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HYPERHOLOMORPHIC FUNCTIONS IN R*
SIRKKA-LIISA ERIKSSON-BIQUE

ABSTRACT. Let H be the algebra of quaternions generated by ey, e; and e;5 satisfy-
ing ejes = e12 and e;ej+eje; = —24;; for s = 1,2,12. Any element x in HOH may be
decomposed as £ = Px+Qzes for quaternions Pz and Qz. The generalized Cauchy-

H 3 4 s -9 4 o 0 _0 3
Riemann operator in R* is defined by D = Bog + gor€1 t+ 5,62+ 523 €3- Leutwiler

noticed that the power function (zg + z1e; + Z2es + x3€3)™" is the solution of the
generalized Cauchy-Riemann system z3Df 4+ 2f; = 0 which has connections to
the hyperbolic metric. 'We study solutions of the equation z3Df + 2Q'(f) = 0
(the prime / is the main involution) called hyperholomorhic functions. If f =
fo + fie1 + foea + fses for some real functions fo, f1, f2, fs then f is the solu-
tion of the generalized Cauchy-Riemann system stated earlier.

1. INTRODUCTION

Let H be the associative algebra of quaternions generated by e;, e; and e satisfying
the usual relations
ef:egzeﬂ:—l

€1€2 = €12 = —€12.

Set e;es = e15. The conjugation q of the quaternion ¢ = ¢t + xe; + yes + ze19 is defined
by

q=1—1xe4 —yes — zéqo.
The involution ' : H — H is the isomorphism defined by

¢ =t—ze, — yey + zeys.
The second involution * : H — H, called reversion, is the anti-isomorphism defined
by

q- =1+ ze; + yes — zeqa.

We consider the set HBH with the usual addition and the multiplication defined
by
(1) (w1, u9) (v1,v2) = (Urv1 — UV, U Vg + UgVY)
125
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It is known that
HoH = CY, 3,

where C/ 3 is the Clifford algebra generated by the elements e;, e and e3 satisfying
the relation e;e; + eje; = —20;; for the usual Kronecker delta d;;. The isomorphism
o : HoH — Cly 3 is given by ¢ (g1, ¢2) = ¢1 + gae3. We identify the space HGH with
Clos.
The elements x = t + xe; + yey + wes for t,z,y, w € R are called paravectors in
H®H. The space R?* is identified with the set of paravectors. We also denote ey = 1.
The involution () is extended to an isomorphism in HGH by

(2) (¢1 +goe3) 1 = g — gz (g; € H) .
Note that

(3) esq=q'es

for any ¢ € H.

The involution * is extended to HGH as follows
ey = e3, (ab)” = b*a*
(a+b)"=a"+0b
and the conjugation by @ = (a*)' = (a')*. Note that ab = ba.

Paravectors can be characterized as follows.

Lemma 1. An element x € HBH s a paravector if and only if

3
(4) Zeiacei = —22".
i=0

Proof. 1t is easy to see that the equation (4) holds for all e; with ¢ = 0, ..., 3. Using
the linearity we infer that it holds for all paravectors. Conversely, calculate first

3
Zeiejekei =2eje, for0<j<k<3
i=0

3
E e;e1ege3e; = —2eieses.
=0

Hence comparing the components of the left and right side of the equality (4) we note
that the equality (4) implies that x has to be a paravector. O]
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The projection operators P : HOH—H and () : HoH— H are defined by equations
P (g1 + ges) = 1 and Q (g1 + gees) = qo for ¢; € H. Applying (2) we note that
P(a') = (Pa)" and Q (a') = — (Qa)". By virtue of (1) we obtain
(5) P (ab) = PaPb — Qa (Qb)",
(6) Q (ab) = PaQb + Qa (Pb)".

The notation f € C*(Q2) for a function f : Q@ — H@ H means that the real
coordinate functions of f are k-times continuously differentiable on Q C R*.

2. HYPERHOLOMORPHIC FUNCTIONS

The Cauchy Riemann operator is defined by
3
of
Df = i——
1= 2

for a mapping f: Q — HeH, Q C R*, whose components are partially differentiable.
An operator D is defined by

63:0 Z K (%]

Note that DD = DD = A\, where A is the Laplace operator in R*. If Df = 0 the
function f is called (left) monogenic. For the reference on properties of monogenic
functions in the general case see [1] and for quaternions [21].

Using (5) we obtain

2. 0Pf Q)
(7 pop=Y e -2
.:O 1

Similarly, the property (6) implies that

2

an oP'f
(8) Z 8$Z Oxs

The modified Cauchy-Riemann operator M is defined by
2
(Mf) (z) = (Df) (z) + x—3Q’f
and the operator M by

(M) (2) = (D) (x) - %Q’f.
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Note that

(M) @)+ (VF) @) = (DF) () + (D) (2) = 250
and
(9) Df=(D(f), Mf=(M(f)).

Let 2 C R* be open. If f € C?(Q) and M f () =0 for any z € Q\ {z | z3 = 0}, the
function f is called hyperholomorphic in 2. If f is hyperholomorphic in €2 and
f= Z?:o fie; for some real functions f; the function f is called an H-solution.

The H-solutions in R* were introduced by H. Leutwiler ([17]).They are notably
studied in R" by H. Leutwiler ([18], [19], [20]), H. Hempfling ([13], [14], [15]), J.
Cnops ([4]), P. Cerejeiras ([3]) and S.-L. Eriksson-Bique ([6], [11], [8], [9])- In R® the
hyperholomorphic functions are researched by W. Hengartner and H. Leutwiler ([16])
and in R” by H. Leutwiler and S.-L. Eriksson-Bique ([11]).

Applying (7) and (8) for z3M f = 0 we obtain the following system.

Proposition 2. Let Q be an open subset of R* and f : Q) — HOH be a mapping with
continuous partial derivatives. The equation M f = 0 is equivalent with the system of
equations

Z3 (Dz(Pf) - a(%?’) +2Q'f =0,
D, (Qf)+ &L =0,

ox3

2 0
where Dy =7, eia_a'cfi'

Using the preceding result we infer the relation between monogenic and hyperholo-
morphic functions.

Proposition 3. Let Q) be an open subset of R*. Then if f : Q — HSH is monogenic
and Qf =0, then f is hyperholomorphic.

Proposition 4. Let f : Q — HPH be twice continuously differentiable on an open
subset Q of R*. Then

_ — oP
MMf:MMf:A(Pf)—%axf
2 00f 2

where A is the Laplacian in R*.

Proof. The property (8) implies that

oP'f
8x3 ’

QMf = QDf + %Q (@Q'f) = DsQf +
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Hence we have

MMf =DDf+2D (Qlf) _2 ((DQQf)'+an>.

I3 8373

Since by (9) and (3)
) (Q'f) _DQf n esQ'f _ (DQS)' n

23 T3 w2 a3
_ (DQf)  10Qf QS
= €3+ —5 €3,
T3 T3 013 x3

we obtain

2 OP

MMf = APf——a f ( Qf——an +2@)

x3 Oxs T3 0T3 73

From the definitions we note that M f + M f = 25—35{). Hence we obtain
MMf+ M*f=2M o\ _ zaMf
63:0 aiL'()

=(M+M)(Mf)=MMf+ Mf,
which implies M M f = MM f, completing the proof. O
Corollary 5. If f : Q@ — H@H is hyperholomorphic then

OPf
1 APf —2 =
( 0) I3 f 81E3 0
and
0

(11) ~20f = 30 (QF) ~ 2050

Conversely, if the equations (10) and (11) hold, then M f is hyperholomorphic.

The equation (10) is the Laplace-Beltrami equation associated with the hyperbolic
metric
ds®* = z3” (dag + do; + dzj + da3) .

The second equation (11) presents the eigenfunctions of the Laplace-Beltrami operator
corresponding to the eigenvalue —2.

Using standard methods we obtain the following observation.

Lemma 6. Let u : 2 — R be twice continuously differentiable on an open subset €2
of R*. If u satisfies the equation
ou

(12) —2u (z) = 23 Au (x) — 23:363;3

( )’ r = ($0,$1,$2,x3)



130 SIRKKA-LIISA ERIKSSON-BIQUE

then the mapping g : @ — R defined by

_ )R a0,
g(x)_{a—"(x), if 25 =0,

Ox3
is harmonic on Q\ {x3 = 0}. Moreover, if u € C*(Q2), then g is harmonic on ).
Proof. If x3 # 0, then
_ou_ 2w  2u
a3 w2013 ad
Using (12) we note that Ag = 0. Since by (12) ;—i = 2 Au, we see that g € C? ()
and therefore Ag = 0 on € provided that u € C? (2). 0O

Proposition 7. If f : Q — H®H is hyperholomorphic and f € C3(Q), then Af is
monogenic and therefore also harmonic.

Ag

Proof. Assume that f : 0 — H@®H is hyperholomorphic. Using preceding Lemma
and A = DD we obtain

Qf

xs3

OZDEMf:DEDfHA( ):D(Af).

Hence A f is monogenic and furthermore harmonic. O

Example 8. Let f = u + v be holomorphic in an open set 2 C C. We define the
mapping 7 : R* = C by

T (X0, T1, T2, T3) = To + T11

and the mapping p : R* — C by

T, T1, To, T3) = To + 04/ T2 + 22 + z2.
1 2 3

Then the function f o is hyperholomorphic in the set {z | (z) € Q}. Moreover the
function f defined by
~ Tri1€1 + Taey + T3€3
Flo)=uop(n) + ZALTEETE, ()
\Vx{+ 15+ 73

is hyperholomorphic in the set {z |p (x) € Q} (see [17, p.157]).

Proposition 9. The space of hyperholomorphic functions in an open subset ) of R*
forms a right quaternionic vector space.

Proof. Let ¢ € H. Using (6) we notice that

M (fqg)=(Df)q+ 2%3‘@ =(Mf)q,

implying the assertion. O
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The following result is easy to see.

Lemma 10. Let ) be an open subset of R*and f : Q — H®H be hyperholomorphic.
Then g—jl s hyperholomorphic for 1 = 0,1, 2.

Product of hyperholomorphic functions is not necessarily hyperholomorphic.

Theorem 11. Let Q be an open subset of R*and f : Q — HOH be hyperholomorphic.
Then the product f (x)x is hyperholomorphic if and only if f is an H-solution.

Proof. Assume that f : 2 — He®H and f (z) z are hyperholomorphic. Then by (6)
we have

Q' (fx)

xs3

3
0=M(fzx)= (Df)x—i—Ze,-fei—i-Z
i=0

! P Pl ! 3
T3 T3 =0
Since Px = x — x3e3 and Q@ = x3 we obtain

3

3
0= (Mf)x—i—Zeifei—2Q'f63+2P'(f) :Zeifei—i-Qf'.

i=0 i=0
By virtue of Lemma 1 we find out that f is para vector valued. The converse statement
is proved similarly. O

Corollary 12. The function ™ is an H-solution.

Theorem 13. Let Q) be an open subset of R*and F : Q — HOH be hyperholomorphic.
Then the function f (x) = F (z) z~! is hyperholomorphic in Q\{0} if and only if it is
paravector valued.

Proof. Assume that F : Q — H®H and f (z) = F (z)z~! are hyperholomorphic.
Since F (z) = (F (z)x ')z we obtain from the preceding theorem that (F (z)z ')
is para vector valued. On the other hand, assume that f is vector valued and F' is
hyperholomorphic. Then by (6) and Lemma 1, we conclude

0=MF=(Mf)z+> eife;+2f = (Mf)z
j=0

and therefore f is also hyperholomorphic. O
Corollary 14. The function x=™ 1is an H-solution.

Theorem 15. Let 2 be an open subset of R* and f : Q — HOH twice continuously
differentiable. Then f is hyperholomorphic if and only if for any a € Q and any ball
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B (a,r) with B (a,r) C ) there exists a continuous differentiable mapping H from
B (a,r) into H satisfying the equations

(13) f=DH
and

0H
(14) Tn AH =25 = =0
on B (a,r).

Proof. Assume that a mapping H : B (z,r) — H satisfies (14) and f = DH. Since
DD = A we have z3Df = x5 A H. The equality —2% = @' f follows from

— OH
Qfes=QDH = —esy
T

Hence M f = 0 and therefore f is hyperholomorphic.

Conversely assume that f : Q — H®H is hyperholomorphic. Set Pf = f, +
fie1 + foeo + fizein. Let B(a,7) be a ball in R* centered at a = (ay, ..., a,) satis-
fying B (a,r) C Q. Let s; : (B(a,r) N{z |23 =a3}) — R be a twice continuously
differentiable solution of the Poisson equation (which exists for example by [2, p.171]

)

ASi (j) = fz (i’, 03) .
for i = 0,1,2,12 and a ball B ((ag, a1,a9),7). Set s = Zic{0,1,2,12} s;e; and define a
mapping H : B (a,r) — H by

H () = —/ng’f(is,t)dt+Dgs.

Then we have by Proposition 2

DH (z) = e,2Q'f (x) — wn DyQ'f (%,t) dt + Dy Dys

an

In 8P B B
=Qof () en +/ 8xf (Z,t)dt + (Pf) (%, a,)
= f(2).
Since the image space of H is H we note that
0H
Qfes = —638—-
Z3
Using the assumption f is hyperholomorphic we obtain
— OH
3

Hence the mapping H satisfies (14), completing the proof. O
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Hyperholomorphic functions may be obtained from H-solutions as follows.

Theorem 16. A mapping f is hyperholomorphic on a ball B (a,7) C R* if and only
iof there exist H-solutions g; such that

f = g0+ gie1 + g2e2 + gioeis.

Proof. Assume that f is hyperholomorphic on a ball B (a,r) C R*. Applying Theorem
15 we find a mapping H from B (a,r) into H satisfying the equations (14) and f =
DH. Denote H = hg + hie; + hoes + hiseis for real functions h;. Then the mapping
gi = Dh; is vector valued and therefore an H-solution. Clearly we have f = gy +
gie1 + goes + gi2€19. U

Corollary 17. If f is hyperholomorphic on Q, then it is real analytic on Q\ {x3 = 0}.
Moreover, if f € C*(Q)is hyperholomorphic on Q, then it is real analytic on .

Proof. The H-solutions are real-analytic by [8, Theorem 4]. Hence the preceding
theorem implies the statement. O

The fundamental homogeneous polynomial H-solutions are defined as follows.

Definition 18. The homogeneous polynomials L, are defined for any multi-index
o« € N2 and a non-negative integer m by
1 glalpmtlal
The homogeneous polynomial H-solution Ty of degree m is defined by
T
ox®
and T (x) = 0 for any x with z3 = 0.
Theorem 19. The set {LS, | |of < m}U{T?| |a| = m — n+ 1} is a basis of the right
H-module of homogeneous hyperholomorphic polynomials of degree m.

m

= alries

Proof. Using [8, Theorem 4] we obtain that the set in question is a basis of the
right H-module generated by the homogeneous polynomial H-solutions of degree
m. If f is a homogenous hyperholomorphic polynomial of degree m, then by The-
orem 16 there exists homogeneous polynomial H-solutions p; of degree m satisfying
f= Zie{0,1,2,12} pie;- Hence it is also a basis of the right H-module of homogeneous
hyperholomorphic polynomials of degree m. O

Theorem 20. Let f € C3(Q) be hyperholomorphic in a neighborhood of a point x =
(%, 21, %2,0). Then there erist constants by (c) , ¢ (a) € H such that

S L@+ > Teer ()

k=0 \|a|=0 la|=k—2

f
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Proof. Assume that f € C®(Q) is hyperholomorphic in a neighborhood of a point
T = (2,71,7,0). If T(y) = y+ a for a € R* with the last coordinate a3 = 0
then f oT is also hyperholomorphic. Hence we may assume that x = 0. Since f is
hyperholomorphic, f is real analytic and therefore admits the presentation

fFly)= > a®)y’

peNgt!

in some neighborhood B, (0). Applying M we obtain

0=Mf(y)=>_ M[> a(B)y’

k

o
=0 \|gl=k

Since M (Z| pl=k @ (B)y? ) is a homogeneous polynomial of degree k& we infer

MY a(B)y’| =0

|B|=Fk
This implies that Z| ﬁ|:ka(ﬁ) y? is hyperholomorphic. Applying Theorem 19 we
obtain the result. O
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