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By using the antisymmetry characteristic method implemented in computer pro-
grams written in Mathematica 4, from 230 space symmetry groups are derived
1191 Mackay groups of the type M1, 5005 groups of the type M2, 19467 groups
of the type M3, 72587 groups of the type M4, 191728 groups of the type M5, and
598752 groups of the type M6. Mackay groups are the minimal representation of
Zamorzaev’s multiple antisymmetry groups derived from 230 space groups.

1. Introduction

The concept of antisymmetry was introduced by H.Heesch [1]. The devel-
opment of the theory of antisymmetry can be followed though the works of
A. V. Shubnikov and V. A. Koptsik [2], A. V. Shubnikov and N. V. Belov
[3], A. M. Zamorzaev [4], A. M. Zamorzaev and A. F. Palistrant [5,6],
and Kishinev school [7]. Its natural generalization, the idea of multi-
ple antisymmetry was suggested by A. V. Shubnikov and introduced by
A. M. Zamorzaev in 1956 [8]. Few months later, another concept of mul-
tiple antisymmetry was proposed by A. L. Mackay [9]. After that, mainly
by the contribution of the Kishinnev school (Zamorzaev, Palistrant, Gal-
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yarskii,...), the theory of multiple antisymmetry was extended to all cate-
gories of isometric symmetry groups of the space En (n ≤ 3), different kinds
of non-isometric symmetry groups (of the similarity symmetry, conformal
symmetry, etc.) and P -symmetry groups [4,5,6,8,10]. On the other hand,
the investigation of Mackay approach to the multiple antisymmetry [9] was
not continued for many years.

In the case of l-multiple antisymmetry we have a discrete symmetry group
G with the set of generators {S1, S2, . . . , Sr}, given by the presentation
(generators and defining relations)

gn(S1, S2, ..., Sr) = E, n = 1, ..., s

and the set of anti-identities e1, e2, . . . , el of the first, second, . . ., lth kind
that generate the group Cl

2 and satisfy the relations

eiej = ejei e2
i = E eiSq = Sqei, i, j = 1, ..., l, q = 1, ..., r.

A group that consists of the transformations S′ = e′S, where e′ is the
identity, anti-identity, or a product of anti-identities, is called l-multiple
antisymmetry group. In particular, for i = j = l = 1 we have simple
antisymmetry.

All multiple antisymmetry groups can be divided into the groups of Sk

(1 ≤ k ≤ l ), SkMm (1 ≤ k, m; k + l ≤ m) and Mm type (1 ≤ m ≤ l).
Because the groups of Sk and SkMm types can be derived directly from
a generating group G and from the groups of the Mm type, only non-
trivial problem is the derivation of the Mm type (junior) groups. Hence,
in this paper are considered only the junior multiple antisymmetry groups,
i.e. the multiple antisymmetry groups isomorphic with their generating
symmetry group G, that posses a system of independent antisymmetries
of different kinds. The antisymmetries of different kinds are independent
if their corresponding anti-identities and their products generate the group
E(m) ∼= Cm

2 .

From every symmetry group G can be derived (2m − 1)...(2m − 2m−1) an-
tisymmetry groups of the type Mm with a fixed (common) subgroup H of
the index 2m, but some of them can be equal. For detecting the equal-
ity of multiple antisymmetry groups, different methods and criteria can be
used. Each junior multiple antisymmetry group G′ of the type Mm can
be denoted by a group/subgroup symbol G/(H1,H2, ..., Hm)/H, where G

is the generating (symmetry) group, Hi are its subgroups of the index 2
satisfying the relationships G/Hi

∼= C2 = {ei}, and H is the subgroup of
the index 2m– the symmetry subgroup of the group G′ (G/H ∼= Cm

2 ). A
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group/subgroup symbol does not uniquely define its corresponding mul-
tiple antisymmetry group, so we need to use the extended symbols. For
example, an extended symbol for the junior groups of the type M3 is
G/(H1,H2,H3)/(H12,H13,H23/H, where Hij = Hi ∩Hj (1 ≤ i < j ≤ 3).

According to Zamorzaev’s approach, two junior multiple antisymmetry
groups of the Mm type are equal iff their extended group/subgroup sym-
bols coincide. In this case, the order of the subgroups Hi in the ex-
tended group/subgroup symbol is important, and the anti-identities ei

(i = 1, 2, ..., l) are treated as non-equivalent and mutually different. They
can be interpreted as the representatives of different physical or geometrical
bivalent properties (e.g., as a change of the signs of the electrical charges
(+,−), magnetic orientations (S,N), etc.).

If we accept the equality of those anti-identities– their equal physical
or geometrical role, as the result we obtain Mackay l-multiple anti-
symmetry groups (M -groups). Hence, the difference between M -groups
(Mackay groups) and Z-groups (Zamorzaev groups) follows from the equal-
ity criterion. In the case of M -groups, two junior multiple antisym-
metry groups of the type Mm are equal iff their extended symbols are
G/(H1,H2, ..., Hm)/(Hi1 ,Hi2 , ...,Him/H, where (i1 i2 ...im) is the permu-
tation of the set {1, 2, ...,m}. Every Z-group can be obtained from the
corresponding M -group by permuting anti-identities, so we can conclude
that M -groups are the minimal representation of Z-groups.

The antisymmetry characteristic method (AC-method), introduced by
S. Jablan [11] is used for the derivation of multiple antisymmetry groups.

Definition 1.1 Let all products of the generators of a group G, within
which every generator participates once at the most, are formed, and then
subsets of transformations that are equivalent in the sense of symmetry
with regard to the symmetry group G are selected. The resulting system is
called the antisymmetry characteristic of the group G, denoted as AC(G).

The reduced AC can be obtained from a complete AC as the minimal
number of subsets which can give all the elements in AC by multiplication,
having in mind the idempotency.

Example 1.1 If the symmetry group pm is given by the generators
{X,Y, R}, XY = Y X, RY = Y R, R2 = (RX)2 = E the com-
plete AC is {R, RX}{Y }{RY, RXY }{X}{XY }, and the reduced AC is
{R,RX}{Y }.
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Definition 1.2 Two or more Z- or M -groups belong to a family iff they
are derived from the same symmetry group G.

There are some useful theorems [12, 13].

Theorem 1.1 Two Z-groups G′ and G′′ of the Mm type for fixed m, with
a common generating group G are equal iff they posses equal ACs.

Theorem 1.2 Two M -groups G′ and G′′ of the Mm type for fixed m, with
a common generating group G, are equal iff there is a permutation of the
anti-identities e1, e2, ..., em transforming AC(G′) into the AC(G′′).

Every AC(G) completely defines the series Nm(G) and Mm(G), where
Nm(G) and Mm(G) denote, respectively, the number of Z- and M -groups
of the Mm type for each particular m (1 ≤ m ≤ l).

Theorem 1.3 Symmetry groups possessing isomorphic ACs generate the
same number of Z- or M -groups of the Mm type for each particular m;
groups derived correspond with each other with regard to structure.

Corollary 1.1 The derivation of all Z- or M -groups can be completely
reduced to the construction of all non-isomorphic ACs and derivation of
the corresponding groups from those ACs.

The papers [12,13] contain the complete list of non-isomorphic ACs with
the generators and the comparative list of the numbers Nm and Mm corre-
sponding to those ACs. All the results in [12,13] are obtained ”by hand”,
and our recent results are obtained by the use of the computer programs.

2. Mackay groups and their derivation

In the paper Mackay groups and their applications by S. Jablan [13] one
can find survey results about Mackay groups and their applications. The
open question that remained there was to find effective algorithms for the
derivation of Mackay groups from the space groups G3. Another problem,
proposed by A. F. Palistrant and connected with the derivation of Mackay
groups was to obtain multi-dimensional symmetry groups of the categories
G63 and G653. For that, it was necessary to generalize space groups G3 by
using 32 P -symmetries, where P is isomorphic with , and 31 P -symmetries
where P is isomorphic with G30 [6]. To solve this problem and complete the
derivation of the symmetry groups of the categories G63 and G653, the only
class of P - symmetry groups that remained non derived are 221-symmetry
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groups, corresponding to the symmetry group P of the ”brick” mmm, i.e.
Mackay 3-multiple antisymmetry groups derived from the space groups G3.

In the papers [12,13], Mackay groups are derived from all ACs with n ≤ 4
generators. Hence, for the complete derivation of Mackay groups from 230
space groups we need to derive M -groups from the seven space symmetry
groups from the paper [10]:

7s with the AC: {A,B}{C, D,E, CDE};
9s with the AC:

{{C}{D, DA, DB, DAB}, {B}{E, EA, EC, EAC}, {A}{DE, DEB, DEC, DEBC}}
{{D, E, DE}, {DA, EA, DE}, {E, DB, DEB}, {EA, DAB, DEB}, {D, EC, DEC}
{DA, EAC, DEC}, {DB, EC, DEBC}, {DAB, EAC, DEBC}};

13s with the AC: {A}{{B, C}, {D,E}};
18s with the AC: {{A,B}, {C,D}, {E,F}};
19s with the AC: {A}{B, C}{D, E};
21s with the AC: {{A,B}, {C,D}, {AC, E}}; and

21h with the AC: [A,B][AE,BE]{[C,CE], [D,DE]}[A,B][AE, BE].

3. Systems of anti-identities

In order to derive M -groups from 230 space groups, first we need to find all
non-equivalent (n,m) systems of independent anti-identities ei (1 ≤ i ≤ m)
and their products, where n is the number of generators, and m indicates
the type of antisymmetry. They are the systems from which every anti-
identity can be obtained as independent by multiplying suitably chosen
elements of the system. For example, the system {e1, e1e2, e1e2e3} consists
from independent anti-identities or their products that generate the group
E(3) = {e1}×{e2}×{e3} ∼= C3

2 , and the system {e1e2, e1e3, e2e3} does not
satisfy this property. Every system is the set ordered in the lexicographic
order, and can be written in a more concise indexed form. In the indexed
form the identity E is denoted by 0, and every ei (1 ≤ i ≤ m) is denoted by
i. E.g., the indexed form of the system {e1, e1e2, e1e2e3} is {1, 1 2, 1 2 3}.
From here in the sequel all systems will be written in the indexed form,
and the term ”system” will have the meaning ”indexed system”.

Definition 3.1 Two (n,m) systems s1 and s2 are equivalent iff there exists
a permutation p from the permutation group Sn, such that p(s1) = s2.

The set of all mutually non-equivalent (n,m) systems with independent
anti-identities or their products will be denoted by Sn,m.
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In order to generate all such systems, we propose new and very efficient
recursive algorithm, implemented in the computer program developed in
Mathematica 4.

The basic idea of the algorithm is that every anti-identity em (1 ≤ m ≤ n)
or a product of the anti-identities, for fixed n (where n is the number of
generators of the generating symmetry group G), can be represented as the
vector of the length n. E.g., for e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
e1e2 = (1, 1, 0), e1e3 = (1, 0, 1), e2e3 = (0, 1, 1), and e1e2e3 = (1, 1, 1). The
product of anti-identities is defined as the addition of vectors (mod 2).

In order to derive the systems Sn+1,m from the systems Sn,m, to every sys-
tem from Sn,m the anti-identities of the (n+1)th level and their products are
added, and then repeated systems (equivalent to some of preceding ones)
are deleted. For example, in order to derive the systems S3,2 from the S2,2

systems {1, 2} and {1, 1 2}, we add to them 0, 1, 2, and 1 2, respectively,
and then delete all repeated systems. As the final result, we obtain 6 mu-
tually non-equivalent S3,2 systems: {0, 1, 2}, {1, 1, 2}, {0, 1, 1 2}, {1, 1, 1 2},
{1, 2, 1 2}, and {1, 1 2, 1 2}. Another algorithm is developed for the deriva-
tion of (m,m) systems. Combining those two algorithms, the systems of
higher levels (n ≥ 5) are obtained.

Every system s can be represented as a matrix S, where the rows are anti-
identities (as vectors). Anti-identities and their products belonging to a
system (n,m) are independent if there is a block in the matrix S of the
range m; for a system (m,m) the condition is det(S) 6= 0 (mod 2).

Definition 3.2 The morphism of the system s is the number of different
Z-systems that can be obtained from s by all permutations of anti-identities
(indexes different from 0) belonging to it.

For example, the morphism of the system {1, 2, 1 2} is 1, the morphism of
the system {1, 2, 3, 1 2} is 3, and the morphism of the system {1, 2, 3, 4, 1 2}
is 6.

The stabilizer Sts of the system s is:

Sts = {p ∈ Sm|p(s) = s},

and the orbit of the system s

sSm = {p(s)|p ∈ Sm}
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represents all different Z-systems. The morphism of the system s is equal
to the index of the stabilizer in the permutation group

morf(s) = |sSm | = |Sm : Sts|.
Also, because |Sm| = m!, it holds

m! = |Sts| ·morf(s).

M - systems are the transversal of the set of Z-systems, so the number of
Z- systems is

ZSn,m =
∑

s∈Sn,m

|sSm| =
∑

s∈Sn,m

|Sm : Sts|.

We can also define the morphism of AC with respect to the particular
system s inserted in it.

Definition 3.3 The morphism of AC with respect to the particular system
inserted in it is the number of different ACs which can be obtained from
AC(s) by all permutations p ∈ Sm.

This means that ACs of all Z-groups can be obtained as the orbits of ACs
of M -groups, and that all Z-groups can be obtained from M -groups by the
permutations of anti-identities.

If the number of all non-equivalent systems Sn,m is denoted by Mm,n, for
m = 2 and n = 2, ..., 10 there are 2, 6, 13, 23, 37, 55, 78, 106, and 140
systems, respectively, indicating the general formulas:

(1) M2,n = k
6 (4k2 + 15k − 7) for n = 2k,

(2) M2,n = k
6 (4k2 + 21k + 11) for n = 2k + 1.

For m = 3 and n = 3, ..., 17 there are 7, 33, 101, 249, 576, 1099, 1915,
3308, 4565, 8702, 13482, 20168, 29587, 42511, and 59959 systems Sn,3,
respectively. For m = 4 and n = 4, ..., 7 there are 51, 367, 1731, and 6248
systems; for m = 5, n = 5, 6 we obtain 885, and 10753 systems Sn,6, and
for m = 6 we obtain 44206 systems S6,6.

All those systems correspond to the AC of the general form {A1, A2, ..., An}
[14]. We already mentioned that for every system (and every Mackay
group) we can define its morphism: the number of different Z-systems
(Z-groups) that can be obtained from it by permuting anti-identities. If we
make all possible permutations in the M -systems, we have the Z-systems
obtained from the AC: {A1, A2, ..., An} (corresponding to the symmetry
group mm...m belonging to the category Gn0 of the space En).
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The combinatorial formula [14] for the numbers Nm corresponding to the
AC: {A1, A2, ..., An} is corrected:

Theorem 3.1 The number of all junior Z-groups derived from the AC:
{A1, A2, ..., An} is given by the formula

N(n, m) =
n∑

k=m

C(k,m)
(

n− 1
k − 1

)

where the coefficients C(k,m) represent the number of all different k-
element sets of the generators of the group Cm

2 :

(1) C(m,m) =
Qm

l=1(2
m−2l−1)

m! for k = m,

(2) C(m, k) =
(
2n

k

)−∑m−1
i=1 km

i C(m− i, k) for k > m,

where the coefficients km
i are given by: km

i =
∏i

l=1
2m−2l−1

2i−2i−1 .

This formula enables us to compute the number of different Z-systems for
every n.

We developed the recursive algorithms and the corresponding programs
able to generate systems Sn,m even for large values of n (n = 7, 8, 9, ...).
As a double check of the results obtained we used the number of Z-systems
(Theorem 3.1).

4. Derivation of Mackay groups from 230 space groups

The derivation of Sn,m systems was the first step in solving the general
open problem: derivation of all Mackay groups from 230 space groups G3

[13]. For the derivation of Mackay groups, we used the programs written
in Mathematica 4. Two different types of programs are used: first, for the
derivation of Sn,m systems, and the others for the derivation of M -groups
for every class of non-isomorphic ACs. In the case of space symmetry
groups G3 there are 34 such classes [11]. For every space symmetry group
(this means for each representative of the equivalence class of the space
groups according to the AC isomorphism) is written the particular program
based on the AC-method for the derivation of Mackay groups.

The numbers Mm of Mackay groups for ACs with n ≤ 4 generators are
given in the papers [12,13]. After the double check, all the results from
those papers are confirmed for m ≤ 3, and some of them are corrected for
m = 4.
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From symmetry groups with n generators we derived all antisymmetry and
m-multiple antisymmetry Mackay groups (1 ≤ m ≤ n). For every AC class
and fixed m we use the following algorithm:

(1) take the first system from the corresponding list of Sn,m systems;
(2) insert the system into the AC in all possible ways according to the

AC structure;
(3) for every particular placement, make all possible permutations of

anti-identities represented as vectors;
(4) delete all repeated ACs, save different ACs and the data describing

their morphism;
(5) repeat the procedure for all systems from the corresponding list of

Sn,m systems.

As the result is obtained the complete list of M -groups derived from the
given AC.

For a relatively small number of generators and low antisymmetry levels,
this algorithm is fast enough. Because of a large number of permutations
and systems exceeding computer memory, systems S5,5, S6,5, and S6,6 we
divided into the specific equivalence classes and worked only with their
representatives.

To detect systems that result in the same number of M - (or Z-groups), we
need to consider combinatorial placements of elements. For the derivation
of Z-groups by using AC-method [11,15], S. Jablan used the type of AC

with respect to the decomposition of AC that can occur in the transition
to every next antisymmetry level. Because of the action of permutations,
it was not possible to use the same idea in the case of Mackay groups, so
we modified it for M -groups.

Definition 4.1 Every system s can be divided into lexicographically or-
dered subsets consisting from equal elements. The list of lengths of those
subsets will be called the set type of s.

For example, the set type of the system {1, 1, 2, 3, 1 4, 1 4} is {2, 2, 1, 1},
and the set type of the system {0, 1, 2, 3, 1 4, 3 4 5} is {1, 1, 1, 1, 1, 1}. The
systems of the same set type give the same number of placements in any
AC, that correspond to each other with the regard to the structure.

Definition 4.2 Let us consider any given system s (s ∈ Sn,m) decomposed
into minimal subsets, such that the stabilizer of each subset is Sts. Decom-



446

position of the system s according to Sts will be called p-decomposition of
s, and denoted by sp.

All the Sn,m systems with the same morphism can be divided according
to their set types. For example, S6,5 systems of the morphism 60 can be
divided according to the set types into two classes: the systems of the set
type {2, 1, 1, 1, 1} and {1, 1, 1, 1, 1, 1}.
The representatives of the first set type are the systems:

s1 = {1, 1, 2, 3, 1 4, 4 5}, Sts1 = {I, (2 3)}, sp
1 = {1}{1}{2, 3}{1 4}{4 5}, and

s2 = {1, 1, 2, 3, 2 4, 3 5}, Sts2 = {I, (2 3)(4 5)}, sp
2 = {1}{1}{2, 3}{2 4, 3 5}.

The representatives of the other set type are the systems:

s3 = {0, 1, 2, 3, 1 4, 4 5}, Sts3 = {I, (2 3)}, sp
3 = {0}{1}{2, 3}{1 4}{4 5},

s4 = {1 2, 1 3, 2 4, 3 5, 1 2 4, 1 3 5}, Sts4 = {(2 3)(4 5)},
sp
4 = {1 2, 1 3}{2 4, 3 5}{1 2 4, 1 3 5}, and

s5 = {0, 1, 2, 3, 1 4, 2 5}, Sts5 = {(1 2)(4 5)}, sp
5 = {0}{1 2}{3}{1 4, 2 5}.

In the same way, among S6,5 systems of the morphism 30 are distinguished
the systems of the set type {2, 1, 1, 1, 1} with the representative

s6 = {1, 1, 2, 3, 1 4, 1 5}, Sts6 = {I, (2 3), (4 5), (2 3)(4 5)},
sp
6 = {1}{1}{2 3}{1 4, 1 5}, and

the systems of the set type {1, 1, 1, 1, 1, 1} with the representative

s7 = {0, 1, 2, 3, 4, 1 2 5}, Sts7 = {I, (1 2), (3 4), (1 2)(3 4)},
sp
7 = {0}{1 2}{3, 4}{1 2 5}.

Definition 4.3 Two Sn,m systems s1 and s2 that have the same morphism
and set type will be of the same p-type if there is a bijection between the
corresponding subsets of sp1

1 and sp1
1 . Systems of the same p-type will be

called M -equivalent.

Theorem 4.1 All M -equivalent systems give the same number of Mackay
groups derived from a given AC, and obtained groups correspond to each
other in morphism.

Working with the symmetry group 18s with the AC:

{{A,B}, {C, D}, {E, F}},
the system s1 gives 6 M -groups, s2 gives 7 M -groups, s3 gives 9 M -groups,
s4 gives 11, s5 gives 9, s6 gives 7, and the system s7 gives 6 M -groups.

Every AC can be treated as a set of rules that determine the placement
of the elements of a system. We recognized systems that will act in the
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same way, in the combinatorial sense, with regard to an AC. For every
system s we can consider the stabilizer of AC(s) obtained by putting the
system into the AC in question. The morphism of the AC(s) is equal or
greater than the morphism of the system. Every permutation belonging to
the stabilizer of AC(s) is the member of Sts, but vice-versa is not true.
Knowing the stabilizers of M -groups obtained, we can make conclusion
about their morphisms.

For example, from the system s1 = {1, 1, 2, 3, 1 4, 4 5}, from the AC of the
group 18s we obtain 9 possible placements

(1) {{1, 1}, {2, 3}, {1 4, 4 5}} (1)
(2) {{1, 2}, {1, 3}, {1 4, 4 5}} (2)
(3) {{1, 1 4}, {1, 4 5}, {2, 3}} (3)
(4) {{1, 1}, {2, 1 4}, {3, 4 5}} (4)
(5) {{1, 1}, {2, 4 5}, {3, 1 4}} (4)
(6) {{1, 2}, {1, 1 4}, {3, 4 5}} (5)
(7) {{1, 3}, {1, 1 4}, {2, 4 5}} (5)
(8) {{1, 2}, {1, 4 5}, {3, 1 4}} (6)
(9) {{1, 3}, {1, 4 5}, {2, 1 4}} (6)

The permutation (2 3) transforms (4) into (5), (6) into (7), and (8) into
(9), so we obtain 6 M -groups (1)-(6). For the groups (1)-(3) the stabi-
lizer is {I, (2 3)}, so it is equal to Sts1 , and the remaining groups (4)-(6)
have a trivial stabilizer. Hence, the morphism of the groups (1)-(3) is
60, and the morphism of the groups (3)-(6) is 120. Together, they give
3× 60 + 3× 120 = 540 Z-groups.

According to Theorem 4.1, the number of systems necessary for the com-
plete derivation of M -groups is considerably reduced, especially for the sys-
tems of a higher order like S6,5 and S6,6, by using only the representatives
of equivalence classes defined by the p-types of systems. In the derivation
of M -groups from the systems with the morphism 6! = 720, there occurs
only one type of systems. All of them produce the maximal decomposition
in which all subsets are of the length 1, having the trivial stabilizer.

This enabled the derivation of all M -groups from the symmetry group 18s,
the only space group with 6 generators that gives the possibility for the
derivation of M -groups of 6-multiple antisymmetry. From the group 18s

we obtain:
M6(18s) = 598 752,

N6(18s) = 2× 15 + 1× 30 + 6× 45 + 63× 90 + 8× 120 + 860× 180
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+10× 240 + 29 468× 360 + 568 334× 720 = 419 973 120.

This strongly confirms that any approach to the derivation of M -groups and
Z-groups must be based on the multiple selection of the large equivalence
classes– classes of non-isomorphic ACs, or on the types of M -and Z-systems
enabling the reduction of the complete derivation to the derivation from the
representatives of those classes.

Table 1

AC Rep. M1 = N1 M2 M3 M4 M5 M6 No.

I 1s 1 1 1 1

II 2s 2 3 4 4 1

III 3s 5 16 39 55 2

IV 4s 4 9 10 7

V 5s 5 20 56 90 1

VI 6s 5 13 16 41

VII 7s 8 48 235 909 2160 1

VIII 8s 9 45 144 246 4

IX 9s 5 29 159 702 1914 1

X 11s 3 6 7 3

XI 12s 3 14 42 77 1

XII 13s 11 100 714 3706 10938 2

XIII 14s 11 65 236 444 17

XIV 17s 9 57 216 426 3

XV 18s 9 107 1296 14124 119580 598752 1

XVI 19s 17 181 1376 7314 21776 3

XVII 20s 7 31 97 166 1

XVIII 21s 9 94 775 4436 13984 1

XIX 23s 3 3 42

XX 25s 7 21 28 29

XXI 27s 2 2 20

XXII 28s 8 41 134 237 8

XXIII 37s 15 105 420 840 4

XXIV 38s 1 24

XXV 61s 2

XXVI 3h 7 31 88 138 1

XXVII 5h 5 23 70 122 2

XXVIII 8h 3 6 6 1

XXIX 19h 4 12 26 33 1

XXX 21h 15 161 1268 6984 21376 1

XXXI 1a 2 3 3 1

XXXII 8a 1 1 1

XXXIII 21a 5 23 80 50 1

XXXIV 29a 3 7 10 1

Total 1191 5005 19467 72587 191728 598752 230
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5. Concluding results

For all the computations it is used a PC with the Intel Pentium 4 CPU
2.40 GHz with 504 MB of RAM.

The space symmetry groups are first divided into 34 classes according to the
isomorphism of ACs. For each class representative is written a computer
program for the derivation of M -groups. The results for m ≤ 4 from the
papers [12,13] are confirmed, and some of them corrected. In the Table
1 those corrections are denoted by the bold numbers. The new results
obtained for m = 5 and m = 6 completed the derivation of M -groups from
230 space groups.

Solution of this general problem gives as a particular result the derivation
of the junior groups of 221-symmetry (the problem proposed by A. F. Palis-
trant) and the complete enumeration of the multi-dimensional subperiodic
groups of the categories G63 and G653 [6]. The number of the junior groups
of 221-symmetry is M3 = 19 467.

For the double check of all obtained results, combinatorial relationships
between M -groups and Z-groups are used. Knowing the numbers of Z-
groups calculated before [11], the new results obtained for M -groups are
completely checked. The complete results for M -groups are given in Table
1, where the first two columns contain the data about AC class and its
representative, the columns 2-7 contain the numbers Mn (1 ≤ n ≤ 6), and
in the last column is given the number of space groups G3 belonging to the
corresponding AC equivalence class.
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