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OPTIMAL CONTROL PROBLEMS ON THE LIE GROUP SP (1)
MIRCEA PUTA

ABSTRACT. An optimal control problem on the Lie group SP (1) is discussed and
some of its dynamical and geometrical properties are pointed out.

1. INTRODUCTION

Recent work in nonlinear control has drawn attention to dritf-free, left invariant
control systems on matrix Lie groups. We can remind here the case of the matrix
Lie group SO (3) studied in connection with the spacecraft dynamics [4], [8], the case
of the matrix Lie group SE (3) studied in connection with the control tower problem
[6], the case of the matrix Lie group SO (n) studied in connection with the electrical
circuits [11] and the case of the matrix Lie group U(n) studied in connection with
the molecular dynamics [1]. The goal of our paper is to make a similar study for the
matrix Lie group SP (1).

2. THE LIE GROUP SP (1)
Let H be the noncommutative field of quaternions, i.e.,

H={qg +i +j2+kg | 9,q0,90,¢95 € R}
Then we have the usual identification:
H ~ R

We denote by GL;(H) the group of automorphisms of H, that is the group of trans-
formations ¢t : H — H, of the form:

& = ak, (2.1)
where £, € H ~ R* and « € H\ {0}, and by SP (1) the subgroup of GL,(H)
consisting of unitary automorphisms of H with respect to the canonical Hermitian
product:

E-n=£&7, VEneH~RY
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that is, t € SP(1) iff it is of the form (2.1) with
a-a=1.

On the other hand, the canonical scalar product on R* is expressed in quaternionic
form by:

< &,m>= Re(£,7),
where £,7 € H ~ R*. Tt follows that
a&za%+a§+a§+a§,
and then one get the identification:
SP (1) ~ S* c R%.

Let Im H ~ R3 be the space of imaginary quaternions. Since each element of SO (3)
can be expressed in quaternionic form by:

£ = ¢€q,
where g € H, gg =1, &,£ € Im H, one has the isomorphism:
SO (3) =~ SP(1)/Zs,
where
Z, ={1,—-1}.
Correspondingly we have an identification of the Lie algebra so (3) of SO (3) with

the Lie algebra sp (1) of SP (1). In terms of matrices one can get also the following
identification:

0 —a1p —ag —as
~ ay 0 —as [¢5)
sp(l) = o as 0 —a, ai,a0,00 € R
_a3 —Qa2 ai 0
Let {A;, A, A3} be the canonical basis of sp (1) given by:

0 -1 0 0] 0 0 -1 0 00 0 -1
1 00 0 0 0 01 00 -1 0
A=ty o0 1 P%2={1 o0 ool"MB=lo1 0 o0
0 01 0_ 0 —1 00 1 0 0 O

Then the Lie algebra structure of sp (1) is given by the following table:
[': ] ‘ Al A2 A3
A 0 24; —2A4A,
Ay | 243 O 24,
As | 24, —-24; O
Let us consider now on SP (1) the left invariant system:

9= g(Aur + Aguy). (2.2)
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THEOREM 2.1 The system (2.2) is controllable and it is a single bracket one.
Proof. Indeed, the proof is a consequence of the fact that sp (1) is generated by
A17A27 [AI:AQ]- u
REMARK 2.1 It is not hard to see that the controlled system (2.2) can be put in
the equivalent form:

T = 2Ugy
y =2 (2.3)
Z = XUy — YU '
Tu + yus = 0.
]
3. AN OPTIMAL CONTROL PROBLEM
Let J be the cost function given by:
1, 2
J (u1,u9) = 5/ [cruf(t) + couy(t)]dt; ¢ >0, co > 0. (3.1)
0

Then we can prove:
THEOREM 3.1 The controls that minimize J and steer the system (2.2) from
X=Xyatt=01t X =X; att=t; are given by:

1 1
up = —Pr; uy = — P,
C1 Co
where the functions P; are solutions of:

(. 2

P1:——P2P3
Co
P=2pP
¢ Be=hby (3.2)
. 2 2
P3:<———>P1P2.
| Co C1

Proof. Simply apply Krishnaprasad’s theorem, [3]. It follows that the optimal

Hamiltonian is given by:
1 /P P?
H=-—"+-2%). 3.3
2 < C1 + Co ) ( )

It is in fact the controlled Hamiltonian H given by

1
H = Pl’U,l + PQUQ — 5(61’1];? + Czu%),
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which is reduced to (sp (1))* via the Poisson reduction. Here (sp (1))* is (sp (1))* ~
R? together with the minus Lie-Poisson structure given by the matrix:

0 —2P; 2P,
I[I=] 2m 0 —2P, |. (3.4)
—2P, 2P, 0
Then the optimal controls are given by:
1 1
U1:—P1; UQZ—PQ,
C1 Co

where the functions P; are solutions of the reduced Hamilton’s equations (or momen-
tum equations) given by:

. . .t
B By =],

which are nothing else but the required equations. [ ]
REMARK 3.1 The function C' given by
C=P +P;+P; (3.5)

is a Casimir of our configuration ((sp (1))*,[]) = (R I]), i-e.,

(vey -] =o.

REMARK 3.2 The phase curves of our system (3.2) are the intersections of the
elliptic cylinders

Pt P}

L 4+-2=9H,

C1 Co
with the spheres

P+ P} +P;=C.

THEOREM 3.2 The dynamics (3.2) is equivalent to the pendulum dynamics.
Proof. Indeed, H, is a constant of motion, so

ﬁ+§:ﬂ

C1 Co
Let us take now

Py =1,/cicos0
P, = 1\/2siné.

Then
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or equivalently,
, o P
f = — |21
Co PQ

_ C1 P2P3 2
B C2 Py C2

Pj.
4/ C1C2 3

Differentiating again, we get

é = 2[2\/6102(01 - 62) sin 26.

Thus, pendulum mechanics as required. [ ]
THEOREM 3.4 The system (3.2) may be realized as a Hamilton-Poisson system
in an infinite number of different ways, i.e., there exists infinitely many different, in
general nonisomorphic Poisson structures on R? such that the system (3.2) is induced
by an appropiate Hamiltonian.

Proof. Indeed, to begin with, let us observe that our system can be put in an
equivalent form:

P =VC x VH,,

where P = [Py, P2, P3]' and C and H, are respectively given by (3.5) and (3.3). Now,
an easy computation shows us that the system (3.3) may be realized as a Hamilton-
Poisson system with the phase space R3, the Poisson bracket {-, -} given by

{f:g}ab = _VC, ' (Vf X Vg)a
where a,b € R,

C' = aC + bH,,
and the Hamiltonian H' defined by
H' = cC + dH,,
where ¢,d € R, ad — bc = 1. [ ]

THEOREM 3.5 The system (3.2) has a Lax formulation.
Proof. Let us take:

0 - B
L = P3 0 —P1
-P P 0
i 2 2 2 T
0 ~py (— - —> P,
C1 Cy C1
2
B = ——P; 0 0
C1
2 2
(— — —) P, 0 0
L C1 Co .



344 MIRCEA PUTA

Then a direct computation shows us that the system (3.2) can be put in the equivalent
form

L =L, B],
as required. [ ]
REMARK 3.3 As a consequence of the above theorem it follows that the flow of
the system (3.2) is isospectral. |

THEOREM 3.6 The system (3.2) may be explicitely integrated by elliptic functions.
Proof. It is known that:

P1262+P2201 :2H06102=l,

and
P!+ P} + P} =C,

are constants of motion. Then an easy computation shows us that:

Co—C (&)
and
P12 _ C1 |:C(31 -1 . P?’Q:| ‘
C1 — Cy C1

Using now the third equation from (3.2) we get

(Pg)zzi(Pg_CCQ—l) <CCI_Z—P32)

C1C2 (&) C1
that is:
Ps dt
£ = /
P3(0) \/i (Pg _ Co —l) (0(;1 iy _sz)
C1Co Co C1
which shows that P;, and hence P, P, are elliptic functions of time. [ ]

4. NUMERICAL INTEGRATION OF THE SYSTEM (3.2)

In this section we shall discuss the numerical integration of the system (3.2) via
the Lie-Trotter integrator and we shall point out some of their geometrical properties.
To begin with, let us observe that the Hamiltonian vector field Xy, splits as follows:

XHa = XHI +XH27

where , ,
o,
2 (&1 2 Co

The integral curves of Xy, and Xy, are given by:

P(t) = exp(tXn,) - P(0) = ¢:1(¢, P(0))

H,
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and respectively

P(t) = exp(tXg,) - P(0) = ¢o(t, P(0)).
Now, following [10] (see also [5] and [9]), the Lie-Trotter formula gives rise to an
explicit integrator of the equation (3.2) namely:

PH = ¢ (t, go(t, P®)),

or explicitely:

( 2P 2P
PFtY = Pk cos 2(0)15 — P¥sin 2(0)15
Co Co
2P (0 2P5(0 2P (0
Pk = Pkgin 1(0), i 2120 )t—i—Pchos 1(0),
C1 Co C
2P (0 2P (0
{ +PFsin i )tcos 1 )t (4.1)
C1 C1
2P, 2P 2P,
PF = PFcos 1(O)tsin 2(0)t — PFsin l(o)t
C1 Co C1
2P (0 2P, (0
+P¥ cos i )tcos 2 )t.
L C1 Co

Some of its properties are sketched in the following theorem:

THEOREM 4.1 The numerical integrator (4.1) has the following properties: (i) The
numerical integrator (4.1) preserves the Poisson structure (3.4). (ii) The numerical
integrator (4.1) preserves the Casimirs of our configuration (R3,[]). (iii) Its restric-

1
tion to each coadjoint orbit (P2 + P+ P? =k, w, = E(PQdPl ANdPs — PsdPy NdP, —
PidPy A dPs)) gives rise to a symplectic integrator. (iv) The numerical integrator
(4.1) does not preserve the Hamiltonian H, given by (3.3).
Proof. The items (i)—(iii) hold because ¢; and ¢ are flows of some Hamiltonian

vector fields, hence they are Poisson maps. Item (iv) is essentially due to the fact
that

(H\, Hy} # 0.

5. STABILITY
It is not hard to see that the equilibrium states of our system (3.2) are:
er = (M,0,0); e = (0, M, 0); es = (0,0, M),

where M € R. Now we shall discuss their nonlinear stability. Recall that an equilib-
rium point p is nonlinear stable if trajectories starting close to p stay close to p. In
other words, a neighborhood of p must be flow invariant.

THEOREM 5.1 The equilibrium state ey is: (i) unstable, if ¢c; > co; (i) nonlinear
stable if c1 < co.
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Proof. First consider the system linearized about e;. Its eigenvalues are given by
solutions of the equation:

A ()\2 —aM?e 02) = 0.

CiCo
(i) If ¢; > ¢ then a root of the characteristic polynomial has positive real part, thus
e; is unstable as required. (ii) If ¢; < c¢o, then the characteristic polynomial has
two imaginary eigenvalues and one zero eigenvalue. Is the system stable? We shall
prove that it is, via the energy-Casimir method, [2], [7]. Consider the energy-Casimir

function: , \
1 /P P. 1
H,=-|—2++=2 —(P? 4+ P? + P?
0 2<Cl+62)+90<2(1+ s +P5) ),

where ¢ : R — R is an arbitrary smooth real valued function defined on R. Let
¢', ¢" denote its first and second derivatives. Now, the first variation of H, is given

by:
P]. PQ r
5H(p = C—5P1+C—5P2+Q0()(P16P1+P25P2+P35P3)
1 2
This equals zero at the equilibrium of interest if and only if:
1 1
(M) = ——. 5.1
¢ () = 6.1)

The second variation of H, at the equilibrium of interest is given via (5.1) by:

1
6P)° — —
C1Cy ( 2) C1

C1 — C2

(6P3)°.

§Hy(e)) = ¢ (%MQ) M?(6P,)? +

Since ¢; < ¢9; ¢1,¢2 > 0 and having choosen ¢ such that:

1
gDII <§M2) < 0’

we can conclude that the second variation at the equilibrium of interest is negative

definite thus e; is nonlinear stable. [
Similar arguments lead us to:

THEOREM 5.2 The equilibrium state e is: (i) unstable, if ¢; < co; (ii) nonlinear

stable, if ¢y > c5.

THEOREM 5.3 The equilibrium state es is always nonlinear stable.
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