ lies in a trivial submodule of V' ® g+ and S3V has
no submodule isomorphic to V, then £ is a three-form & C A3V.

Proof. If V ® g contains a trivial summand, then we have V C g+ C A?V. Now,
under the action of SO(n), we have

(4.1) VANV =V+AV+U,
where U is irreducible, and we also have
(4.2) VSV =8V+U.

Our hypotheses imply that for the action of G, (4.2) contains no trivial submodules.
In particular, UY = {0}. Therefore, any trivial submodule of (4.1) lies in either V
or A®V. But V is irreducible, so any trivial module is in A3V O

Thus for V irreducible, condition (a) of Theorem 2.3 forces the torsion to be to-
tally skew. This is interesting, as such a totally skew condition on torsion seems
to be natural in physical consideration of for example hyperKéahler geometries with
torsion [6].

Interestingly, Lemma 4.5 has a converse.

Proposition 4.6. If M is a Riemannian manifold with a G-structure whose natural
metric connection has torsion & and € is a three-form, then V¢ does not contribute
to the curvature of the Levi-Civita connection and condition (a) of Theorem 2.3 can
be replaced by

(@) Wewns2v ={0}

Proof. The tensor V¢ is a sum of four tensors W(X,Y, Z, W) which are totally skew
in their last three entries. The corresponding element of S?(A?V) is

VXY, Z W) =X, Y, ZW) - p(Y, X, Z, W)
+¢(ZJ/V,X,Y) - Tﬁ(VV; ZaX: Y)
Now one can check directly that v is skew in its first two indices and 1[1(Y, Z,W,X) =

—”JJ(X .Y, Z W). Therefore 1 is a four-form and so orthogonal to the kernel of the
Bianchi map b: S?(A?V) — A*V. O

As we have already seen, for W trivial and V irreducible, condition (a’) of Propo-
sition 4.6 is satisfied. We therefore have:

Theorem 4.7. Let (M, g) be a Riemannian manifold with structure group G acting
irreducibly and for which the natural torsion is invariant and totally-skew. Suppose
that the structure group is not SO(n) or U(n/2). Then g is Einstein.

In certain cases we can show uniqueness of the Einstein metric.
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Theorem 4.8. Let (M, g) be a complete Riemannian manifold satisfying the hypothe-
ses of Theorem 4.7 with structure group G and tangent representation V. Suppose
that the space of invariant three-forms (A3V)¢ on M is one-dimensional and that the
scalar curvature of M is non-zero. If g # g,, then M is homogeneous and isometric
to an isotropy irreducible space.

Sketch Proof. If the Berger algebra g is non-trivial then it acts on V preserving &.
Proposition 3.1 then implies that g = {0}, as we have specifically excluded the other
cases apart from su(3). But for su(3) the space of invariant three-forms has dimen-
sion 2 rather than 1, so this case does not occur.

Now we see that R} = 0 and by Proposition 4.6 R™ = 0. Thus R is algebraically
determined by the torsion &. Write R = R(£?).

As the space of invariant three-forms is one-dimensional, locally the £ is propor-
tional to a V-parallel three-form ¢. Write &€ = fo. Then R(£2) = f?R(y?), and in
particular the scalar curvature s(£2) = f2s(p?). But s(£?) is constant, as g is Ein-
stein, and s(¢?) is constant, since it is parallel for V. Therefore, f is constant under
the hypothesis that s(£2) # 0.

We thus have that V& = 0 and VR = 0. By definition this means that V is an
Ambrose-Singer connection. Results of Tricerri & Vanhecke [12] imply that M is a
homogeneous space with isotropy group stab RNstab £&. However, this group contains
GG, and so M is isotropy irreducible. O

Example 4.9. One instructive example might be helpful at this point. As mentioned
above, the Aloff-Wallach spaces My, = SU(3)/ U(1);, carry invariant metrics of
weak holonomy G,. However, in dimension 7 we also have the isotropy irreducible
space M7 = Sp(2)/Sp(1) with isotropy representation S°C?. Theorem 4.8 applies
to the SU(2)-structure of M” and shows that this is the only complete metric with
invariant torsion.

Now G has a subgroup SU(2) that acts on the seven-dimensional representation
of Gy as S®C?. Remarkably, the space of invariant tensors in 7" ® A2T™* is the same
for both groups.

If we look parameters k and ¢ such that My, carries such an SU(2)-structure we
find that topologically the only solution is k = 1 and ¢ = 4. Thus M;4 has an
invariant metric with weak holonomy G, and a reduction of the structure group to
the seven-dimensional irreducible representation of SU(2). Theorem 4.8 implies that
with respect to the structure group SU(2), M; 4 can not be a manifold with invariant
torsion, even though it has invariant torsion with respect to Gy. We can see that this
is not a contradiction by considering the relations

vV =V% 4+ £92
— @5u(2) + é-su(Z)
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This implies £°4?) = ¢8 4 (V® — V*4?)). The last bracket takes values in g, © su(2)
and there is no particular reason for it to vanish. Thus, if £92 is invariant, this will not
imply that ¢*4(?) is. However, the converse is true, and the SU(2)-structure on M7 is
also a metric of weak holonomy Go.

Giving this result it is therefore interesting to find representations V' of GG for which
the dimension of (A%V)Y is at least 2, as these would give some hope of giving non-
homogeneous Einstein structures. It is interesting to remark that there are isotropy
irreducible spaces that satisfy this condition. For example, if G is a simple group
with Lie algebra not equal to su(2) or sp(2) then the isotropy irreducible space

SO(dim G)
G

has at each point a two-dimensional family of invariant three-forms if G is not of
type A,, n > 3, and a four-dimensional family in these remaining cases. There
therefore appears to be a second natural three-form for these representations and it
would be interesting to determine that and to see whether non-homogeneous Einstein
structures can be constructed.
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